Mycobacterium chelonae Infection Identified by Metagenomic Next-Generation Sequencing as the Probable Cause of Acute Contained Rupture of a Biological Composite Graft—A Case Report
Abstract
1. Introduction
2. Case Presentation
3. mNGS and qPCR Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, S.M. Mycobacterial endocarditis: A comprehensive review. Rev. Bras. Cir. Cardiovasc. 2015, 30, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.S.; Lo, B.; Son, J. Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front. Microbiol. 2018, 9, 67. [Google Scholar] [CrossRef] [PubMed]
- Strabelli, T.M.; Siciliano, R.F.; Castelli, J.B.; Demarchi, L.M.; Leão, S.C.; Viana-Niero, C.; Miyashiro, K.; Sampaio, R.O.; Grinberg, M.; Uip, D.E. Mycobacterium chelonae valve endocarditis resulting from contaminated biological prostheses. J. Infect. 2010, 60, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Hooda, A.; Pati, P.K.; John, B.; George, P.V.; Michael, J.S. Disseminated Mycobacterium chelonae infection causing pacemaker lead endocarditis in an immunocompetent host. BMJ Case Rep. 2014, 2014. [Google Scholar] [CrossRef]
- Takekoshi, D.; Al-Heeti, O.; Belvitch, P.; Schraufnagel, D.E. Native-valve endocarditis caused by Mycobacterium chelonae, misidentified as polymicrobial gram-positive bacillus infection. J. Infect. Chemother. 2013, 19, 754–756. [Google Scholar] [CrossRef] [PubMed]
- Jagadeesan, N.; Patra, S.; Singh, A.P.; Nagesh, C.M.; Reddy, B.; Badnur, S.C.; Nanjappa, M.C. Spontaneous endocarditis caused by rapidly growing non-tuberculous Mycobacterium chelonae in an immunocompetent patient with rheumatic heart disease. J. Cardiovasc. Dis. Res. 2013, 4, 254–256. [Google Scholar] [CrossRef] [PubMed][Green Version]
- d’Humières, C.; Salmona, M.; Dellière, S.; Leo, S.; Rodriguez, C.; Angebault, C.; Alanio, A.; Fourati, S.; Lazarevic, V.; Woerther, P.L.; et al. The potential role of clinical metagenomics in infectious diseases: Therapeutic perspectives. Drugs 2021, 81, 1453–1466. [Google Scholar] [CrossRef] [PubMed]
- Kolb, M.; Lazarevic, V.; Emonet, S.; Calmy, A.; Girard, M.; Gaïa, N.; Charretier, Y.; Cherkaoui, A.; Keller, P.M.; Huber, C. Next-generation sequencing for the diagnosis of challenging culture-negative endocarditis. Front. Med. 2019, 6, 203. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Ounit, R.; Wanamaker, S.; Close, T.J.; Lonardi, S. CLARK: Fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. BMC Genom. 2015, 16, 236. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef] [PubMed]
- Větrovský, T.; Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 2013, 8, e57923. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Breitwieser, F.P.; Pertea, M.; Zimin, A.V.; Salzberg, S.L. Human contamination in bacterial genomes has created thousands of spurious proteins. Genome Res. 2019, 29, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Kohler, P.; Kuster, S.P.; Bloemberg, G.; Schulthess, B.; Frank, M.; Tanner, F.C.; Rössle, M.; Böni, C.; Falk, V.; Wilhelm, M.J.; et al. Healthcare-associated prosthetic heart valve, aortic vascular graft, and disseminated Mycobacterium chimaera infections subsequent to open heart surgery. Eur. Heart J. 2015, 36, 2745–2753. [Google Scholar] [CrossRef] [PubMed]
Sample Type and Sampling Time | Microscopy | Culture | PCR | mNGS | Mycobacterium abscessus/chelonae qPCR Ct * |
---|---|---|---|---|---|
BioConduit (BioIntegral Surgical) Day 1 | Acid-fast bacilli | No growth of mycobacteria or other bacteria | GeneXpert MTB/RIF negative; Mycobacterium genus-specific PCR negative; Mycobacterium chimaera species-specific PCR negative; Broad-range 16S rDNA PCR negative | ND | ND |
Vegetation on aortic prosthesis Day 1 | Acid-fast bacilli | No growth of mycobacteria or other bacteria | ND | M. chelonae detected below the level of major reagent contaminants | 40.12 ± 0.11 |
Aortic prosthesis (Vascutek) Day 1 | Acid-fast bacilli | No growth of mycobacteria or other bacteria | GeneXpert MTB/RIF negative; Mycobacterium genus-specific PCR negative; M. chimaera species-specific PCR negative; Broad-range 16S rDNA PCR negative | M. chelonae | 34.06 ± 0.12 |
Mediastinal swab Day 2 | ND | No growth of mycobacteria or other bacteria | ND | ND | ND |
Aortic autopsy Day 3 | No detection | Enterococcus faecium sporadically; apathogenic Neisseria spp. 1 CFU; anaerobic mixed flora sporadically; no growth of mycobacteria | ND | No detection | >42 |
Read Pairs | Aortic Prosthesis | Vegetation on Aortic Prosthesis | Aortic Autopsy | NEC | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw | 5,854,406 | 4,788,163 | 5,689,196 | 32,153 | ||||||||||||
Quality-filtered | 2,699,047 | 2,823,668 | 1,579,879 | 2128 | ||||||||||||
Human | 2,572,953 | 2,822,051 | 1,576,184 | 342 | ||||||||||||
Bovine | NA | 122,725 | NA | 52 | NA | 156 | NA | 1 | ||||||||
Pig | NA | 31 | NA | 11 | NA | 653 | NA | 2 | ||||||||
Fungi | 136 | 37 | 28 | 25 | 104 | 95 | 13 | 12 | ||||||||
DNA viruses | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||||
Unclassified | 100,770 | 2213 | 1390 | 1330 | 3229 | 2427 | 934 | 932 | ||||||||
Bacteria/Archaea | 25,188 | 1088 | 201 | 199 | 365 | 364 | 839 | 839 | ||||||||
Percentage in bacterial/archaeal fraction | Mycolicibacterium malmesburyense | 79 | Mycobacteroides chelonae | 48 | Cutibacterium acnes | 23 | Cutibacterium acnes | 24 | Rothia mucilaginosa | 7.7 | Rothia mucilaginosa | 6.1 | Cutibacterium acnes | 21 | Cutibacterium acnes | 21 |
Anaerobutyricum hallii | 8.2 | Cutibacterium acnes | 4.9 | Moraxella osloensis | 8 | Moraxella osloensis | 8 | Blautia obeum | 6 | Blautia obeum | 4.8 | Sphingomonas echinoides | 8.6 | Sphingomonas echinoides | 8.6 | |
Acetanaerobacterium elongatum | 3 | Mycobacteroides franklinii | 4.2 | Arcobacter lekithochrous | 6.5 | Arcobacter lekithochrous | 6.5 | Gemmiger formicilis | 4.9 | Gemmiger formicilis | 3.9 | Micrococcus luteus | 7 | Micrococcus luteus | 7 | |
Catenibacterium mitsuokai | 2.9 | Moraxella osloensis | 4 | Sphingomonas echinoides | 5 | Sphingomonas echinoides | 5 | Streptococcus salivarius | 4.7 | Streptococcus salivarius | 3.7 | Cloacibacterium normanense | 4.1 | Cloacibacterium normanense | 4.1 | |
Staphylococcus simiae | 2.2 | Micrococcus luteus | 3.8 | Micrococcus luteus | 4.5 | Micrococcus luteus | 4.5 | Neisseria mucosa | 4.1 | Neisseria mucosa | 3.3 | Acinetobacter johnsonii | 3.6 | Acinetobacter johnsonii | 3.6 | |
Mycobacteroides chelonae | 2.1 | Pseudomonas massiliensis | 2.1 | Mycobacteroides chelonae | 2.5 | Mycobacteroides chelonae | 2.5 | Arcobacter lekithochrous | 4.1 | Arcobacter lekithochrous | 3.3 | Enterococcus cecorum | 2.5 | Enterococcus cecorum | 2.5 | |
Modestobacter marinus | 2 | Alcanivorax hongdengensis | 2.5 | Alcanivorax hongdengensis | 2.5 | Akkermansia muciniphila | 3.3 | Akkermansia muciniphila | 2.6 | Ralstonia pickettii | 2.2 | Ralstonia pickettii | 2.2 | |||
Halomonas muralis | 2.5 | Halomonas muralis | 2.5 | Micrococcus luteus | 3 | Micrococcus luteus | 2.4 | Pseudomonas massiliensis | <2 | Pseudomonas massiliensis | <2 | |||||
Acinetobacter johnsonii | 2 | Acinetobacter johnsonii | 2 | Enterococcus faecium | 3 | Enterococcus faecium | 2.4 | Halomonas muralis | <2 | Halomonas muralis | <2 | |||||
Ruminococcus faecis | 3 | Ruminococcus faecis | 2.4 | Moraxella osloensis | <2 | Moraxella osloensis | <2 | |||||||||
Bacteroides vulgatus | 2.7 | Bacteroides vulgatus | 2.2 | |||||||||||||
Streptococcus parasanguinis | 2.7 | Streptococcus parasanguinis | 2.2 | |||||||||||||
Alistipes inops | 2.2 | |||||||||||||||
Fusicatenibacter saccharivorans | 2.2 | |||||||||||||||
Pipeline | Routine | Modified | Routine | Modified | Routine | Modified | Routine | Modified |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Büchler, A.C.; Lazarevic, V.; Gaïa, N.; Girard, M.; Eckstein, F.; Egli, A.; Sutter, S.T.; Schrenzel, J. Mycobacterium chelonae Infection Identified by Metagenomic Next-Generation Sequencing as the Probable Cause of Acute Contained Rupture of a Biological Composite Graft—A Case Report. Int. J. Mol. Sci. 2022, 23, 381. https://doi.org/10.3390/ijms23010381
Büchler AC, Lazarevic V, Gaïa N, Girard M, Eckstein F, Egli A, Sutter ST, Schrenzel J. Mycobacterium chelonae Infection Identified by Metagenomic Next-Generation Sequencing as the Probable Cause of Acute Contained Rupture of a Biological Composite Graft—A Case Report. International Journal of Molecular Sciences. 2022; 23(1):381. https://doi.org/10.3390/ijms23010381
Chicago/Turabian StyleBüchler, Andrea C., Vladimir Lazarevic, Nadia Gaïa, Myriam Girard, Friedrich Eckstein, Adrian Egli, Sarah Tschudin Sutter, and Jacques Schrenzel. 2022. "Mycobacterium chelonae Infection Identified by Metagenomic Next-Generation Sequencing as the Probable Cause of Acute Contained Rupture of a Biological Composite Graft—A Case Report" International Journal of Molecular Sciences 23, no. 1: 381. https://doi.org/10.3390/ijms23010381
APA StyleBüchler, A. C., Lazarevic, V., Gaïa, N., Girard, M., Eckstein, F., Egli, A., Sutter, S. T., & Schrenzel, J. (2022). Mycobacterium chelonae Infection Identified by Metagenomic Next-Generation Sequencing as the Probable Cause of Acute Contained Rupture of a Biological Composite Graft—A Case Report. International Journal of Molecular Sciences, 23(1), 381. https://doi.org/10.3390/ijms23010381