Is Protein Folding a Thermodynamically Unfavorable, Active, Energy-Dependent Process?
Abstract
1. Introduction
2. Review of Protein Folding
2.1. Experimental Data on Free Energy of Protein Folding
2.2. Chemically Synthesized Proteins Folding into Native Conformations
2.3. Refolding of Insoluble Overexpressed Proteins from Denatured Bacterial Inclusion Bodies into Soluble Active Proteins in Native Conformations
2.4. Scarcity of Data on ΔG of Protein Folding Reflects Pervasive Non-Refoldability and Instability of Proteomes
2.5. Special Features of Protein Folding In Vivo
2.6. Is Protein Folding In Vivo an Active, Energy-Dependent Process?
2.7. Towards a Realistic Physical Model of Active Protein Folding
2.8. Non-Equilibrium Protein Folding: New Approaches and Recent Results
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haber, E.; Anfinsen, C.B. Side-Chain Interactions Governing the Pairing of Half-Cystine Residues in Ribonuclease. J. Biol. Chem. 1962, 237, 1839–1844. [Google Scholar] [CrossRef]
- Anfinsen, C.B. Principles That Govern the Folding of Protein Chains. Science 1973, 181, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Bryngelson, J.D.; Wolynes, P.G. Intermediates and Barrier Crossing in a Random Energy Model (with Applications to Protein Folding). J. Phys. Chem. 1989, 93, 6902–6915. [Google Scholar] [CrossRef]
- Zwanzig, R.; Szabo, A.; Bagchi, B. Levinthal’s Paradox. Proc. Natl. Acad. Sci. USA 1992, 89, 20–22. [Google Scholar] [CrossRef]
- Leopold, P.E.; Montal, M.; Onuchic, J.N. Protein Folding Funnels: A Kinetic Approach to the Sequence-Structure Relationship. Proc. Natl. Acad. Sci. USA 1992, 89, 8721–8725. [Google Scholar] [CrossRef]
- Bryngelson, J.D.; Onuchic, J.N.; Socci, N.D.; Wolynes, P.G. Funnels, Pathways, and the Energy Landscape of Protein Folding: A Synthesis. Proteins 1995, 21, 167–195. [Google Scholar] [CrossRef] [PubMed]
- Wolynes, P.G. Energy Landscapes and Solved Protein-Folding Problems. Philos. Trans. A Math. Phys. Eng. Sci. 2005, 363, 453–464; discussion 464–467. [Google Scholar] [CrossRef] [PubMed]
- Dill, K.A.; Ozkan, S.B.; Shell, M.S.; Weikl, T.R. The Protein Folding Problem. Annu. Rev. Biophys. 2008, 37, 289–316. [Google Scholar] [CrossRef] [PubMed]
- Dill, K.A.; MacCallum, J.L. The Protein-Folding Problem, 50 Years On. Science 2012, 338, 1042–1046. [Google Scholar] [CrossRef] [PubMed]
- Schafer, N.P.; Kim, B.L.; Zheng, W.; Wolynes, P.G. Learning To Fold Proteins Using Energy Landscape Theory. Isr. J. Chem. 2014, 54, 1311–1337. [Google Scholar] [CrossRef] [PubMed]
- Nassar, R.; Dignon, G.L.; Razban, R.M.; Dill, K.A. The Protein Folding Problem: The Role of Theory. J. Mol. Biol. 2021, 433, 167126. [Google Scholar] [CrossRef]
- Rollins, G.C.; Dill, K.A. General Mechanism of Two-State Protein Folding Kinetics. J. Am. Chem. Soc. 2014, 136, 11420–11427. [Google Scholar] [CrossRef]
- Finkelstein, A.V.; Badretdin, A.J.; Galzitskaya, O.V.; Ivankov, D.N.; Bogatyreva, N.S.; Garbuzynskiy, S.O. There and Back Again: Two Views on the Protein Folding Puzzle. Phys. Life Rev. 2017, 21, 56–71. [Google Scholar] [CrossRef]
- Wetlaufer, D.B.; Ristow, S. Acquisition of Three-Dimensional Structure of Proteins. Annu. Rev. Biochem. 1973, 42, 135–158. [Google Scholar] [CrossRef]
- Ben-Naim, A. Myths and Verities in Protein Folding Theories; World Scientific: Singapore, 2015; ISBN 978-981-4725-98-9. [Google Scholar]
- Shakhnovich, E. Protein Folding Thermodynamics and Dynamics: Where Physics, Chemistry, and Biology Meet. Chem. Rev. 2006, 106, 1559–1588. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.M.; Bolen, D.W. Unfolding Free Energy Changes Determined by the Linear Extrapolation Method. 1. Unfolding of Phenylmethanesulfonyl Alpha-Chymotrypsin Using Different Denaturants. Biochemistry 1988, 27, 8063–8068. [Google Scholar] [CrossRef] [PubMed]
- Grimsley, G.R.; Huyghues-Despointes, B.M.P.; Pace, C.N.; Scholtz, J.M. Determining a Urea or Guanidinium Chloride Unfolding Curve. CSH Protoc. 2006, 2006, pdb-prot4242. [Google Scholar] [CrossRef]
- Shaw, K.L.; Scholtz, J.M.; Pace, C.N.; Grimsley, G.R. Determining the Conformational Stability of a Protein Using Urea Denaturation Curves. Methods Mol. Biol. 2009, 490, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Privalov, P.L. Microcalorimetry of Proteins and Their Complexes. Methods Mol. Biol. 2009, 490, 1–39. [Google Scholar] [CrossRef]
- Ibarra-Molero, B.; Naganathan, A.N.; Sanchez-Ruiz, J.M.; Muñoz, V. Modern Analysis of Protein Folding by Differential Scanning Calorimetry. Methods Enzymol. 2016, 567, 281–318. [Google Scholar] [CrossRef]
- Naganathan, A.N.; Perez-Jimenez, R.; Muñoz, V.; Sanchez-Ruiz, J.M. Estimation of Protein Folding Free Energy Barriers from Calorimetric Data by Multi-Model Bayesian Analysis. Phys. Chem. Chem. Phys. 2011, 13, 17064–17076. [Google Scholar] [CrossRef]
- Makhatadze, G.I.; Privalov, P.L. Energetics of Protein Structure. Adv. Protein Chem. 1995, 47, 307–425. [Google Scholar] [PubMed]
- Baldwin, R.L. Energetics of Protein Folding. J. Mol. Biol. 2007, 371, 283–301. [Google Scholar] [CrossRef] [PubMed]
- Bedouelle, H. Principles and Equations for Measuring and Interpreting Protein Stability: From Monomer to Tetramer. Biochimie 2016, 121, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Basharov, M.A. Residual Ordered Structure in Denatured Proteins and the Problem of Protein Folding. Indian J. Biochem. Biophys. 2012, 49, 7–17. [Google Scholar]
- Shortle, D.; Ackerman, M.S. Persistence of Native-like Topology in a Denatured Protein in 8 M Urea. Science 2001, 293, 487–489. [Google Scholar] [CrossRef]
- Vendruscolo, M.; Paci, E.; Karplus, M.; Dobson, C.M. Structures and Relative Free Energies of Partially Folded States of Proteins. Proc. Natl. Acad. Sci. USA 2003, 100, 14817–14821. [Google Scholar] [CrossRef]
- Sosnick, T.R.; Trewhella, J. Denatured States of Ribonuclease A Have Compact Dimensions and Residual Secondary Structure. Biochemistry 1992, 31, 8329–8335. [Google Scholar] [CrossRef]
- Lim, W.K.; Rösgen, J.; Englander, S.W. Urea, but Not Guanidinium, Destabilizes Proteins by Forming Hydrogen Bonds to the Peptide Group. Proc. Natl. Acad. Sci. USA 2009, 106, 2595–2600. [Google Scholar] [CrossRef]
- Lapidus, L.J. Protein Unfolding Mechanisms and Their Effects on Folding Experiments. F1000Research 2017, 6, 1723. [Google Scholar] [CrossRef]
- Fitzkee, N.C.; Rose, G.D. Reassessing Random-Coil Statistics in Unfolded Proteins. Proc. Natl. Acad. Sci. USA 2004, 101, 12497–12502. [Google Scholar] [CrossRef] [PubMed]
- Nikam, R.; Kulandaisamy, A.; Harini, K.; Sharma, D.; Gromiha, M.M. ProThermDB: Thermodynamic Database for Proteins and Mutants Revisited after 15 Years. Nucleic Acids. Res. 2021, 49, D420–D424. [Google Scholar] [CrossRef] [PubMed]
- ProTherm Conversion. 2017. Available online: https://github.com/protabit/protherm-conversion (accessed on 6 December 2021).
- Braselmann, E.; Chaney, J.L.; Clark, P.L. Folding the Proteome. Trends Biochem. Sci. 2013, 38, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Zeldovich, K.B.; Chen, P.; Shakhnovich, E.I. Protein Stability Imposes Limits on Organism Complexity and Speed of Molecular Evolution. Proc. Natl. Acad. Sci. USA 2007, 104, 16152–16157. [Google Scholar] [CrossRef]
- Taverna, D.M.; Goldstein, R.A. Why Are Proteins Marginally Stable? Proteins 2002, 46, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Godoy-Ruiz, R.; Perez-Jimenez, R.; Ibarra-Molero, B.; Sanchez-Ruiz, J.M. Relation between Protein Stability, Evolution and Structure, as Probed by Carboxylic Acid Mutations. J. Mol. Biol. 2004, 336, 313–318. [Google Scholar] [CrossRef]
- Williams, P.D.; Pollock, D.D.; Goldstein, R.A. Functionality and the Evolution of Marginal Stability in Proteins: Inferences from Lattice Simulations. Evol. Bioinform. Online 2007, 2, 91–101. [Google Scholar] [CrossRef]
- Wilson, A.E.; Kosater, W.M.; Liberles, D.A. Evolutionary Processes and Biophysical Mechanisms: Revisiting Why Evolved Proteins Are Marginally Stable. J. Mol. Evol. 2020, 88, 415–417. [Google Scholar] [CrossRef]
- Borgia, A.; Williams, P.M.; Clarke, J. Single-Molecule Studies of Protein Folding. Annu. Rev. Biochem. 2008, 77, 101–125. [Google Scholar] [CrossRef]
- Bustamante, C.; Alexander, L.; Maciuba, K.; Kaiser, C.M. Single-Molecule Studies of Protein Folding with Optical Tweezers. Annu. Rev. Biochem. 2020, 89, 443–470. [Google Scholar] [CrossRef] [PubMed]
- Tinoco, I., Jr.; Bustamante, C. The Effect of Force on Thermodynamics and Kinetics of Single Molecule Reactions. Biophys. Chem. 2002, 101–102, 513–533. [Google Scholar] [CrossRef]
- Junier, I.; Mossa, A.; Manosas, M.; Ritort, F. Recovery of Free Energy Branches in Single Molecule Experiments. Phys. Rev. Lett. 2009, 102, 070602. [Google Scholar] [CrossRef]
- Wang, J.; Ferguson, A.L. Nonlinear Reconstruction of Single-Molecule Free-Energy Surfaces from Univariate Time Series. Phys. Rev. E 2016, 93, 032412. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Cecconi, C.; Baase, W.A.; Vetter, I.R.; Breyer, W.A.; Haack, J.A.; Matthews, B.W.; Dahlquist, F.W.; Bustamante, C. Solid-State Synthesis and Mechanical Unfolding of Polymers of T4 Lysozyme. Proc. Natl. Acad. Sci. USA 2000, 97, 139–144. [Google Scholar] [CrossRef]
- Dietz, H.; Rief, M. Exploring the Energy Landscape of GFP by Single-Molecule Mechanical Experiments. Proc. Natl. Acad. Sci. USA 2004, 101, 16192–16197. [Google Scholar] [CrossRef] [PubMed]
- Ainavarapu, S.R.K.; Brujic, J.; Huang, H.H.; Wiita, A.P.; Lu, H.; Li, L.; Walther, K.A.; Carrion-Vazquez, M.; Li, H.; Fernandez, J.M. Contour Length and Refolding Rate of a Small Protein Controlled by Engineered Disulfide Bonds. Biophys. J. 2007, 92, 225–233. [Google Scholar] [CrossRef]
- Hirschmann, R.; Nutt, R.F.; Veber, D.F.; Vitali, R.A.; Varga, S.L.; Jacob, T.A.; Holly, F.W.; Denkewalter, R.G. Studies on the Total Synthesis of an Enzyme. V. The Preparation of Enzymatically Active Material. J. Am. Chem. Soc. 1969, 91, 507–508. [Google Scholar] [CrossRef] [PubMed]
- Gutte, B.; Merrifield, R.B. The Synthesis of Ribonuclease A. J. Biol. Chem. 1971, 246, 1922–1941. [Google Scholar] [CrossRef]
- Tiessen, A.; Pérez-Rodríguez, P.; Delaye-Arredondo, L.J. Mathematical Modeling and Comparison of Protein Size Distribution in Different Plant, Animal, Fungal and Microbial Species Reveals a Negative Correlation between Protein Size and Protein Number, Thus Providing Insight into the Evolution of Proteomes. BMC Res. Notes 2012, 5, 85. [Google Scholar] [CrossRef]
- Saleh, M.T.; Fillon, M.; Brennan, P.J.; Belisle, J.T. Identification of Putative Exported/Secreted Proteins in Prokaryotic Proteomes. Gene 2001, 269, 195–204. [Google Scholar] [CrossRef]
- Saleh, M.; Song, C.; Nasserulla, S.; Leduc, L.G. Indicators from Archaeal Secretomes. Microbiol. Res. 2010, 165, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Uhlén, M.; Karlsson, M.J.; Hober, A.; Svensson, A.-S.; Scheffel, J.; Kotol, D.; Zhong, W.; Tebani, A.; Strandberg, L.; Edfors, F.; et al. The Human Secretome. Sci. Signal. 2019, 12, eaaz0274. [Google Scholar] [CrossRef] [PubMed]
- Bošnjak, I.; Bojović, V.; Šegvić-Bubić, T.; Bielen, A. Occurrence of Protein Disulfide Bonds in Different Domains of Life: A Comparison of Proteins from the Protein Data Bank. Protein Eng. Des. Sel. 2014, 27, 65–72. [Google Scholar] [CrossRef]
- Guise, A.D.; West, S.M.; Chaudhuri, J.B. Protein Folding in Vivo and Renaturation of Recombinant Proteins from Inclusion Bodies. Mol. Biotechnol. 1996, 6, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.K. Bioprocessing of Therapeutic Proteins from the Inclusion Bodies of Escherichia Coli. Adv. Biochem. Eng. Biotechnol. 2003, 85, 43–93. [Google Scholar] [PubMed]
- Cabrita, L.D.; Bottomley, S.P. Protein Expression and Refolding–A Practical Guide to Getting the Most out of Inclusion Bodies. Biotechnol. Annu. Rev. 2004, 10, 31–50. [Google Scholar]
- Vera, A.; González-Montalbán, N.; Arís, A.; Villaverde, A. The Conformational Quality of Insoluble Recombinant Proteins Is Enhanced at Low Growth Temperatures. Biotechnol. Bioeng. 2007, 96, 1101–1106. [Google Scholar] [CrossRef]
- Georgiou, G.; Valax, P.; Ostermeier, M.; Horowitz, P.M. Folding and Aggregation of TEM Beta-Lactamase: Analogies with the Formation of Inclusion Bodies in Escherichia Coli. Protein Sci. 1994, 3, 1953–1960. [Google Scholar] [CrossRef]
- Przybycien, T.M.; Dunn, J.P.; Valax, P.; Georgiou, G. Secondary Structure Characterization of Beta-Lactamase Inclusion Bodies. Protein Eng. 1994, 7, 131–136. [Google Scholar] [CrossRef]
- de Groot, N.S.; Sabate, R.; Ventura, S. Amyloids in Bacterial Inclusion Bodies. Trends Biochem. Sci. 2009, 34, 408–416. [Google Scholar] [CrossRef]
- Ramón, A.; Señorale-Pose, M.; Marín, M. Inclusion Bodies: Not That Bad. Front. Microbiol. 2014, 5, 56. [Google Scholar] [CrossRef]
- Bowden, G.A.; Paredes, A.M.; Georgiou, G. Structure and Morphology of Protein Inclusion Bodies in Escherichia Coli. Biotechnology 1991, 9, 725–730. [Google Scholar] [CrossRef]
- Chaffotte, A.F.; Guillou, Y.; Goldberg, M.E. Inclusion Bodies of the Thermophilic Endoglucanase D from Clostridium Thermocellum Are Made of Native Enzyme That Resists 8 M Urea. Eur. J. Biochem. 1992, 205, 369–373. [Google Scholar] [CrossRef]
- Vandenbroeck, K.; Martens, E.; D’Andrea, S.; Billiau, A. Refolding and Single-Step Purification of Porcine Interferon-Gamma from Escherichia Coli Inclusion Bodies. Conditions for Reconstitution of Dimeric IFN-Gamma. Eur. J. Biochem. 1993, 215, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Doglia, S.M.; Ami, D.; Natalello, A.; Gatti-Lafranconi, P.; Lotti, M. Fourier Transform Infrared Spectroscopy Analysis of the Conformational Quality of Recombinant Proteins within Inclusion Bodies. Biotechnol. J. 2008, 3, 193–201. [Google Scholar] [CrossRef]
- Kudou, M.; Yumioka, R.; Ejima, D.; Arakawa, T.; Tsumoto, K. A Novel Protein Refolding System Using Lauroyl-l-Glutamate as a Solubilizing Detergent and Arginine as a Folding Assisting Agent. Protein Expr. Purif. 2011, 75, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.M.; Sharma, A.; Upadhyay, A.K.; Singh, A.; Garg, L.C.; Panda, A.K. Solubilization of Inclusion Body Proteins Using n -Propanol and Its Refolding into Bioactive Form. Protein Expr. Purif. 2012, 81, 75–82. [Google Scholar] [CrossRef]
- Singh, A.; Upadhyay, V.; Upadhyay, A.K.; Singh, S.M.; Panda, A.K. Protein Recovery from Inclusion Bodies of Escherichia Coli Using Mild Solubilization Process. Microb. Cell Fact. 2015, 14, 41. [Google Scholar] [CrossRef] [PubMed]
- To, P.; Whitehead, B.; Tarbox, H.E.; Fried, S.D. Nonrefoldability Is Pervasive Across the E. Coli Proteome. J. Am. Chem. Soc. 2021, 143, 11435–11448. [Google Scholar] [CrossRef]
- Hartl, F.U.; Bracher, A.; Hayer-Hartl, M. Molecular Chaperones in Protein Folding and Proteostasis. Nature 2011, 475, 324–332. [Google Scholar] [CrossRef]
- Saibil, H. Chaperone Machines for Protein Folding, Unfolding and Disaggregation. Nat. Rev. Mol. Cell Biol. 2013, 14, 630–642. [Google Scholar] [CrossRef] [PubMed]
- Manning, M.C.; Patel, K.; Borchardt, R.T. Stability of Protein Pharmaceuticals. Pharm. Res. 1989, 6, 903–918. [Google Scholar] [CrossRef] [PubMed]
- Manning, M.C.; Chou, D.K.; Murphy, B.M.; Payne, R.W.; Katayama, D.S. Stability of Protein Pharmaceuticals: An Update. Pharm. Res. 2010, 27, 544–575. [Google Scholar] [CrossRef] [PubMed]
- Wang, W. Advanced Protein Formulations. Protein Sci. 2015, 24, 1031–1039. [Google Scholar] [CrossRef]
- Magliery, T.J.; Lavinder, J.J.; Sullivan, B.J. Protein Stability by Number: High-Throughput and Statistical Approaches to One of Protein Science’s Most Difficult Problems. Curr. Opin. Chem. Biol. 2011, 15, 443–451. [Google Scholar] [CrossRef]
- Magliery, T.J. Protein Stability: Computation, Sequence Statistics, and New Experimental Methods. Curr. Opin. Struct. Biol. 2015, 33, 161–168. [Google Scholar] [CrossRef]
- Klesmith, J.R.; Bacik, J.-P.; Wrenbeck, E.E.; Michalczyk, R.; Whitehead, T.A. Trade-Offs between Enzyme Fitness and Solubility Illuminated by Deep Mutational Scanning. Proc. Natl. Acad. Sci. USA 2017, 114, 2265–2270. [Google Scholar] [CrossRef]
- García-Fruitós, E.; Arís, A.; Villaverde, A. Localization of Functional Polypeptides in Bacterial Inclusion Bodies. Appl. Environ. Microbiol. 2007, 73, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Broom, A.; Jacobi, Z.; Trainor, K.; Meiering, E.M. Computational Tools Help Improve Protein Stability but with a Solubility Tradeoff. J. Biol. Chem. 2017, 292, 14349–14361. [Google Scholar] [CrossRef] [PubMed]
- Broom, A.; Trainor, K.; Jacobi, Z.; Meiering, E.M. Computational Modeling of Protein Stability: Quantitative Analysis Reveals Solutions to Pervasive Problems. Structure 2020, 28, 717–726.e3. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, K.S. Defying the Activity-Stability Trade-off in Enzymes: Taking Advantage of Entropy to Enhance Activity and Thermostability. Crit. Rev. Biotechnol. 2017, 37, 309–322. [Google Scholar] [CrossRef]
- Manning, M.; Colón, W. Structural Basis of Protein Kinetic Stability: Resistance to Sodium Dodecyl Sulfate Suggests a Central Role for Rigidity and a Bias Toward β-Sheet Structure. Biochemistry 2004, 43, 11248–11254. [Google Scholar] [CrossRef]
- Kazlauskas, R. Engineering More Stable Proteins. Chem. Soc. Rev. 2018, 47, 9026–9045. [Google Scholar] [CrossRef]
- Ahern, T.J.; Klibanov, A.M. Analysis of Processes Causing Thermal Inactivation of Enzymes. Methods Biochem. Anal. 1988, 33, 91–127. [Google Scholar]
- Tomazic, S.J.; Klibanov, A.M. Mechanisms of Irreversible Thermal Inactivation of Bacillus Alpha-Amylases. J. Biol. Chem. 1988, 263, 3086–3091. [Google Scholar] [CrossRef]
- Nury, S.; Meunier, J.C. Molecular Mechanisms of the Irreversible Thermal Denaturation of Guinea-Pig Liver Transglutaminase. Biochem. J. 1990, 266, 487–490. [Google Scholar] [CrossRef]
- Blaber, S.I.; Culajay, J.F.; Khurana, A.; Blaber, M. Reversible Thermal Denaturation of Human FGF-1 Induced by Low Concentrations of Guanidine Hydrochloride. Biophys. J. 1999, 77, 470–477. [Google Scholar] [CrossRef]
- Jahromi, R.R.F.; Morris, P.; Martinez-Torres, R.J.; Dalby, P.A. Structural Stability of E. Coli Transketolase to Temperature and PH Denaturation. J. Biotechnol. 2011, 155, 209–216. [Google Scholar] [CrossRef]
- Leurs, U.; Mistarz, U.H.; Rand, K.D. Getting to the Core of Protein Pharmaceuticals--Comprehensive Structure Analysis by Mass Spectrometry. Eur. J. Pharm. Biopharm. 2015, 93, 95–109. [Google Scholar] [CrossRef]
- Gan, J.; Ben-Nissan, G.; Arkind, G.; Tarnavsky, M.; Trudeau, D.; Noda Garcia, L.; Tawfik, D.S.; Sharon, M. Native Mass Spectrometry of Recombinant Proteins from Crude Cell Lysates. Anal. Chem. 2017, 89, 4398–4404. [Google Scholar] [CrossRef]
- Kaur, U.; Meng, H.; Lui, F.; Ma, R.; Ogburn, R.N.; Johnson, J.H.R.; Fitzgerald, M.C.; Jones, L.M. Proteome-Wide Structural Biology: An Emerging Field for the Structural Analysis of Proteins on the Proteomic Scale. J. Proteome Res. 2018, 17, 3614–3627. [Google Scholar] [CrossRef]
- Atsavapranee, B.; Stark, C.D.; Sunden, F.; Thompson, S.; Fordyce, P.M. Fundamentals to Function: Quantitative and Scalable Approaches for Measuring Protein Stability. Cell Syst. 2021, 12, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Page, R.; Grzechnik, S.K.; Canaves, J.M.; Spraggon, G.; Kreusch, A.; Kuhn, P.; Stevens, R.C.; Lesley, S.A. Shotgun Crystallization Strategy for Structural Genomics: An Optimized Two-Tiered Crystallization Screen against the Thermotoga Maritima Proteome. Acta Crystallogr. Biol. Crystallogr. 2003, 59, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Northeast Structural Genomics Consortium Statistics. 2021. Available online: https://www.nesg.org/statistics_00.html (accessed on 6 December 2021).
- New York Structural Genomics Research Consortium. 2021. Available online: http://www.nysgxrc.org/psi3/progress_statistics.html (accessed on 6 December 2021).
- Gong, Y.; Kakihara, Y.; Krogan, N.; Greenblatt, J.; Emili, A.; Zhang, Z.; Houry, W.A. An Atlas of Chaperone-Protein Interactions in Saccharomyces Cerevisiae: Implications to Protein Folding Pathways in the Cell. Mol. Syst. Biol. 2009, 5, 275. [Google Scholar] [CrossRef] [PubMed]
- Kerner, M.J.; Naylor, D.J.; Ishihama, Y.; Maier, T.; Chang, H.-C.; Stines, A.P.; Georgopoulos, C.; Frishman, D.; Hayer-Hartl, M.; Mann, M.; et al. Proteome-Wide Analysis of Chaperonin-Dependent Protein Folding in Escherichia Coli. Cell 2005, 122, 209–220. [Google Scholar] [CrossRef]
- Lopez-Fanarraga, M.; Avila, J.; Guasch, A.; Coll, M.; Zabala, J.C. Review: Postchaperonin Tubulin Folding Cofactors and Their Role in Microtubule Dynamics. J. Struct. Biol. 2001, 135, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Povarova, O.I.; Uversky, V.N.; Kuznetsova, I.M.; Turoverov, K.K. Actinous Enigma or Enigmatic Actin: Folding, Structure, and Functions of the Most Abundant Eukaryotic Protein. Intrinsically Disord. Proteins 2014, 2, e34500. [Google Scholar] [CrossRef]
- Finka, A.; Goloubinoff, P. Proteomic Data from Human Cell Cultures Refine Mechanisms of Chaperone-Mediated Protein Homeostasis. Cell Stress Chaperones 2013, 18, 591–605. [Google Scholar] [CrossRef]
- Fujiwara, K.; Ishihama, Y.; Nakahigashi, K.; Soga, T.; Taguchi, H. A Systematic Survey of in Vivo Obligate Chaperonin-Dependent Substrates. EMBO J. 2010, 29, 1552–1564. [Google Scholar] [CrossRef]
- Azia, A.; Unger, R.; Horovitz, A. What Distinguishes GroEL Substrates from Other Escherichia Coli Proteins? FEBS J. 2012, 279, 543–550. [Google Scholar] [CrossRef]
- Hartl, F.U.; Hayer-Hartl, M. Molecular Chaperones in the Cytosol: From Nascent Chain to Folded Protein. Science 2002, 295, 1852–1858. [Google Scholar] [CrossRef]
- Gupta, A.J.; Haldar, S.; Miličić, G.; Hartl, F.U.; Hayer-Hartl, M. Active Cage Mechanism of Chaperonin-Assisted Protein Folding Demonstrated at Single-Molecule Level. J. Mol. Biol. 2014, 426, 2739–2754. [Google Scholar] [CrossRef]
- Singhal, K.; Vreede, J.; Mashaghi, A.; Tans, S.J.; Bolhuis, P.G. The Trigger Factor Chaperone Encapsulates and Stabilizes Partial Folds of Substrate Proteins. PLoS Comput. Biol. 2015, 11, e1004444. [Google Scholar] [CrossRef]
- Grantcharova, V.; Alm, E.J.; Baker, D.; Horwich, A.L. Mechanisms of Protein Folding. Curr. Opin. Struct. Biol. 2001, 11, 70–82. [Google Scholar] [CrossRef]
- Balchin, D.; Hayer-Hartl, M.; Hartl, F.U. In Vivo Aspects of Protein Folding and Quality Control. Science 2016, 353, aac4354. [Google Scholar] [CrossRef] [PubMed]
- Balchin, D.; Miličić, G.; Strauss, M.; Hayer-Hartl, M.; Hartl, F.U. Pathway of Actin Folding Directed by the Eukaryotic Chaperonin TRiC. Cell 2018, 174, 1507–1521. [Google Scholar] [CrossRef]
- Shtilerman, M.; Lorimer, G.H.; Englander, S.W. Chaperonin Function: Folding by Forced Unfolding. Science 1999, 284, 822–825. [Google Scholar] [CrossRef]
- Sousa, R. Structural Mechanisms of Chaperone Mediated Protein Disaggregation. Front. Mol. Biosci. 2014, 1, 12. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nillegoda, N.B.; Bukau, B. Metazoan Hsp70-Based Protein Disaggregases: Emergence and Mechanisms. Front. Mol. Biosci. 2015, 2, 57. [Google Scholar] [CrossRef] [PubMed]
- Deville, C.; Carroni, M.; Franke, K.B.; Topf, M.; Bukau, B.; Mogk, A.; Saibil, H.R. Structural Pathway of Regulated Substrate Transfer and Threading through an Hsp100 Disaggregase. Sci. Adv. 2017, 3, e1701726. [Google Scholar] [CrossRef] [PubMed]
- Bukau, B.; Horwich, A.L. The Hsp70 and Hsp60 Chaperone Machines. Cell 1998, 92, 351–366. [Google Scholar] [CrossRef]
- Zhang, X.; Kelly, J.W. Chaperonins Resculpt Folding Free Energy Landscapes to Avoid Kinetic Traps and Accelerate Protein Folding. J. Mol. Biol. 2014, 426, 2736–2738. [Google Scholar] [CrossRef]
- Sekhar, A.; Rosenzweig, R.; Bouvignies, G.; Kay, L.E. Hsp70 Biases the Folding Pathways of Client Proteins. Proc. Natl. Acad. Sci. USA 2016, 113, E2794–E2801. [Google Scholar] [CrossRef]
- Bagdany, M.; Veit, G.; Fukuda, R.; Avramescu, R.G.; Okiyoneda, T.; Baaklini, I.; Singh, J.; Sovak, G.; Xu, H.; Apaja, P.M.; et al. Chaperones Rescue the Energetic Landscape of Mutant CFTR at Single Molecule and in Cell. Nat. Commun. 2017, 8, 444. [Google Scholar] [CrossRef] [PubMed]
- Çetinbaş, M.; Shakhnovich, E.I. Is Catalytic Activity of Chaperones a Selectable Trait for the Emergence of Heat Shock Response? Biophys. J. 2015, 108, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Suss, O.; Reichmann, D. Protein Plasticity Underlines Activation and Function of ATP-Independent Chaperones. Front. Mol. Biosci. 2015, 2, 43. [Google Scholar] [CrossRef]
- Hebert, D.N.; Chandrasekhar, K.D.; Gierasch, L.M. You Got to Know When to Hold (or Unfold) ‘Em. Mol. Cell 2012, 48, 3–4. [Google Scholar] [CrossRef][Green Version]
- Guisbert, E.; Yura, T.; Rhodius, V.A.; Gross, C.A. Convergence of Molecular, Modeling, and Systems Approaches for an Understanding of the Escherichia Coli Heat Shock Response. Microbiol. Mol. Biol. Rev. 2008, 72, 545–554. [Google Scholar] [CrossRef]
- Fernandez-Funez, P.; Sanchez-Garcia, J.; de Mena, L.; Zhang, Y.; Levites, Y.; Khare, S.; Golde, T.E.; Rincon-Limas, D.E. Holdase Activity of Secreted Hsp70 Masks Amyloid-Β42 Neurotoxicity in Drosophila. Proc. Natl. Acad. Sci. USA 2016, 113, E5212–E5221. [Google Scholar] [CrossRef]
- Sorokina, I.; Mushegian, A. The Role of the Backbone Torsion in Protein Folding. Biol. Direct 2016, 11, 64. [Google Scholar] [CrossRef]
- Sorokina, I.; Mushegian, A. Rotational Restriction of Nascent Peptides as an Essential Element of Co-Translational Protein Folding: Possible Molecular Players and Structural Consequences. Biol. Direct 2017, 12, 14. [Google Scholar] [CrossRef]
- Sorokina, I.; Mushegian, A. Modeling Protein Folding in Vivo. Biol. Direct 2018, 13, 13. [Google Scholar] [CrossRef]
- Netzer, W.J.; Hartl, F.U. Recombination of Protein Domains Facilitated by Co-Translational Folding in Eukaryotes. Nature 1997, 388, 343–349. [Google Scholar] [CrossRef]
- Basharov, M.A. Cotranslational Folding of Proteins. Biochemistry 2000, 65, 1380–1384. [Google Scholar]
- Lorimer, G.H. A Personal Account of Chaperonin History. Plant Physiol. 2001, 125, 38–41. [Google Scholar] [CrossRef][Green Version]
- Bashan, A.; Yonath, A. Ribosome Crystallography: Catalysis and Evolution of Peptide-Bond Formation, Nascent Chain Elongation and Its Co-Translational Folding. Biochem. Soc. Trans. 2005, 33, 488–492. [Google Scholar] [CrossRef]
- Lim, V.I.; Curran, J.F.; Garber, M.B. Ribosomal Elongation Cycle: Energetic, Kinetic and Stereochemical Aspects. J. Mol. Biol. 2005, 351, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Ziv, G.; Haran, G.; Thirumalai, D. Ribosome Exit Tunnel Can Entropically Stabilize Alpha-Helices. Proc. Natl. Acad. Sci. USA 2005, 102, 18956–18961. [Google Scholar] [CrossRef] [PubMed]
- Krishna, M.M.G.; Englander, S.W. A Unified Mechanism for Protein Folding: Predetermined Pathways with Optional Errors. Protein Sci. 2007, 16, 449–464. [Google Scholar] [CrossRef] [PubMed]
- Steitz, T.A. A Structural Understanding of the Dynamic Ribosome Machine. Nat. Rev. Mol. Cell Biol. 2008, 9, 242–253. [Google Scholar] [CrossRef]
- Kramer, G.; Boehringer, D.; Ban, N.; Bukau, B. The Ribosome as a Platform for Co-Translational Processing, Folding and Targeting of Newly Synthesized Proteins. Nat. Struct. Mol. Biol. 2009, 16, 589–597. [Google Scholar] [CrossRef]
- Kaiser, C.M.; Goldman, D.H.; Chodera, J.D.; Tinoco, I.; Bustamante, C. The Ribosome Modulates Nascent Protein Folding. Science 2011, 334, 1723–1727. [Google Scholar] [CrossRef]
- Wilson, D.N.; Beckmann, R. The Ribosomal Tunnel as a Functional Environment for Nascent Polypeptide Folding and Translational Stalling. Curr. Opin. Struct. Biol. 2011, 21, 274–282. [Google Scholar] [CrossRef]
- Choi, S.I.; Kwon, S.; Son, A.; Jeong, H.; Kim, K.-H.; Seong, B.L. Protein Folding in Vivo Revisited. Curr. Protein Pept. Sci. 2013, 14, 721–733. [Google Scholar] [CrossRef]
- Krobath, H.; Shakhnovich, E.I.; Faísca, P.F.N. Structural and Energetic Determinants of Co-Translational Folding. J. Chem. Phys. 2013, 138, 215101. [Google Scholar] [CrossRef]
- Gloge, F.; Becker, A.H.; Kramer, G.; Bukau, B. Co-Translational Mechanisms of Protein Maturation. Curr. Opin. Struct. Biol. 2014, 24, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Javed, A.; Christodoulou, J.; Cabrita, L.D.; Orlova, E.V. The Ribosome and Its Role in Protein Folding: Looking through a Magnifying Glass. Acta Crystallogr. Sect. D Struct. Biol. 2017, 73, 509–521. [Google Scholar] [CrossRef]
- Thommen, M.; Holtkamp, W.; Rodnina, M.V. Co-Translational Protein Folding: Progress and Methods. Curr. Opin. Struct. Biol. 2017, 42, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; O’Brien, E.P. Non-Equilibrium Coupling of Protein Structure and Function to Translation-Elongation Kinetics. Curr. Opin. Struct. Biol. 2018, 49, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Wruck, F.; Avellaneda, M.J.; Koers, E.J.; Minde, D.P.; Mayer, M.P.; Kramer, G.; Mashaghi, A.; Tans, S.J. Protein Folding Mediated by Trigger Factor and Hsp70: New Insights from Single-Molecule Approaches. J. Mol. Biol. 2018, 430, 438–449. [Google Scholar] [CrossRef]
- Alexander, L.M.; Goldman, D.H.; Wee, L.M.; Bustamante, C. Non-Equilibrium Dynamics of a Nascent Polypeptide during Translation Suppress Its Misfolding. Nat. Commun. 2019, 10, 2709. [Google Scholar] [CrossRef] [PubMed]
- Waudby, C.A.; Dobson, C.M.; Christodoulou, J. Nature and Regulation of Protein Folding on the Ribosome. Trends Biochem. Sci. 2019, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Cassaignau, A.M.E.; Cabrita, L.D.; Christodoulou, J. How Does the Ribosome Fold the Proteome? Annu. Rev. Biochem. 2020, 89, 389–415. [Google Scholar] [CrossRef]
- Cassaignau, A.M.E.; Włodarski, T.; Chan, S.H.S.; Woodburn, L.F.; Bukvin, I.V.; Streit, J.O.; Cabrita, L.D.; Waudby, C.A.; Christodoulou, J. Interactions between Nascent Proteins and the Ribosome Surface Inhibit Co-Translational Folding. Nat. Chem. 2021, 21, 796. [Google Scholar] [CrossRef] [PubMed]
- Maciuba, K.; Rajasekaran, N.; Chen, X.; Kaiser, C.M. Co-Translational Folding of Nascent Polypeptides: Multi-Layered Mechanisms for the Efficient Biogenesis of Functional Proteins. Bioessays 2021, 43, e2100042. [Google Scholar] [CrossRef]
- Plessa, E.; Chu, L.P.; Chan, S.H.S.; Thomas, O.L.; Cassaignau, A.M.E.; Waudby, C.A.; Christodoulou, J.; Cabrita, L.D. Nascent Chains Can Form Co-Translational Folding Intermediates That Promote Post-Translational Folding Outcomes in a Disease-Causing Protein. Nat. Commun. 2021, 12, 6447. [Google Scholar] [CrossRef] [PubMed]
- Wruck, F.; Tian, P.; Kudva, R.; Best, R.B.; von Heijne, G.; Tans, S.J.; Katranidis, A. The Ribosome Modulates Folding inside the Ribosomal Exit Tunnel. Commun. Biol. 2021, 4, 523. [Google Scholar] [CrossRef] [PubMed]
- Fleming, P.J.; Rose, G.D. Conformational Properties of Unfolded Proteins. In Protein Science Encyclopedia; Fersht, A.R., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; p. sf06. ISBN 978-3-527-61075-4. [Google Scholar]
- Sahakyan, H.; Nazaryan, K.; Mushegian, A.; Sorokina, I. Energy-Dependent Protein Folding: Modeling How a Protein Folding Machine May Work. F1000Res 2021, 10, 3. [Google Scholar] [CrossRef]
- Spirin, A.S. Ribosomes; Kluwer Academic/Plenum Publishers: New York, NY, USA, 1999. [Google Scholar]
- Doudna, J.A.; Batey, R.T. Structural Insights into the Signal Recognition Particle. Annu. Rev. Biochem. 2004, 73, 539–557. [Google Scholar] [CrossRef]
- Lavery, L.A.; Partridge, J.R.; Ramelot, T.A.; Elnatan, D.; Kennedy, M.A.; Agard, D.A. Structural Asymmetry in the Closed State of Mitochondrial Hsp90 (TRAP1) Supports a Two-Step ATP Hydrolysis Mechanism. Mol. Cell 2014, 53, 330–343. [Google Scholar] [CrossRef]
- Clerico, E.M.; Meng, W.; Pozhidaeva, A.; Bhasne, K.; Petridis, C.; Gierasch, L.M. Hsp70 Molecular Chaperones: Multifunctional Allosteric Holding and Unfolding Machines. Biochem. J. 2019, 476, 1653–1677. [Google Scholar] [CrossRef] [PubMed]
- De Los Rios, P.; Barducci, A. Hsp70 Chaperones Are Non-Equilibrium Machines That Achieve Ultra-Affinity by Energy Consumption. Elife 2014, 3, e02218. [Google Scholar] [CrossRef] [PubMed]
- Barducci, A.; De Los Rios, P. Non-Equilibrium Conformational Dynamics in the Function of Molecular Chaperones. Curr. Opin. Struct. Biol. 2015, 30, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Goloubinoff, P.; Sassi, A.; Fauvet, B.; Barducci, A.; De Los Rios, P. Molecular Chaperones Inject Energy from ATP Hydrolysis into the Nonequilibrium Stabilisation of Native Proteins. Nat. Chem. Biol. 2018, 14, 388–395. [Google Scholar] [CrossRef]
- Assenza, S.; Sassi, A.S.; Kellner, R.; Schuler, B.; De Los Rios, P.; Barducci, A. Efficient Conversion of Chemical Energy into Mechanical Work by Hsp70 Chaperones. Elife 2019, 8, 8491. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Hyeon, C.; Ye, X.; Lorimer, G.H.; Thirumalai, D. Molecular Chaperones Maximize the Native State Yield on Biological Times by Driving Substrates out of Equilibrium. Proc. Natl. Acad. Sci. USA 2017, 114, E10919–E10927. [Google Scholar] [CrossRef]
- Xu, H. ATP-Driven Nonequilibrium Activation of Kinase Clients by the Molecular Chaperone Hsp90. Biophys. J. 2020, 119, 1538–1549. [Google Scholar] [CrossRef]
- Mirkin, B.G.; Fenner, T.I.; Galperin, M.Y.; Koonin, E.V. Algorithms for Computing Parsimonious Evolutionary Scenarios for Genome Evolution, the Last Universal Common Ancestor and Dominance of Horizontal Gene Transfer in the Evolution of Prokaryotes. BMC Evol. Biol. 2003, 3, 2. [Google Scholar] [CrossRef]
- Mushegian, A. Gene Content of LUCA, the Last Universal Common Ancestor. Front. Biosci. 2008, 13, 4657–4666. [Google Scholar] [CrossRef]
- Kannan, L.; Li, H.; Rubinstein, B.; Mushegian, A. Models of Gene Gain and Gene Loss for Probabilistic Reconstruction of Gene Content in the Last Universal Common Ancestor of Life. Biol. Direct 2013, 8, 32. [Google Scholar] [CrossRef]
- Levinthal, C. Are There Pathways for Protein Folding? J. Chim. Phys. Phys. Chim. Biol. 1968, 65, 44–45. [Google Scholar] [CrossRef]
- Levinthal, C. How to Fold Graciously. In Mössbauer Spectroscopy in Biological Systems Proceedings. University of Illinois Bulletin; Forgotten Books: London, UK, 1969; Volume 67, pp. 22–24. [Google Scholar]
- Grosberg, A. A Few Disconnected Notes Related to Levinthal Paradox. J. Biomol. Struct. Dyn. 2002, 20, 317–321. [Google Scholar] [CrossRef]
- Talkad, V.; Schneider, E.; Kennell, D. Evidence for Variable Rates of Ribosome Movement in Escherichia Coli. J. Mol. Biol. 1976, 104, 299–303. [Google Scholar] [CrossRef]
- Olofsson, S.-O.; Boström, K.; Carlsson, P.; Borén, J.; Wettesten, M.; Bjursell, G.; Wiklund, O.; Bondjers, G. Structure and Biosynthesis of Apolipoprotein B. Am. Heart J. 1987, 113, 446–452. [Google Scholar] [CrossRef]
- Li, G.-W.; Burkhardt, D.; Gross, C.; Weissman, J.S. Quantifying Absolute Protein Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources. Cell 2014, 157, 624–635. [Google Scholar] [CrossRef]
- Petrosyan, R.; Narayan, A.; Woodside, M.T. Single-Molecule Force Spectroscopy of Protein Folding. J. Mol. Biol. 2021, 433, 167207. [Google Scholar] [CrossRef]
- Liutkute, M.; Maiti, M.; Samatova, E.; Enderlein, J.; Rodnina, M.V. Gradual Compaction of the Nascent Peptide during Cotranslational Folding on the Ribosome. Elife 2020, 9, e60895. [Google Scholar] [CrossRef] [PubMed]
- Mashaghi, A.; Moayed, F.; Koers, E.J.; Kramer, G.; Mayer, M.P.; Tans, S.J. Direct Observation of Hsp90-Induced Compaction in a Protein Chain. Available online: https://www.biorxiv.org/content/10.1101/2021.08.08.455546v1#page (accessed on 6 December 2021).
- Julián, P.; Milon, P.; Agirrezabala, X.; Lasso, G.; Gil, D.; Rodnina, M.V.; Valle, M. The Cryo-EM Structure of a Complete 30S Translation Initiation Complex from Escherichia coli. PLoS Biol. 2011, 9, 1001095. [Google Scholar] [CrossRef] [PubMed]
- Bögeholz, L.A.K.; Mercier, E.; Wintermeyer, W.; Rodnina, M.V. Kinetic Control of Nascent Protein Biogenesis by Peptide Deformylase. Sci. Rep. 2021, 11, 24457. [Google Scholar] [CrossRef] [PubMed]
- Herrero Del Valle, A.; Seip, B.; Cervera-Marzal, I.; Sacheau, G.; Seefeldt, A.C.; Innis, C.A. Ornithine Capture by a Translating Ribosome Controls Bacterial Polyamine Synthesis. Nat. Microbiol. 2020, 5, 554–561. [Google Scholar] [CrossRef]
- van der Stel, A.X.; Gordon, E.R.; Sengupta, A.; Martínez, A.K.; Klepacki, D.; Perry, T.N.; Herrero Del Valle, A.; Vázquez-Laslop, N.; Sachs, M.S.; Cruz-Vera, L.R.; et al. Structural Basis for the Tryptophan Sensitivity of TnaC-mediated Ribosome Stalling. Nat. Commun. 2021, 12, 5340. [Google Scholar] [CrossRef]
- Nilsson, O.B.; Hedman, R.; Marino, J.; Wickles, S.; Bischoff, L.; Johansson, M.; Müller-Lucks, A.; Trovato, F.; Puglisi, J.D.; O’Brien, E.P.; et al. Cotranslational Protein Folding inside the Ribosome Exit Tunnel. Cell Rep. 2015, 12, 1533–1540. [Google Scholar] [CrossRef]
- Bañó-Polo, M.; Baeza-Delgado, C.; Tamborero, S.; Hazel, A.; Grau, B.; Nilsson, I.; Whitley, P.; Gumbart, J.C.; von Heijne, G.; Mingarro, I. Transmembrane but not Soluble Helices Fold inside the Ribosome Tunnel. Nat. Commun. 2018, 9, 5246. [Google Scholar] [CrossRef] [PubMed]
- Schulte, L.; Mao, J.; Reitz, J.; Sreeramulu, S.; Kudlinzki, D.; Hodirnau, V.V.; Meier-Credo, J.; Saxena, K.; Buhr, F.; Langer, J.D.; et al. Cysteine Oxidation and Disulfide Formation in the Ribosomal Exit Tunnel. Nat. Commun. 2020, 11, 5569. [Google Scholar] [CrossRef] [PubMed]
- Bui, P.T.; Hoang, T.X. Protein Escape at the Ribosomal Exit Tunnel: Effects of Native Interactions, Tunnel Length, and Macromolecular Crowding. J. Chem. Phys. 2018, 149, 045102. [Google Scholar] [CrossRef] [PubMed]
- Bui, P.T.; Hoang, T.X. Protein Escape at the Ribosomal Exit Tunnel: Effect of the Tunnel Shape. J. Chem. Phys. 2020, 153, 045105. [Google Scholar] [CrossRef]
- Bui, P.T.; Hoang, T.X. Hydrophobic and Electrostatic Interactions Modulate Protein Escape at the Ribosomal Exit Tunnel. Biophys. J. 2021, 9, 27. [Google Scholar] [CrossRef]
- Joiret, M.; Rapino, F.; Close, P.; Geris, L. Ribosome Exit Tunnel Electrostatics. Available online: https://www.biorxiv.org/content/10.1101/2020.10.20.346684v1.full (accessed on 6 December 2021).
- Ferina, J.; Daggett, V. Visualizing Protein Folding and Unfolding. J. Mol. Biol. 2019, 431, 1540–1564. [Google Scholar] [CrossRef]
Total Chemical Synthesis 1 | Archaea | Bacteria | Eukarya | Data Sources for Archaea, Bacteria and Eukarya | |
---|---|---|---|---|---|
mean protein length, amino acids | 94 | 283 | 320 | 472 | [51] |
% secreted | 62 | 6–19 | 18–30 | 13 (humans) | [52,53,54] |
% with DSB in the known 3-D structures | 57 | 15 | 11 | 30 | [55] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorokina, I.; Mushegian, A.R.; Koonin, E.V. Is Protein Folding a Thermodynamically Unfavorable, Active, Energy-Dependent Process? Int. J. Mol. Sci. 2022, 23, 521. https://doi.org/10.3390/ijms23010521
Sorokina I, Mushegian AR, Koonin EV. Is Protein Folding a Thermodynamically Unfavorable, Active, Energy-Dependent Process? International Journal of Molecular Sciences. 2022; 23(1):521. https://doi.org/10.3390/ijms23010521
Chicago/Turabian StyleSorokina, Irina, Arcady R. Mushegian, and Eugene V. Koonin. 2022. "Is Protein Folding a Thermodynamically Unfavorable, Active, Energy-Dependent Process?" International Journal of Molecular Sciences 23, no. 1: 521. https://doi.org/10.3390/ijms23010521
APA StyleSorokina, I., Mushegian, A. R., & Koonin, E. V. (2022). Is Protein Folding a Thermodynamically Unfavorable, Active, Energy-Dependent Process? International Journal of Molecular Sciences, 23(1), 521. https://doi.org/10.3390/ijms23010521