Development of Nd (III)-Based Terahertz Absorbers Revealing Temperature Dependent Near-Infrared Luminescence
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure
2.2. Vibrational Signature
2.3. Quantum Chemical Calculation
2.4. Concluding Remark on Vibrational Features
2.5. Optical Spectroscopy
3. Materials and Methods
3.1. Materials
3.2. Synthetic Procedure of [NdIII (phen)3 (NCX)3]·0.3EtOH Complexes (1-S and 1-Se)
3.3. X-ray Crystallography
3.4. Physical Techniques
3.5. Ab Initio Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Launay, J.-P.; Verdaguer, M. Electrons in Molecules: From Basic Principles to Molecular Electronics–Revised Edition; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Sieklucka, B.; Pinkowicz, D. Molecular Magnetic Materials: Concepts and Applications; Wiley-VCH: Weinheim, Germany, 2017. [Google Scholar]
- Perlepe, P.; Oyarzabal, I.; Mailman, A.; Yquel, M.; Platunov, M.; Dovgaliuk, I.; Rouzières, M.; Négrier, P.; Mondieig, D.; Suturina, E.A.; et al. Metal-Organic Magnets with Large Coercivity and Ordering Temperatures up to 242 °C. Science 2020, 370, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.S. Magnetically ordered molecule-based materials. Chem. Soc. Rev. 2011, 40, 3266–3296. [Google Scholar] [CrossRef] [PubMed]
- Verdaguer, M.; Bleuzen, A.; Marvaud, V.; Vaissermann, J.; Seuleiman, M.; Desplanches, C.; Scuiller, A.; Train, C.; Garde, R.; Gelly, G.; et al. Molecules to Build Solids: High TC Molecule-based Magnets by Design and Recent Revival of Cyano Complexes Chemistry. Coord. Chem. Rev. 1999, 190–192, 1023–1047. [Google Scholar] [CrossRef]
- Holmes, S.M.; Girolami, G.S. Sol–Gel Synthesis of KVII[CrIII(CN)6]·2H2O: A Crystalline Molecule-Based Magnet with a Magnetic Ordering Temperature above 100 °C. J. Am. Chem. Soc. 1999, 121, 5593–5594. [Google Scholar] [CrossRef]
- Dunbar, K.R.; Heintz, R.A. Chemistry of transition metal cyanide compounds: Modern perspectives. Prog. Inorg. Chem. 2007, 45, 283–291. [Google Scholar]
- Ferlay, S.; Mallah, T.; Ouahès, R.; Veillet, P.; Verdaguer, M. A room-temperature organometallic magnet based on Prussian blue. Nature 1995, 378, 701–703. [Google Scholar] [CrossRef]
- Mallah, T.; Thiebaut, S.; Verdaguer, M.; Veillet, P. High-Tc molecular-based magnets: Ferrimagnetic mixed-valence chromium(III)-chromium(II) cyanides with Tc at 240 and 190 Kelvin. Science 1993, 262, 1554–1557. [Google Scholar] [CrossRef]
- Ohkoshi, S.; Imoto, K.; Tsunobuchi, Y.; Takano, S.; Tokoro, H. Light-induced spin-crossover magnet. Nat. Chem. 2011, 3, 564–569. [Google Scholar] [CrossRef]
- Komori-Orisaku, K.; Stefańczyk, O.; Ohishi, S.; Ozaki, N.; Miyamoto, Y.; Imoto, K.; Ohkoshi, S. Humidity-Induced Switching between Two Magnetic and Structural Phases in a CoII-[WV(CN)8] Molecular Magnet. Chem. Eur. J. 2019, 25, 11066–11073. [Google Scholar] [CrossRef]
- Stefańczyk, O.; Ohkoshi, S. Humidity-A Powerful Tool to Customize the Physical Properties of Molecular Magnets. Chem. Eur. J. 2019, 25, 15963–15977. [Google Scholar] [CrossRef]
- Ohkoshi, S.; Arai, K.; Sato, Y.; Hashimoto, K. Humidity-induced magnetization and magnetic pole inversion in a cyano-bridged metal assembly. Nat. Mater. 2004, 3, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Brites, C.D.S.; Millán, A.; Carlos, L.D. Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Amsterdam, The Netherlands, 2016; Volume 49. [Google Scholar]
- Kumar, K.; Stefańczyk, O.; Chorazy, S.; Nakabayashi, K.; Sieklucka, B.; Ohkoshi, S. Effect of Noble Metals on Luminescence and Single-Molecule Magnet Behavior in the Cyanido-Bridged Ln-Ag and Ln-Au (Ln = Dy, Yb, Er) Complexes. Inorg. Chem. 2019, 58, 5677–5687. [Google Scholar] [CrossRef] [PubMed]
- Ohkoshi, S.; Nakagawa, K.; Imoto, K.; Tokoro, H.; Shibata, Y.; Okamoto, K.; Miyamoto, Y.; Komine, M.; Yoshikiyo, M.; Namai, A. A Photoswitchable Polar Crystal that Exhibits Superionic Conduction. Nat. Chem. 2020, 12, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Darago, L.E.; Aubrey, M.L.; Yu, C.J.; Gonzalez, M.I.; Long, J.R. Electronic Conductivity, Ferrimagnetic Ordering, and Reductive Insertion Mediated by Organic Mixed-Valence in a Ferric Semiquinoid Metal–Organic Framework. J. Am. Chem. Soc. 2015, 137, 15703–15711. [Google Scholar] [CrossRef]
- Mingabudinova, L.R.; Vinogradov, V.V.; Milichko, V.A.; Hey-Hawkins, E.; Vinogradov, A.V. Metal-Organic Frameworks as a Competitive Materials for Non-Linear Optics. Chem. Soc. Rev. 2016, 45, 5408–5431. [Google Scholar] [CrossRef][Green Version]
- Ohkoshi, S.; Takano, S.; Imoto, K.; Yoshikiyo, M.; Namai, A.; Tokoro, H. 90-degree optical switching of output second-harmonic light in chiral photomagnet. Nat. Photonics 2014, 8, 65–71. [Google Scholar] [CrossRef]
- Train, C.; Gruselle, M.; Verdaguer, M. The fruitful introduction of chirality and control of absolute configurations in molecular magnets. Chem. Soc. Rev. 2011, 40, 3297–3312. [Google Scholar] [CrossRef]
- Ohkoshi, S.; Shiraishi, K.; Nakagawa, K.; Ikeda, Y.; Stefańczyk, O.; Tokoro, H.; Namai, A. Reversible photoswitchable ferromagnetic thin film based on a cyanido-bridged RbCuMo complex. J. Mater. Chem. C 2021, 9, 3081–3087. [Google Scholar] [CrossRef]
- Yoshida, T.; Nakabayashi, K.; Tokoro, H.; Yoshikiyo, M.; Namai, A.; Imoto, K.; Chiba, K.; Ohkoshi, S. Extremely Low-Frequency Phonon Material and its Temperature- and Photo-Induced Switching Effects. Chem. Sci. 2020, 11, 8989–8998. [Google Scholar] [CrossRef]
- Ohkoshi, S.; Yoshikiyo, M.; Namai, A.; Nakagawa, K.; Chiba, K.; Fujiwara, R.; Tokoro, H. Cesium ion detection by terahertz light. Sci. Rep. 2017, 7, 8088. [Google Scholar] [CrossRef][Green Version]
- Ouahab, L. Multifunctional Molecular Materials; Pan Stanford Publishing Pte. Ltd.: Singapore, 2013. [Google Scholar]
- Estrader, M.; Salinas Uber, J.; Barrios, L.A.; Garcia, J.; Lloyd-Williams, P.; Roubeau, O.; Teat, S.J.; Aromí, G.A. Magneto-optical Molecular Device: Interplay of Spin Crossover, Luminescence, Photomagnetism, and Photochromism. Angew. Chem. Int. Ed. 2017, 56, 15622–15627. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Molnár, G.; Rat, S.; Salmon, L.; Nicolazzi, W.; Bousseksou, A. Spin Crossover Nanomaterials: From Fundamental Concepts to Devices. Adv. Mater. 2018, 30, 1703862. [Google Scholar] [CrossRef] [PubMed]
- Dincă, M.; Long, J.R. Hydrogen Storage in Microporous Metal–Organic Frameworks with Exposed Metal Sites. Angew. Chem. Int. Ed. 2008, 47, 6766–6779. [Google Scholar] [CrossRef] [PubMed]
- Kissinger, D.; Kahmen, G.; Weigel, R. Millimeter-Wave and Terahertz Transceivers in SiGe BiCMOS Technologies. IEEE Trans. Microw. Theory Tech. 2021, 69, 4541–4560. [Google Scholar] [CrossRef]
- Zhao, D.; Skelton, J.M.; Hu, H.; La-o-vorakiat, C.; Zhu, J.-X.; Marcus, R.A.; Michel-Beyerle, M.-E.; Lam, Y.M.; Walsh, A.; Chia, E.E.M. Low-Frequency Optical Phonon Modes and Carrier Mobility in the Halide Perovskite CH3NH3PbBr3 Using Terahertz Time-Domain Spectroscopy. Appl. Phys. Lett. 2017, 111, 201903. [Google Scholar] [CrossRef][Green Version]
- Pérez-Osorio, M.A.; Milot, R.L.; Filip, M.R.; Patel, J.B.; Herz, L.M.; Johnston, M.B.; Giustino, F. Vibrational Properties of the Organic-Inorganic Halide Perovskite CH3NH3PbI3 from Theory and Experiment: Factor Group Analysis, First-Principles Calculations, and Low-Temperature Infrared Spectra. J. Phys. Chem. C 2015, 119, 25703–25718. [Google Scholar] [CrossRef]
- Jepsen, P.U.; Cooke, D.G.; Koch, M. Terahertz spectroscopy and imaging—modern techniques and applications. Laser Photonics Rev. 2011, 5, 124–166. [Google Scholar] [CrossRef]
- Cazayous, M.; Langlois, C.; Oikawa, T.; Ricolleau, C.; Sacuto, A. Cu-Ag core-shell nanoparticles: A direct correlation between micro-Raman and electron microscopy. Phys. Rev. B Condens. Matter Mater. Phys. 2006, 73, 113402. [Google Scholar] [CrossRef][Green Version]
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon. 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Ferguson, B.; Zhang, X.-C. Materials for terahertz science and technology. Nat. Mater. 2002, 1, 26–33. [Google Scholar] [CrossRef]
- Dang, S.; Amin, O.; Shihada, B.; Alouini, M.S. What should 6G be? Nat. Electron. 2020, 3, 20–29. [Google Scholar] [CrossRef][Green Version]
- Li, J.; Lu, W.; Suhr, J.; Chen, H.; Xiao, J.Q.; Chou, T.-W. Superb electromagnetic wave-absorbing composites based on large-scale graphene and carbon nanotube films. Sci. Rep. 2017, 7, 2349. [Google Scholar] [CrossRef] [PubMed]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in Terahertz Communications Accelerated by Photonics. Nat. Photonics 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Pardo, R.; Zayat, M.; Levy, D. Photochromic Organic–Inorganic Hybrid Materials. Chem. Soc. Rev. 2011, 40, 672–687. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bünzli, J.-C.G.; Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048–1077. [Google Scholar] [CrossRef]
- Rodrigues, M.; Piñol, R.; Antorrena, G.; Brites, C.D.S.; Silva, N.J.O.; Murillo, J.L.; Cases, R.; Díez, I.; Palacio, F.; Torras, N.; et al. Implementing Thermometry on Silicon Surfaces Functionalized by Lanthanide-Doped Self-Assembled Polymer Monolayers. Adv. Funct. Mater. 2016, 26, 200–209. [Google Scholar] [CrossRef][Green Version]
- Li, L.; Zhu, Y.; Zhou, X.; Brites, C.D.S.; Ananias, D.; Lin, Z.; Almeida Paz, F.A.; Rocha, J.; Huang, W.; Carlos, L.D. Visible-Light Excited Luminescent Thermometer Based on Single Lanthanide Organic Frameworks. Adv. Funct. Mater. 2016, 26, 8677–8684. [Google Scholar] [CrossRef]
- Cui, Y.J.; Song, R.J.; Yu, J.C.; Liu, M.; Wang, Z.Q.; Wu, C.D.; Yang, Y.; Wang, Z.Y.; Chen, B.L.; Qian, G.D. Dual-Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing. Adv. Mater. 2015, 27, 1420–1425. [Google Scholar] [CrossRef]
- Wang, Z.; Ananias, D.; Carné-Sánchez, A.; Brites, C.D.S.; Imaz, I.; Maspoch, D.; Rocha, J.; Carlos, L.D. Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying. Adv. Funct. Mater. 2015, 25, 2824–2830. [Google Scholar] [CrossRef]
- Kumar, K.; Stefanczyk, O.; Chorazy, S.; Nakabayashi, K.; Ohkoshi, S. Ratiometric and colorimetric thermometers using dimeric and trimeric {[Au(SCN)2]−}n moieties based on excimer/exciplex emission. Angew. Chem. Int. Ed. 2022, 61, e202201265. [Google Scholar] [CrossRef]
- Sadat, S.; Tan, A.; Chua, Y.J.; Reddy, P. Nanoscale thermometry using point contact thermocouples. Nano Lett. 2010, 10, 2613–2617. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kotov, N.A. Thermometer design at the nanoscale. Nano Today 2007, 2, 48–51. [Google Scholar] [CrossRef]
- Kumar, K.; Stefanczyk, O.; Nakabayasahi, K.; Imoto, K.; Oki, Y.; Ohkoshi, S. Detection of Sub-Terahertz Raman Response and Nonlinear Optical Effects for Luminescent Yb(III) Complexes. Adv. Optical Mater. 2022, 10, 2101721. [Google Scholar] [CrossRef]
- Münzfeld, L.; Schoo, C.; Bestgen, S.; Moreno-Pineda, E.; Köppe, R.; Ruben, M.; Roesky, P.W. Synthesis, Structures and Magnetic Properties of [(η9-C9H9)Ln(η8-C8H8)] Super Sandwich Complexes. Nat. Commun. 2019, 10, 3135–3141. [Google Scholar] [CrossRef]
- Rechkemmer, Y.; Breitgoff, F.D.; van der Meer, M.; Atanasov, M.; Hakl, M.; Orlita, M.; Neugebauer, P.; Neese, F.; Sarkar, B.; van Slageren, J. A four-coordinate cobalt (II) single-ion magnet with coercivity and a very high energy barrier. Nat. Commun. 2016, 7, 10467. [Google Scholar] [CrossRef][Green Version]
- Nowicka, B.; Korzeniak, T.; Stefańczyk, O.; Pinkowicz, D.; Chorąży, S.; Podgajny, R.; Sieklucka, B. The impact of ligands upon topology and functionality of octacyanidometallate-based assemblies. Coord. Chem. Rev. 2012, 256, 1946–1971. [Google Scholar] [CrossRef]
- Cotton, S.A.; Raithby, P.R. The synthesis and structure of [Er(terpy)(NO3)3·(C2H5OH)]; an example of preference for monodentate over bidentate coordination for the nitrate group. Inorg. Chem. Commun. 1999, 2, 86–88. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Banks, P.A.; Burgess, L.; Michael, T.R. The necessity of periodic boundary conditions for the accurate calculation of crystalline terahertz spectra. Phys. Chem. Chem. Phys. 2021, 23, 20038–20051. [Google Scholar] [CrossRef]
- Ramos-Lara, F.; Lira, C.A.; Ramírez, M.O.; Flores, M.; Arroyo, R.; Caldiño, U. Optical Spectroscopy of Nd3+ Ions in Poly(Acrylic Acid). J. Phys. Condens. Matter 2006, 18, 7951–7959. [Google Scholar] [CrossRef]
- Fdez. Galván, I.; Vacher, M.; Alavi, A.; Angeli, C.; Aquilante, F.; Autschbach, J.; Bao, J.J.; Bokarev, S.I.; Bogdanov, N.A.; Carlson, R.K.; et al. Open Molcas: From Source Code to Insight. J. Chem. Theory Comput. 2019, 15, 5925–5964. [Google Scholar] [CrossRef]
- Silva, W.S.; Silva, A.C.A.; Rocha, U.; Dantas, N.O.; Silva, W.F.; Jacinto, C. Nd3+ doped TiO2 nanocrystals as self-referenced optical nanothermometer operating within the biological windows. Sens. Actuator A Phys. 2021, 317, 112445. [Google Scholar] [CrossRef]
- Kumar, K.; Abe, K.; Komori-Orisaku, K.; Stefańczyk, O.; Nakabayashi, K.; Shakirova, J.R.; Tunik, S.P.; Ohkoshi, S. Neodymium β-diketonate showing slow magnetic relaxation and acting as a ratiometric thermometer based on near-infrared emission. RSC Adv. 2019, 9, 23444–23449. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122. [Google Scholar] [CrossRef][Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez–Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. J. Appl. Cryst. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Llunell, M.; Casanova, D.; Cirera, J.; Bofill, J.; Alemany, P.; Alvarez, S.; Pinsky, M.; Avnir, D. SHAPE v. 2.1. Program for the Calculation of Continuous Shape Measures of Polygonal and Polyhedral Molecular Fragments; University of Barcelona: Barcelona, Spain, 2013. [Google Scholar]
- Casanova, D.; Cirera, J.; Llunell, M.; Alemany, P.; Avnir, D.; Alvarez, S. Minimal Distortion Pathways in Polyhedral Rearrangements. J. Am. Chem. Soc. 2004, 126, 1755–1763. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. A 1994, 98, 11623. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Woon, D.E.; Dunning, T.H., Jr. Calculation of the electron affinities of the second row atoms: Al–Cl. J. Chem. Phys. 1993, 99, 3730. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007. [Google Scholar] [CrossRef]
- Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 1993, 80, 1431–1441. [Google Scholar] [CrossRef]
- Cao, X.; Dolg, M. Segmented Contraction Scheme for Small Core Lanthanide Pseudopotential Basis Sets. J. Mol. Struct. THEOCHEM 2002, 581, 139–147. [Google Scholar] [CrossRef]
- Roos, B.O.; Lindh, R.; Malmqvist, P.; Veryazov, V.; Widmark, P. Main group atoms and dimers studied with a new relativistic ANO basis set. J. Phys. Chem. A 2004, 108, 2851–2858. [Google Scholar] [CrossRef]
- Roos, B.O.; Lindh, R.; Malmqvist, P.; Veryazov, V.; Widmark, P. New relativistic ANO basis sets for transition metal atoms. J. Phys. Chem. A 2005, 109, 6575–6579. [Google Scholar] [CrossRef]
- Ungur, L.; Chibotaru, L.F. Ab initio crystal field for lanthanides. Chem.-Eur. J. 2017, 23, 3708–3718. [Google Scholar] [CrossRef]
- Parlinski, K.; Li, Z.Q.; Kawazoe, Y. First-Principles Determination of the Soft Mode in Cubic ZrO2. Phys. Rev. Lett. 1997, 78, 4063–4066. [Google Scholar] [CrossRef]
- Perdew, J.P.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982–9985. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 78, 134106. [Google Scholar] [CrossRef][Green Version]
THz-TDS Absorption | |||
Compound | Structure | The Lowest Frequency Dominant Signal | Reference |
[NdIII (phen)3 (NCS)3] 0.3EtOH (1-S) | Discrete complex | 0.65 THz (ν ≈ 21.7 cm−1) @300 K | This work |
0.68 THz (ν = 22.7 cm−1) @10 K | |||
[NdIII (phen)3 (NCSe)3]·0.3EtOH (1-Se) | Discrete complex | 0.59 THz (ν ≈ 19.7 cm−1) @300 K | This work |
0.62 THz (ν ≈ 20.7 cm−1) @10 K | |||
RbI [CoII (3–CNpy)2] [WV (CN)8] | Layers with Rb+ between | 0.78 THz (ν ≈ 26.0 cm−1) @300 K | [22] |
0.87 THz (ν ≈ 29.0 cm−1) @10 K | |||
CsI [CoII (3–CNpy)2] [WV (CN)8] | Layers with Cs+ between | 0.69 THz (ν ≈ 23.0 cm−1) @300 K | [22] |
RbI3/2 CuII7 [MoIV (CN)8]31/8·12H2O | Network with Rb+ inside | 1.11 THz (ν ≈ 37.0 cm−1) @300 K | [21] |
CsI2CuII7 [MoIV (CN)8]4·6H2O | Network with Cs+ inside | 1.35 THz (ν ≈ 45.0 cm−1) @300 K | [21] |
Cs0.90Mn [Fe (CN)6]0.93·1.9H2O | Network with Cs+ inside | 1.40 THz (ν ≈ 46.7 cm−1) @300 K | [23] |
Raman Scattering | |||
Compound | Structure | The Lowest Frequency Dominant Signal | Reference |
[NdII I(phen)3 (NCS)3]·0.3EtOH (1-S) | Discrete complex | 0.75 THz (ν ≈ 25.0 cm−1) @300 K | This work |
[NdIII (phen)3 (NCSe)3]·0.3EtOH (1-Se) | Discrete complex | 0.61 THz (ν ≈ 20.3 cm−1) @300 K | This work |
[YbIII (TPPO)3 (NCS)3] | Discrete complex | 0.48 THz (ν ≈ 16.0 cm−1) @300 K | [47] |
[YbIII (TPPO)3 (NCSe)3] | Discrete complex | 0.48 THz (ν ≈ 16.0 cm−1) @300 K | [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, K.; Stefanczyk, O.; Nakabayashi, K.; Mineo, Y.; Ohkoshi, S.-i. Development of Nd (III)-Based Terahertz Absorbers Revealing Temperature Dependent Near-Infrared Luminescence. Int. J. Mol. Sci. 2022, 23, 6051. https://doi.org/10.3390/ijms23116051
Kumar K, Stefanczyk O, Nakabayashi K, Mineo Y, Ohkoshi S-i. Development of Nd (III)-Based Terahertz Absorbers Revealing Temperature Dependent Near-Infrared Luminescence. International Journal of Molecular Sciences. 2022; 23(11):6051. https://doi.org/10.3390/ijms23116051
Chicago/Turabian StyleKumar, Kunal, Olaf Stefanczyk, Koji Nakabayashi, Yuuki Mineo, and Shin-ichi Ohkoshi. 2022. "Development of Nd (III)-Based Terahertz Absorbers Revealing Temperature Dependent Near-Infrared Luminescence" International Journal of Molecular Sciences 23, no. 11: 6051. https://doi.org/10.3390/ijms23116051