Clinical and Genetic Characterization of Patients with Bartter and Gitelman Syndrome
Abstract
1. Introduction
2. Results
2.1. Results
2.1.1. Genetic Diagnosis
2.1.2. Clinical and Biochemical Features of Patients According to Genetic Diagnosis
2.1.3. Chronic Kidney Disease
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Whole-Exome Sequencing and Bioinformatic Analysis
4.3. Statistical Analysis
4.4. Web Resources
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blanchard, A.; Bockenhauer, D.; Bolignano, D.; Calò, L.A.; Cosyns, E.; Devuyst, O.; Ellison, D.H.; Karet Frankl, F.E.; Knoers, N.V.A.M.; Konrad, M.; et al. Gitelman Syndrome: Consensus and Guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2017, 91, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Bokhari, S.R.A.; Zulfiqar, H.; Mansur, A. Bartter Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Kurtz, I. Molecular Pathogenesis of Bartter’s and Gitelman’s Syndromes. Kidney Int. 1998, 54, 1396–1410. [Google Scholar] [CrossRef] [PubMed]
- Konrad, M.; Weber, S. Recent Advances in Molecular Genetics of Hereditary Magnesium-Losing Disorders. J. Am. Soc. Nephrol. 2003, 14, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Konrad, M.; Nijenhuis, T.; Ariceta, G.; Bertholet-Thomas, A.; Calo, L.A.; Capasso, G.; Emma, F.; Schlingmann, K.P.; Singh, M.; Trepiccione, F.; et al. Diagnosis and Management of Bartter Syndrome: Executive Summary of the Consensus and Recommendations from the European Rare Kidney Disease Reference Network Working Group for Tubular Disorders. Kidney Int. 2021, 99, 324–335. [Google Scholar] [CrossRef]
- Walsh, P.R.; Tse, Y.; Ashton, E.; Iancu, D.; Jenkins, L.; Bienias, M.; Kleta, R.; Van’t Hoff, W.; Bockenhauer, D. Clinical and Diagnostic Features of Bartter and Gitelman Syndromes. Clin. Kidney J. 2018, 11, 302–309. [Google Scholar] [CrossRef]
- Peters, M.; Jeck, N.; Reinalter, S.; Leonhardt, A.; Tönshoff, B.; Klaus, G.; Konrad, M.; Seyberth, H.W. Clinical Presentation of Genetically Defined Patients with Hypokalemic Salt-Losing Tubulopathies. Am. J. Med. 2002, 112, 183–190. [Google Scholar] [CrossRef]
- García Castaño, A.; Pérez de Nanclares, G.; Madariaga, L.; Aguirre, M.; Madrid, Á.; Chocrón, S.; Nadal, I.; Navarro, M.; Lucas, E.; Fijo, J.; et al. Poor Phenotype-Genotype Association in a Large Series of Patients with Type III Bartter Syndrome. PLoS ONE 2017, 12, e0173581. [Google Scholar] [CrossRef]
- Gollasch, B.; Anistan, Y.-M.; Canaan-Kühl, S.; Gollasch, M. Late-Onset Bartter Syndrome Type II. Clin. Kidney J. 2017, 10, 594–599. [Google Scholar] [CrossRef][Green Version]
- Fulchiero, R.; Seo-Mayer, P. Bartter Syndrome and Gitelman Syndrome. Pediatr. Clin. N. Am. 2019, 66, 121–134. [Google Scholar] [CrossRef]
- Shibli, A.A.; Al Shibli, A.; Narchi, H. Bartter and Gitelman Syndromes: Spectrum of Clinical Manifestations Caused by Different Mutations. World J. Methodol. 2015, 5, 55. [Google Scholar] [CrossRef]
- Kleta, R.; Bockenhauer, D. Salt-Losing Tubulopathies in Children: What’s New, What’s Controversial? J. Am. Soc. Nephrol. 2018, 29, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Downie, M.L.; Lopez Garcia, S.C.; Kleta, R.; Bockenhauer, D. Inherited Tubulopathies of the Kidney: Insights from Genetics. Clin. J. Am. Soc. Nephrol. 2021, 16, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Ashton, E.J.; Legrand, A.; Benoit, V.; Roncelin, I.; Venisse, A.; Zennaro, M.-C.; Jeunemaitre, X.; Iancu, D.; Van’t Hoff, W.G.; Walsh, S.B.; et al. Simultaneous Sequencing of 37 Genes Identified Causative Mutations in the Majority of Children with Renal Tubulopathies. Kidney Int. 2018, 93, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Viering, D.; Schlingmann, K.P.; Hureaux, M.; Nijenhuis, T.; Mallett, A.; Chan, M.M.Y.; van Beek, A.; van Eerde, A.M.; Coulibaly, J.-M.; Vallet, M.; et al. Gitelman-Like Syndrome Caused by Pathogenic Variants in mtDNA. J. Am. Soc. Nephrol. 2022, 33, 305–325. [Google Scholar] [CrossRef] [PubMed]
- Groopman, E.E.; Rasouly, H.M.; Gharavi, A.G. Genomic Medicine for Kidney Disease. Nat. Rev. Nephrol. 2018, 14, 83–104. [Google Scholar] [CrossRef] [PubMed]
- Matsunoshita, N.; Nozu, K.; Shono, A.; Nozu, Y.; Fu, X.J.; Morisada, N.; Kamiyoshi, N.; Ohtsubo, H.; Ninchoji, T.; Minamikawa, S.; et al. Differential Diagnosis of Bartter Syndrome, Gitelman Syndrome, and Pseudo-Bartter/Gitelman Syndrome Based on Clinical Characteristics. Genet. Med. 2016, 18, 180–188. [Google Scholar] [CrossRef]
- Hureaux, M.; Ashton, E.; Dahan, K.; Houillier, P.; Blanchard, A.; Cormier, C.; Koumakis, E.; Iancu, D.; Belge, H.; Hilbert, P.; et al. High-Throughput Sequencing Contributes to the Diagnosis of Tubulopathies and Familial Hypercalcemia Hypocalciuria in Adults. Kidney Int. 2019, 96, 1408–1416. [Google Scholar] [CrossRef]
- Kiran, B.V.; Barman, H.; Iyengar, A. Clinical Profile and Outcome of Renal Tubular Disorders in Children: A Single Center Experience. Indian J. Nephrol. 2014, 24, 362–366. [Google Scholar] [CrossRef]
- Puricelli, E.; Bettinelli, A.; Borsa, N.; Sironi, F.; Mattiello, C.; Tammaro, F.; Tedeschi, S.; Bianchetti, M.G.; Italian Collaborative Group for Bartter Syndrome. Long-Term Follow-up of Patients with Bartter Syndrome Type I and II. Nephrol. Dial. Transplant. 2010, 25, 2976–2981. [Google Scholar] [CrossRef]
- Seys, E.; Andrini, O.; Keck, M.; Mansour-Hendili, L.; Courand, P.-Y.; Simian, C.; Deschenes, G.; Kwon, T.; Bertholet-Thomas, A.; Bobrie, G.; et al. Clinical and Genetic Spectrum of Bartter Syndrome Type 3. J. Am. Soc. Nephrol. 2017, 28, 2540–2552. [Google Scholar] [CrossRef]
- Bonfante, L.; Davis, P.A.; Spinello, M.; Antonello, A.; D’Angelo, A.; Semplicini, A.; Calò, L. Chronic Renal Failure, End-Stage Renal Disease, and Peritoneal Dialysis in Gitelman’s Syndrome. Am. J. Kidney Dis. 2001, 38, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Calò, L.A.; Marchini, F.; Davis, P.A.; Rigotti, P.; Pagnin, E.; Semplicini, A. Kidney Transplant in Gitelman’s Syndrome. Report of the First Case. J. Nephrol. 2003, 16, 144–147. [Google Scholar] [PubMed]
- Walsh, S.B.; Unwin, E.; Vargas-Poussou, R.; Houillier, P.; Unwin, R. Does Hypokalaemia Cause Nephropathy? An Observational Study of Renal Function in Patients with Bartter or Gitelman Syndrome. QJM 2011, 104, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; de Jong, P.E.; Coresh, J.; El Nahas, M.; Astor, B.C.; Matsushita, K.; Gansevoort, R.T.; Kasiske, B.L.; Eckardt, K.-U. The Definition, Classification, and Prognosis of Chronic Kidney Disease: A KDIGO Controversies Conference Report. Kidney Int. 2011, 80, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Romagnani, P.; Remuzzi, G.; Glassock, R.; Levin, A.; Jager, K.J.; Tonelli, M.; Massy, Z.; Wanner, C.; Anders, H.-J. Chronic Kidney Disease. Nat. Rev. Dis. Primers 2017, 3, 17088. [Google Scholar] [CrossRef] [PubMed]
- Mallett, A.J.; McCarthy, H.J.; Ho, G.; Holman, K.; Farnsworth, E.; Patel, C.; Fletcher, J.T.; Mallawaarachchi, A.; Quinlan, C.; Bennetts, B.; et al. Massively Parallel Sequencing and Targeted Exomes in Familial Kidney Disease Can Diagnose Underlying Genetic Disorders. Kidney Int. 2017, 92, 1493–1506. [Google Scholar] [CrossRef]
- Sinha, R.; Pradhan, S.; Banerjee, S.; Jahan, A.; Akhtar, S.; Pahari, A.; Raut, S.; Parakh, P.; Basu, S.; Srivastava, P.; et al. Whole-Exome Sequencing and Variant Spectrum in Children with Suspected Inherited Renal Tubular Disorder: The East India Tubulopathy Gene Study. Pediatr. Nephrol. 2022; online ahead of print. [Google Scholar] [CrossRef]
- Connaughton, D.M.; Kennedy, C.; Shril, S.; Mann, N.; Murray, S.L.; Williams, P.A.; Conlon, E.; Nakayama, M.; van der Ven, A.T.; Ityel, H.; et al. Monogenic Causes of Chronic Kidney Disease in Adults. Kidney Int. 2019, 95, 914–928. [Google Scholar] [CrossRef]
- Connaughton, D.M.; Hildebrandt, F. Personalized Medicine in Chronic Kidney Disease by Detection of Monogenic Mutations. Nephrol. Dial. Transpl. 2020, 35, 390–397. [Google Scholar] [CrossRef]
- Groopman, E.E.; Marasa, M.; Cameron-Christie, S.; Petrovski, S.; Aggarwal, V.S.; Milo-Rasouly, H.; Li, Y.; Zhang, J.; Nestor, J.; Krithivasan, P.; et al. Diagnostic Utility of Exome Sequencing for Kidney Disease. N. Engl. J. Med. 2019, 380, 142–151. [Google Scholar] [CrossRef]
- Torra, R.; Furlano, M.; Ortiz, A.; Ars, E. Genetic Kidney Diseases as an Underrecognized Cause of Chronic Kidney Disease: The Key Role of International Registry Reports. Clin. Kidney J. 2021, 14, 1879–1885. [Google Scholar] [CrossRef] [PubMed]
- Landini, S.; Mazzinghi, B.; Becherucci, F.; Allinovi, M.; Provenzano, A.; Palazzo, V.; Ravaglia, F.; Artuso, R.; Bosi, E.; Stagi, S.; et al. Reverse Phenotyping after Whole-Exome Sequencing in Steroid-Resistant Nephrotic Syndrome. Clin. J. Am. Soc. Nephrol. 2020, 15, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Becherucci, F.; Landini, S.; Cirillo, L.; Mazzinghi, B.; Romagnani, P. Look Alike, Sound Alike: Phenocopies in Steroid-Resistant Nephrotic Syndrome. Int. J. Environ. Res. Public Health 2020, 17, 8363. [Google Scholar] [CrossRef] [PubMed]
- Seltzsam, S.; Wang, C.; Zheng, B.; Mann, N.; Connaughton, D.M.; Wu, C.-H.W.; Schneider, S.; Schierbaum, L.; Kause, F.; Kolvenbach, C.M.; et al. Reverse Phenotyping Facilitates Disease Allele Calling in Exome Sequencing of Patients with CAKUT. Genet. Med. 2022, 24, 307–318. [Google Scholar] [CrossRef]
- Daga, A.; Majmundar, A.J.; Braun, D.A.; Gee, H.Y.; Lawson, J.A.; Shril, S.; Jobst-Schwan, T.; Vivante, A.; Schapiro, D.; Tan, W.; et al. Whole Exome Sequencing Frequently Detects a Monogenic Cause in Early Onset Nephrolithiasis and Nephrocalcinosis. Kidney Int. 2018, 93, 204–213. [Google Scholar] [CrossRef]
- Jeck, N.; Reinalter, S.C.; Henne, T.; Marg, W.; Mallmann, R.; Pasel, K.; Vollmer, M.; Klaus, G.; Leonhardt, A.; Seyberth, H.W.; et al. Hypokalemic Salt-Losing Tubulopathy with Chronic Renal Failure and Sensorineural Deafness. Pediatrics 2001, 108, E5. [Google Scholar] [CrossRef]
- Khosravi, M.; Walsh, S.B. The Long-Term Complications of the Inherited Tubulopathies: An Adult Perspective. Pediatr. Nephrol. 2015, 30, 385–395. [Google Scholar] [CrossRef]
- Kaplan, M.R.; Plotkin, M.D.; Lee, W.S.; Xu, Z.C.; Lytton, J.; Hebert, S.C. Apical Localization of the Na-K-Cl Cotransporter, rBSC1, on Rat Thick Ascending Limbs. Kidney Int. 1996, 49, 40–47. [Google Scholar] [CrossRef]
- Markadieu, N.; Delpire, E. Physiology and Pathophysiology of SLC12A1/2 Transporters. Pflugers Arch. 2014, 466, 91–105. [Google Scholar] [CrossRef]
- Vallon, V. Tubuloglomerular Feedback and the Control of Glomerular Filtration Rate. News Physiol. Sci. 2003, 18, 169–174. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, K.; Wang, S.; Fu, H.; Wang, J.; Shen, H.; Lu, Z.; Chen, J.; Bao, Y.; Feng, C.; et al. Clinical and Genetic Features in 31 Serial Chinese Children with Gitelman Syndrome. Front. Pediatr. 2021, 9, 544925. [Google Scholar] [CrossRef] [PubMed]
- Thorvaldsdóttir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-Performance Genomics Data Visualization and Exploration. Brief. Bioinform. 2013, 14, 178–192. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing Next-Generation DNA Sequencing Data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional Annotation of Genetic Variants from High-Throughput Sequencing Data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
Population (n = 63) | |
---|---|
Male, n (%) | 30 (47.6) |
Caucasian, n (%) | 59 (93.7) |
Age at onset, years (median, range) | 6 (0–54) |
Age at last follow up, years (median, range) | 17 (0–64) |
Length of follow up, years (median, range) | 3 (0–37) |
Consanguinity, n (%) | 1/56 (1.8) |
Family history, n (%) | 19/56 (33.9) |
Polyhydramnios, n (%) | 14/57 (24.6) |
Gestational age at birth, weeks (median, range) | 38 (23–42) |
Birthweight, grams (median, range) | 3194 (550–4200) |
Nephrocalcinosis, n (%) | 16/61 (26.2) |
Failure to thrive, n (%) | 23/62 (37.1) |
Polyuria, n (%) | 10/39 (25.6) |
SNHL, n (%) | 1/58 (1.7) |
Venous blood pH, (median, range) | 7.45 (7.35–7.61) |
Serum bicarbonate, mmol/L (median, range) | 28.35 (24–43) |
Serum potassium, mmol/L (median, range) | 2.6 (1.40–3.80) |
Serum sodium, mmol/L (median, range) | 137 (124–143) |
Serum chloride, mmol/L (median, range) | 96 (56–105) |
Total serum calcium, mg/dL (median, range) | 9.6 (4–11.6) |
Serum magnesium, mg/dL (median, range) | 1.7 (0.9–2.9) |
Hypomagnesemia, n (%) | 25/56 (44.6) |
Hyperaldosteronism, n(%) | 31/50 (62) |
Hyperreninemia, n (%) | 32/45 (71.1) |
Serum Creatinine, mg/dL (median, range) | 0.62 (0.20–1.56) |
eGFR at onset, mL/min/1.73 m2 (median, range) | 105.5 (12–176) |
eGFR < 90 mL/min/1.73 m2 at onset, n (%) | 15/41 (36.6) |
Urinary pH at onset (median, range) | 7 (5.5–8) |
Urinary specific gravity at onset (median, range) | 1015 (1003–1025) |
Hypercalciuria, n (%) | 9/43 (20.9) |
BS (n = 17) | GS (n = 34) | p-Value | |
---|---|---|---|
Male, n (%) | 5 (29.4) | 23 (67.6) | 0.022 |
Caucasian, n (%) | 16 (94.1) | 31(91.2) | - |
Age at onset, years (median, range) | 0.16 (0–21) | 7 (2–54) | <0.001 |
Age at last follow up, years (median, range) | 8.5 (0–30) | 15.5 (3–64) | 0.023 |
Length of follow up, years (median, range) | 1.67 (0–30) | 3.5 (0–34) | 0.606 |
Consanguinity, n (%) | 1/16 (6.3) | 0/29 (0) | 0.76 |
Family history, n (%) | 5/16 (31.3) | 12/30 (40) | 0.79 |
Polyhydramnios, n (%) | 12 (70.6) | 1/29 (3.4) | <0.001 |
Gestational age at birth, weeks (median, range) | 35 (23–40) | 39 (37–42) | <0.001 |
Birth weight, grams (median, range) | 2010 (550–3685) | 3390 (2410–4200) | <0.001 |
Nephrocalcinosis, n (%) | 8 (47.1) | 5/32 (15.6) | 0.042 |
Failure to thrive, n (%) | 10/16 (62.5) | 12 (35.3) | 0.133 |
Polyuria, n (%) | 7/10 (70) | 1/25 (4) | <0.001 |
SNHL, n (%) | 1 (5.9) | 0/29 (0) | 0.785 |
Venous blood pH, (median, range) | 7.5 (7.37–7.61) | 7.44 (7.35–7.56) | 0.096 |
Serum bicarbonate, mmol/L (median, range) | 32 (25.4–39) | 28 (24–34) | 0.015 |
Serum potassium, mmol/L (median, range) | 2.6 (1.4–3.6) | 2.7 (1.5–3.5) | 0.887 |
Serum sodium, mmol/L (median, range) | 133 (124–142) | 137 (133–143) | 0.043 |
Serum chloride, mmol/L (median, range) | 92 (56–102) | 98 (85–105) | 0.012 |
Total serum calcium, mg/dL (median, range) | 9.7 (4–11.6) | 9.6 (8.5–11) | 0.927 |
Serum magnesium, mg/dL (median, range) | 1.95 (1.2–2.9) | 1.6 (1.1–2) | <0.001 |
Hypomagnesemia, n (%) | 4/16 (25) | 16/29 (55.2) | 0.102 |
Hyperaldosteronism, n(%) | 12/14 (85.7) | 13/24 (54.2) | 0.105 |
Hyperreninemia, n (%) | 13/13 (100) | 14/21 (66.7) | 0.057 |
Serum Creatinine, mg/dL (median, range) | 0.7 (0.37–1.56) | 0.45 (0.2–1.35) | 0.006 |
eGFR at onset, mL/min/1.73 m2 (median, range) | 31.5 (12–91) | 118.5 (34–176) | <0.001 |
eGFR < 90 mL/min/1.73 m2 at onset, n (%) | 9/10 (90) | 3/22 (13.6) | <0.001 |
Urinary pH at onset (median, range) | 7 (5.5–8) | 7 (5.5–8) | 0.749 |
Urinary specific gravity at onset (median, range) | 1005 (1003–1010) | 1.18 (1006–1025) | <0.001 |
Hypercalciuria, n (%) | 6/11(54.5) | 0/23 (0) | <0.001 |
CKD (n = 12) | Non CKD (n = 23) | p-Value | |
---|---|---|---|
Genetic diagnosis (BS vs. GS), n (%) | 8 (66.7) | 3 (13) | 0.004 |
Functional impact (CL vs. PL), n (%) | 8 (66.7) | 12 (52.1) | 0.64 |
Gender (male vs. female), n (%) | 6 (50) | 13 (56.5) | 0.99 |
Ethnicity (caucasian vs. other), n (%) | 12 (100) | 21 (91.3) | 0.77 |
Age at diagnosis, years (median, range) | 1.75 (0–54) | 6 (0–34) | 0.234 |
Age at last follow up, years (median, range) | 25 (1–64) | 10 (1–40) | 0.041 |
Length of follow up, years (median, range) | 21 (1–34) | 3 (0–27) | 0.016 |
Birth weight, grams (median, range) | 2070 (550–3500) | 3310 (1990–4200) | 0.035 |
Gestational age at birth, weeks (median, range) | 35 (24–40) | 39 (35–42) | 0.011 |
eGFR at onset, mL/min/1.73 m2 (median, range) | 34 (12–72) | 115 (20–176) | 0.001 |
Hypertension, n (%) | 2/11 (18,2) | 1/20 (5) | 0.58 |
Proteinuria, n (%) | 4/8 (50) | 2/20 (10) | 0.069 |
Nephrocalcinosis, n (%) | 6/10 (60) | 6 (26.1) | 0.14 |
Other renal/urological findings, n (%) | 3/1 (25) | 2/22 (9) | 0.45 |
NSAIDs, n (%) | 5/11 (45.5) | 3/20 (15) | 0.070 |
Length of NSAIDs therapy, years (median, range) | 23 (11–26) | 15 (2–16) | 0.143 |
Persistent hypokalemia, n (%) | 5/11 (45.5) | 6 (26.1) | 0.46 |
OR (95% CI) | p-Value | |
---|---|---|
Genetic diagnosis (ref. BS) | 13.33 (2.42–73.48) | 0.003 |
Genetic diagnosis (ref. GS) | 0.075 (0.014–0.413) | 0.003 |
Functional impact (ref. CL) | 1.833 (0.429–7.836) | 0.413 |
Birth weight (grams) | 0.999 (0.998–1.000) | 0.018 |
Gestational age at birth, (weeks) | 0.64 (0.42–0.974) | 0.037 |
Nephrocalcinosis | 4.25 (0.884–20.44) | 0.071 |
Serum potassium levels (mmol/L) | 1.253 (0.378–4.15) | 0.713 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palazzo, V.; Raglianti, V.; Landini, S.; Cirillo, L.; Errichiello, C.; Buti, E.; Artuso, R.; Tiberi, L.; Vergani, D.; Dirupo, E.; et al. Clinical and Genetic Characterization of Patients with Bartter and Gitelman Syndrome. Int. J. Mol. Sci. 2022, 23, 5641. https://doi.org/10.3390/ijms23105641
Palazzo V, Raglianti V, Landini S, Cirillo L, Errichiello C, Buti E, Artuso R, Tiberi L, Vergani D, Dirupo E, et al. Clinical and Genetic Characterization of Patients with Bartter and Gitelman Syndrome. International Journal of Molecular Sciences. 2022; 23(10):5641. https://doi.org/10.3390/ijms23105641
Chicago/Turabian StylePalazzo, Viviana, Valentina Raglianti, Samuela Landini, Luigi Cirillo, Carmela Errichiello, Elisa Buti, Rosangela Artuso, Lucia Tiberi, Debora Vergani, Elia Dirupo, and et al. 2022. "Clinical and Genetic Characterization of Patients with Bartter and Gitelman Syndrome" International Journal of Molecular Sciences 23, no. 10: 5641. https://doi.org/10.3390/ijms23105641
APA StylePalazzo, V., Raglianti, V., Landini, S., Cirillo, L., Errichiello, C., Buti, E., Artuso, R., Tiberi, L., Vergani, D., Dirupo, E., Romagnani, P., Mazzinghi, B., & Becherucci, F. (2022). Clinical and Genetic Characterization of Patients with Bartter and Gitelman Syndrome. International Journal of Molecular Sciences, 23(10), 5641. https://doi.org/10.3390/ijms23105641