An Optimized Transformation System and Functional Test of CYC-Like TCP Gene CpCYC in Chirita pumila (Gesneriaceae)
Abstract
:1. Introduction
2. Results
2.1. Optimization of the Media Used for Seed Germination, Tissue Culture and Seedling Growth
2.2. Optimization of the Genetic Transformation System in C. pumila
2.3. Functional Analyses of CpCYC and its Promoter
3. Discussion
3.1. A Stable and High-Efficiency Agrobacterium-Mediated Transformation System in C. pumila
3.2. Functional and Evolutionary Implications of CpCYC Silence by RNAi and Its Promoter Activity
3.3. Biological Advantages Make Chirita Pumila as a Potential Model Plant
4. Materials and Methods
4.1. Plant Material and Phylogenetic Analysis
4.2. Determination of the Optimal Media for Seed Germination and Seedling Growth
4.3. Optimization of Tissue Culture Conditions
4.4. Improvement of Acetosyringone Concentration and Antibiotics Usage for C. pumila Transformation System
4.5. Determination of Agrobacterium Strains, Explants Inoculation and Co-Culture Conditions for High-Efficiency C. pumila Transformation System
4.6. Statistical Analyses
4.7. Protoplast Isolation and Transient Gene Expression Assay
4.8. Functional Studies of CpCYC and its Promoter Using C. pumila Transformation System
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The Plant List. Version 1.1. Published on the Internet. 2013. Available online: http://www.theplantlist.org/ (accessed on 16 March 2021).
- Regal, P.J. Ecology and evolution of flowering plant dominance. Science 1977, 196, 622–629. [Google Scholar] [CrossRef]
- Heijmans, K.; Morel, P.; Vandenbussche, M. MADS-box genes and floral development: The dark side. J. Exp. Bot. 2012, 63, 5397–5404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowman, J.; Smyth, D.; Meyerowitz, E. Genetic interactions among floral homeotic genes of Arabidopsis. Development 1991, 112, 1–20. [Google Scholar] [PubMed]
- Coen, E.S.; Meyerowitz, E.M. The war of the whorls: Genetic interactions controlling flower development. Nature 1991, 353, 31–37. [Google Scholar] [CrossRef]
- Causier, B.; Schwarz-Sommer, Z.; Davies, B. Floral organ identity: 20 years of ABCs. Semin. Cell Dev. Biol. 2010, 21, 73–79. [Google Scholar] [CrossRef]
- Litt, A. An evaluation of A-function: Evidence from the APETALA1 and APETALA2 gene lineages. Int. J. Plant Sci. 2007, 168, 73–91. [Google Scholar] [CrossRef]
- Dilcher, D. Toward a new synthesis: Major evolutionary trends in the angiosperm fossil record. Proc. Natl. Acad. Sci. USA 2000, 97, 7030–7036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cubas, P. Floral zygomorphy, the recurring evolution of a successful trait. BioEssays 2004, 26, 1175–1184. [Google Scholar] [CrossRef]
- Busch, A.; Zachgo, S. Flower symmetry evolution: Towards understanding the abominable mystery of angiosperm radiation. BioEssays 2009, 31, 1181–1190. [Google Scholar] [CrossRef]
- Luo, D.; Carpenter, R.; Copsey, L.; Vincent, C.; Clark, J.; Coen, E. Control of organ asymmetry in flowers of Antirrhinum. Cell 1999, 99, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Carpenter, R.; Vincent, C.; Copsey, L.; Coen, E. Origin of floral asymmetry in Antirrhinum. Nature 1996, 383, 794–799. [Google Scholar] [CrossRef]
- Yang, X.; Pang, H.-B.; Liu, B.-L.; Qiu, Z.-J.; Gao, Q.; Wei, L.; Dong, Y.; Wang, Y.-Z. Evolution of double positive autoregulatory feedback loops in CYCLOIDEA2 clade genes is associated with the origin of floral zygomorphy. Plant Cell 2012, 24, 1834–1847. [Google Scholar] [CrossRef] [Green Version]
- Hileman, L.C.; Kramer, E.M.; Baum, D.A. Differential regulation of symmetry genes and the evolution of floral morphologies. Proc. Natl. Acad. Sci. USA 2003, 100, 12814–12819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, X.; Zhao, Z.; Tian, Z.; Xu, S.; Luo, Y.; Cai, Z.; Wang, Y.; Yang, J.; Wang, Z.; Weng, L.; et al. Control of petal shape and floral zygomorphy in Lotus japonicus. Proc. Natl. Acad. Sci. USA 2006, 103, 4970–4975. [Google Scholar] [CrossRef] [Green Version]
- Busch, A.; Zachgo, S. Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proc. Proc. Natl. Acad. Sci. USA 2007, 104, 16714–16719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, C.-F.; Lin, Q.-B.; Liang, R.-H.; Wang, Y.-Z. Expressions of ECE-CYC2 clade genes relating to abortion of both dorsal and ventral stamens in Opithandra (Gesneriaceae). BMC Evol. Biol. 2009, 9, 244–255. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Kramer, E.M.; Davis, C.C. Floral symmetry genes and the origin and maintenance of zygomorphy in a plant-pollinator mutualism. Proc. Natl. Acad. Sci. USA 2010, 107, 6388–6393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Zhao, X.-G.; Li, C.-Q.; Liu, J.; Qiu, Z.-J.; Dong, Y.; Wang, Y.-Z. Distinct regulatory changes underlying differential expression of TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR genes associated with petal variations in zygomorphic flowers of Petrocosmea spp. of the family Gesneriaceae. Plant Physiol. 2015, 169, 2138–2151. [Google Scholar] [PubMed] [Green Version]
- Su, S.; Xiao, W.; Guo, W.; Yao, X.; Xiao, J.; Ye, Z.; Wang, N.; Jiao, K.; Lei, M.; Peng, Q.; et al. The CYCLOIDEA–RADIALIS module regulates petal shape and pigmentation, leading to bilateral corolla symmetry in Torenia fournieri (Linderniaceae). New Phytol. 2017, 215, 1582–1593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Trillo, M.; Cubas, P. TCP genes: A family snapshot ten years later. Trends Plant Sci. 2010, 15, 31–39. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, Q.; Bao, W.; Zhang, Y.; Han, B.; Xue, Y.; Cheng, Z. Molecular cytogenetic characterization of the Antirrhinum majus genome. Genetics 2005, 169, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Lian, Z.; Nguyen, C.D.; Wilson, S.; Chen, J.; Gong, H.; Huo, H. An efficient protocol for Agrobacterium-mediated genetic transformation of Antirrhinum majus. Plant Cell Tiss. Org. Cult. 2020, 142, 527–536. [Google Scholar] [CrossRef]
- Kramer, E.M. Aquilegia: A new model for plant development, ecology, and evolution. Ann. Rev. Plant Biol. 2009, 60, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Xu, Y. Hypocotyl-based Agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference. Plant Cell Rep. 2008, 27, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
- Tóth, K.; Batek, J.; Stacey, G. Generation of soybean (Glycine max) transient transgenic roots. Curr. Opin. Plant Biol. 2016, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Citerne, H.; Jabbour, F.; Nadot, S.; Damerval, C. The evolution of floral symmetry. Adv. Bot. Res. 2010, 54, 85–137. [Google Scholar]
- Izawa, T.; Shimamoto, K. Becoming a model plant: The importance of rice to plant science. Trends Plant Sci. 1996, 1, 95–99. [Google Scholar] [CrossRef]
- Liu, B.-L.; Yang, X.; Liu, J.; Dong, Y.; Wang, Y.-Z. Characterization, efficient transformation and regeneration of Chirita pumila (Gesneriaceae), a potential evo-devo model plant. Plant Cell Tiss. Org. Cult. 2014, 118, 357–371. [Google Scholar] [CrossRef]
- Knittel, N.; Gruber, V.; Hahne, G.; Lénée, P. Transformation of sunflower (Helianthus annuus L.): A reliable protocol. Plant Cell Rep. 1994, 14, 81–86. [Google Scholar] [CrossRef]
- Davey, M.R.; Jan, M. Sunflower (Helianthus annuus L.): Genetic improvement using conventional and in vitro technologies. J. Crop Improv. 2010, 24, 349–391. [Google Scholar] [CrossRef]
- Suzaki, T.; Tsuda, M.; Ezura, H.; Day, B.; Miura, K. Agroinfiltration-based efficient transient protein expression in leguminous plants. Plant Biotechnol. 2019, 36, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Jia, N.; Zhu, Y.; Xie, F. An efficient protocol for model legume root protoplast isolation and transformation. Front. Plant Sci. 2018, 9, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Chen, Y.; Schnabel, E.; Crook, A.; Frugoli, J. Comparison of efficiency and time to regeneration of Agrobacterium-mediated transformation methods in Medicago truncatula. Plant Methods 2019, 15, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.W. Monkeyflowers (Mimulus): New model for plant developmental genetics and evo-devo. New Phytol. 2019, 222, 694–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodin, M.M.; Zaitlin, D.; Naidu, R.A.; Lommel, S.A. Nicotiana benthamiana: Its history and future as a model for plant-pathogen interactions. Mol. Plant-Microbe Interact. 2008, 21, 1015–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bombarely, A.; Rosli, H.G.; Vrebalov, J.; Moffett, P.; Mueller, L.A.; Martin, G.B. A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol. Plant-Microbe Interact. 2012, 25, 1523–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerats, T.; Vandenbussche, M. A model system for comparative research: Petunia. Trends Plant Sci. 2005, 10, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Avila, E.M.; Day, A. Stable plastid transformation of Petunia. Methods Mol. Biol. 2014, 1132, 277–293. [Google Scholar]
- Li, S.; Zhen, C.; Xu, W.; Wang, C.; Cheng, Y. Simple, rapid and efficient transformation of genotype Nisqually-1: A basic tool for the first sequenced model tree. Sci. Rep. 2017, 7, 2638–2647. [Google Scholar] [CrossRef] [Green Version]
- Matsukura, C.; Aoki, K.; Fukuda, N.; Mizoguchi, T.; Asamizu, E.; Saito, T.; Shibata, D.; Ezura, H. Comprehensive resources for tomato functional genomics based on the miniature model tomato micro-tom. Curr. Genom. 2008, 9, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Wortley, A.H.; Rudall, P.J.; Harris, D.J.; Scotland, R.W. How much data are needed to resolve a difficult phylogeny? Case study in Lamiales. Syst. Biol. 2005, 54, 697–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.-Z.; Liang, R.-H.; Wang, B.-H.; Li, J.-M.; Qiu, Z.-J.; Li, Z.-Y.; Weber, A. Origin and phylogenetic relationships of the Old World Gesneriaceae with actinomorphic flowers inferred from ITS and trnL-trnF sequences. Taxon 2010, 59, 1044–1052. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Wang, Y.-Z. Plants of Gesneriaceae in China; Henan Science and Technology Publishing House: Zhengzhou, China, 2004. [Google Scholar]
- Nauerby, B.; Billing, K.; Wyndaele, R. Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Sci. 1997, 123, 169–177. [Google Scholar] [CrossRef]
- Ko, S.-S.; Li, M.-J.; Ku, M.S.-B.; Ho, Y.-C.; Lin, Y.-J.; Chuang, M.-H.; Hsing, H.-X.; Lien, Y.-C.; Yang, H.-T.; Chang, H.-C.; et al. The bHLH142 transcription factor coordinates with TDR1 to modulate the expression of EAT1 and regulate pollen development in rice. Plant Cell 2014, 26, 2486–2504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Wu, J.; Yang, X.; Wang, Y.-Z. Regulatory pathways of CYC-like genes in patterning floral zygomorphy exemplified in Chirita pumila. J. Syst. Evol. 2020. [Google Scholar] [CrossRef]
- Pradhan, S.; Regmi, T.; Ranjit, M.; Pant, B. Production of virus-free orchid Cymbidium aloifolium (L.) Sw. by various tissue culture techniques. Heliyon 2016, 2, e00176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckstein, A.; Zięba, P.; Gabryś, H. Sugar and light effects on the condition of the photosynthetic apparatus of Arabidopsis thaliana cultured in vitro. J. Plant Growth Regul. 2012, 31, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Bairu, M.W.; Stirk, W.A.; Doležal, K.; Staden, J.V. Optimizing the micropropagation protocol for the endangered Aloe polyphylla: Can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell Tiss. Org. Cult. 2007, 90, 15–23. [Google Scholar] [CrossRef]
- Mishra, Y.; Rawat, R.; Nema, B.; Shirin, F. Effect of seed orientation and medium strength on in vitro germination of Pterocarpus marsupium roxb. Not. Sci. Biol. 2013, 5, 476–479. [Google Scholar] [CrossRef]
- Dekkers, B.J.; Schuurmans, J.A.; Smeekens, S.C. Glucose delays seed germination in Arabidopsis thaliana. Planta 2004, 218, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Rognoni, S.; Teng, S.; Arru, L.; Smeekens, S.C.M.; Perata, P. Sugar effects on early seedling development in Arabidopsis. Plant Growth Regul. 2007, 52, 217–228. [Google Scholar] [CrossRef]
- Yaseen, M.; Ahmad, T.; Sablok, G.; Standardi, A.; Hafiz, I. Role of carbon sources for in vitro. Mol. Biol. Rep. 2013, 40, 2837–2849. [Google Scholar] [CrossRef]
- Holford, P.; Newbury, H.J. The effects of antibiotics and their breakdown products on the in vitro growth of Antirrhinum majus. Plant Cell Rep. 1992, 11, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.G.C.; Nogueira, F.T.S.; Figueira, M.L.; Otoni, W.C.; Brommonschenkel, S.H.; Cecon, P.R. Influence of the antibiotic timentin on plant regeneration of tomato (Lycopersicon esculentum Mill.) cultivars. Plant Cell Rep. 2000, 19, 327–332. [Google Scholar] [CrossRef]
- Mamidala, P.; Nanna, R.S. Influence of antibiotics on regeneration efficiency in tomato. Plant Omics 2009, 2, 135–140. [Google Scholar]
- Du, N.; Pijut, P.M. Agrobacterium-mediated transformation of Fraxinus pennsylvanica hypocotyls and plant regeneration. Plant Cell Rep. 2009, 28, 915–923. [Google Scholar] [CrossRef]
- He, Y.; Jones, H.D.; Chen, S.; Chen, X.M.; Wang, D.W.; Li, K.X.; Wang, D.S.; Xia, L.Q. Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J. Exp. Bot. 2010, 61, 1567–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishida, J.K.; Yoshida, S.; Ito, M.; Namba, S.; Shirasu, K. Agrobacterium rhizogenes-mediated transformation of the parasitic plant Phtheirospermum japonicum. PLoS ONE 2011, 6, e25802. [Google Scholar] [CrossRef] [Green Version]
- Dutt, M.; Grosser, J.W. Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus. Plant Cell Tiss. Org. Cult. 2009, 98, 331–340. [Google Scholar] [CrossRef]
- Barik, D.P.; Mohapatra, U.; Chand, P.K. Transgenic grass pea (Lathyrus sativus L.): Factors influencing Agrobacterium-mediated transformation and regeneration. Plant Cell Rep. 2005, 24, 523–531. [Google Scholar] [CrossRef]
- Crane, C.; Wright, E.; Dixon, R.A.; Wang, Z.-Y. Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens-transformed roots and Agrobacterium rhizogenes-transformed hairy roots. Planta 2006, 223, 1344–1354. [Google Scholar] [CrossRef] [Green Version]
- Jian, B.; Hou, W.; Wu, C.; Liu, B.; Liu, W.; Song, S.; Bi, Y.; Han, T. Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants: A valuable tool for functional genomics. BMC Plant Biol. 2009, 9, 78–91. [Google Scholar] [CrossRef] [Green Version]
- Pathi, K.M.; Tula, S.; Tuteja, N. High frequency regeneration via direct somatic embryogenesis and efficient Agrobacterium-mediated genetic transformation of tobacco. Plant Signal. Behav. 2013, 8, e24354. [Google Scholar] [CrossRef] [Green Version]
- Baron, C.; Domke, N.; Beinhofer, M.; Hapfelmeier, S. Elevated temperature differentially affects virulence, VirB protein accumlation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains. J. Bacteriol. 2001, 183, 6852–6861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, K.J.; Jin, S.B.; Riu, K.Z. Agrobacterium-mediated transformation of embryogenic cultures in ‘Miyagawa Wase’ Satsuma mandarin (Citrus unshiu Marc). Acta Hortic. 2007, 738, 265–271. [Google Scholar] [CrossRef]
- Endress, P.K. Evolution of floral symmetry. Curr. Opin. Plant Biol. 2001, 4, 86–91. [Google Scholar] [CrossRef]
- Galego, L.; Almeida, J. Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes Dev. 2002, 16, 880–891. [Google Scholar] [CrossRef] [Green Version]
- Corley, S.B.; Carpenter, R.; Copsey, L.; Coen, E. Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proc. Natl. Acad. Sci. USA 2005, 102, 5068–5073. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.M.; Fox, S.; Hanna, A.I.; Baxter, C.; Coen, E. Evolution of regulatory interactions controlling floral asymmetry. Development 2005, 132, 5093–5101. [Google Scholar] [CrossRef] [Green Version]
- Raimundo, J.; Sobral, R.; Bailey, P.; Azevedo, H.; Galego, L.; Almeida, J.; Coen, E.; Costa, M.M.R. A subcellular tug of war involving three MYB-like proteins underlies a molecular antagonism in Antirrhinum flower asymmetry. Plant J. 2013, 75, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Reyes, E.; Sauquet, H.; Nadot, S. Perianth symmetry changed at least 199 times in angiosperm evolution. Taxon 2016, 65, 945–964. [Google Scholar] [CrossRef]
- Hileman, L.C. Bilateral flower symmetry-how, when and why? Curr. Opin. Plant Biol. 2014, 17, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Damerval, C.; Guilloux, M.L.; Jager, M.; Charon, C. Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae. Plant Physiol. 2007, 143, 759–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Luo, Y.; Li, X.; Wang, L.; Xu, S.; Yang, J.; Weng, L.; Sato, S.; Tabata, S.; Ambrose, M.; et al. Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proc. Natl. Acad. Sci. USA 2008, 105, 10414–11041. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, M.E.; Specht, C.D. Changes in expression pattern of the Teosinte Branched1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order. Am. J. Bot. 2011, 98, 227–243. [Google Scholar] [CrossRef]
- Jabbour, F.; Cossard, G.; Le Guilloux, M.; Sannier, J.; Nadot, S.; Damerval, C. Specific duplication and dorsoventrally asymmetric expression patterns of CYCLOIDEA-like genes in zygomorphic species of Ranunculaceae. PLoS ONE 2014, 9, e95727. [Google Scholar] [CrossRef] [PubMed]
- Preston, J.C.; Barnett, L.L.; Kost, M.A.; Oborny, N.J.; Hileman, L.C. Optimization of virus-induced gene silencing to facilitate evo-devo studies in the emerging model species Mimulus guttatus (Phrymaceae). Ann. Mo. Bot. Gard. 2014, 99, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Broholm, S.K.; Tähtiharju, S.; Laitinen, R.A.E.; Albert, V.A.; Teeri, T.H.; Elomaa, P. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proc. Natl. Acad. Sci. USA 2008, 105, 9117–9122. [Google Scholar] [CrossRef] [Green Version]
- Garcês, H.M.P.; Spencer, V.M.R.; Kim, M. Control of floret symmetry by RAY3, SvDIV1B, and SvRAD in the capitulum of Senecio vulgaris. Plant Physiol. 2016, 171, 2055–2068. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Pfannebecker, K.; Dommes, A.B.; Hidalgo, O.; Becker, A.; Elomaa, P. Evolutionary diversification of CYC/TB1-like TCP homologs and their recruitment for the control of branching and floral morphology in Papaveraceae (basal eudicots). New Phytol. 2018, 220, 317–331. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.D. Pleiotropy and the evolution of floral integration. New Phytol. 2016, 209, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Moeller, D.A. Pollinator community structure and sources of spatial variation in plant–pollinator interactions in Clarkia xantiana ssp. Xantiana. Oecologia 2005, 142, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Sagawa, J.M.; Stanley, L.E.; LaFountain, A.M.; Frank, H.A.; Liu, C.; Yuan, Y.W. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers. New Phytol. 2016, 209, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Liu, J.; Li, P.-W.; Li, C.-Q.; Lü, T.-F.; Yang, X.; Wang, Y.-Z. Evolution of Darwin’s peloric Gloxinia (Sinningia speciosa) is caused by a null mutation in a pleiotropic TCP gene. Mol. Biol. Evol. 2018, 35, 1901–1915. [Google Scholar] [CrossRef] [PubMed]
- Prud’Homme, B.; Gompel, N.; Rokas, A.; Kassner, V.A.; Villiams, T.M.; Yeh, S.-D.; True, J.R.; Carroll, S.B. Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature 2006, 440, 1050–1053. [Google Scholar] [CrossRef]
- Litt, A.; Kramer, E.M. The ABC model and the diversification of floral organ identity. Semin. Cell Dev. Biol. 2010, 21, 129–137. [Google Scholar] [CrossRef]
- Bowman, J.L.; Smyth, D.R.; Meyerowitz, E.M. The ABC model of flower development: Then and now. Development 2012, 139, 4095–4098. [Google Scholar] [CrossRef] [Green Version]
- Gaudin, V.; Lunness, P.A.; Fobert, P.R.; Towers, M.; Riou-Khamlichi, C.; Murray, J.A.; Coen, E.; Doonan, J.H. The expression of D-Cyclin genes defines distinct developmental zones in Snapdragon apical meristems and is locally regulated by the CYCLOIDEA gene. Plant Physiol. 2000, 122, 1137–1148. [Google Scholar] [CrossRef] [Green Version]
- Sokoloff, D.D.; Remizowa, M.V.; Conran, J.G.; Macfarlane, T.D.; Ramsay, M.M.; Rudall, P.J. Embryo and seedling morphology in Trithuria lanterna (Hydatellaceae, Nymphaeales): New data for infrafamilial systematics and a novel type of syncotyly. Bot. J. Linn. Soc. 2014, 174, 551–573. [Google Scholar] [CrossRef] [Green Version]
- Coulter, J.M.; Land, W.J.G. The origin of monocotyledony. Bot. Gaz. 1914, 57, 0509–0519. [Google Scholar] [CrossRef]
- Swofford, D.L. PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods) Version 4.10; Sinauer: Sunderland, MA, USA, 2002. [Google Scholar]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.D.; Cho, Y.H.; Shenn, J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2007, 2, 1565–1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Generation Time (Month) | Genome and Karyotype | Plant Height (cm) | Seeds per Plant | Stable Transformation | Transient Transformation | References |
---|---|---|---|---|---|---|---|
Antirrhinum majus | perennial | 510 Mb, 2 n = 16 | 20–90 | hundreds | difficult | no | [22,23] |
Aquilegia | 3–12 | 400 Mb, 2 n = 14 | 20–25 | hundreds | no | available | [24] |
Arabidopsis thaliala | 1–2 | 125 Mb, 2 n = 10 | 30 | thousands | simple | available | [28] |
Chirita pumila | 4–5 | 798.7 Mb, 2 n = 8 | 6–46 | thousands | simple | available | [29], this study |
Glycine max | 5–6 | 1100 Mb, 2 n = 20 | 30–90 | hundreds | difficult | available | [25,26] |
Helianthus annuus | 3–4 | 3.6 Gb, 2 n = 34 | 50–500 | hundreds | difficult | available | [30,31] |
Lotus japonicus | 3–4 | 450 Mb, 2 n = 12 | 30 | thousands | simple | available | [32] |
Medicago truncatula | 2.5–3.5 | 520 Mb, 2 n = 16 | 50–100 | thousands | simple | available | [33,34] |
Mimulus | 2.5–3 | 500 Mb, 2 n = 28 | 20–30 | thousands | simple | available | [35] |
Nicotiana benthamiana | 2–3 | 3.1 Gb, 2 n = 38 | 40–200 | hundreds | simple | available | [36,37] |
Oryza sativa | 3–6 | 466 Mb, 2 n = 24 | 50–150 | hundreds | simple | available | [28] |
Petunia hybrida | 3–4 | 1.3 Gb, 2 n = 28 | 30–60 | thousands | difficult | available | [38,39] |
Populus trichocarpa | perennial | 480 Mb, 2 n = 38 | tall trees | unrecorded | difficult | no | [40] |
Solanum lycopersicum | 2–3 | 950 Mb, 2 n = 24 | 15–100 | hundreds | simple | available | [41] |
Media | Composition |
---|---|
SGM-I | MS, 1% sucrose, solid |
SGM-II | MS, 2% sucrose, solid |
SGM-III | MS, 3% sucrose, solid |
SGM-IV | 1/2 MS, 1% sucrose, solid |
SGM-V | 1/2 MS, 2% sucrose, solid |
SGM-VI | 1/2 MS, 3% sucrose, solid |
TCM-I | MS, 1% sucrose, 0.5 mg/L 6-BA, 0.1 mg/L NAA, solid |
TCM-II | MS, 2% sucrose, 0.5 mg/L 6-BA, 0.1 mg/L NAA, solid |
TCM-III | MS, 3% sucrose, 0.5 mg/L 6-BA, 0.1 mg/L NAA, solid |
TCM-IV | 1/2 MS, 1% sucrose, 0.5 mg/L 6-BA, 0.1 mg/L NAA, solid |
TCM-V | 1/2 MS, 2% sucrose, 0.5 mg/L 6-BA, 0.1 mg/L NAA, solid |
TCM-VI | 1/2 MS, 3% sucrose, 0.5 mg/L 6-BA, 0.1 mg/L NAA, solid |
IMM | 1/2 MS, 1% sucrose, 0.5 mg/L 6-BA, 0.1 mg/L NAA, 50 μM acetosyringone, liquid |
CCM | 1/2 MS, 1% sucrose, 0.5 mg/L 6-BA, 0.1 mg/L NAA, 50 μM acetosyringone, solid |
SIM-I | MS, 3% sucrose, 0.5 mg/L 6-BA, 0.1 mg/L NAA, hygromycin (0, 5, 10, 15 or 20 mg/L), 150 mg/L carbenicillin, solid |
SIM-II | MS, 3% sucrose, 0.5 mg/L 6-BA, 0.1 mg/L NAA, 20 mg/L hygromycin, different concentrations (0, 50, 100 or 150 mg/L) of carbenicillin, cefotaxime or timentin, solid |
SIM-III | 1/2 MS, 1% sucrose, 0.5 mg/L 6-BA, 0.1 mg/L NAA, 10 mg/L hygromycin or different concentrations (0, 2, 5 or 10 mg/L) of phosphinothricin,150 mg/L cefotaxime, solid |
SSM-I | MS, 3% sucrose, hygromycin (0, 5, 10, 15 or 20 mg/L), solid |
SSM-II | 1/2 MS, 2% sucrose, phosphinothricin (0, 2, 5 or 10 mg/L), solid |
Culture Stages | MS Salt Strength | Sucrose Concentration | Number of Explants or Shoots | Description of Adventitious Shoots |
---|---|---|---|---|
Bud Induction Stage | 1/2 MS | 1% | 45 | Light green, relatively fewer and large |
1/2 MS | 2% | 45 | Light green, but too many and small | |
1/2 MS | 3% | 45 | Dark green, but too many and small | |
MS | 1% | 45 | Large, but usually vitrified | |
MS | 2% | 45 | Dark green, but too many and small | |
MS | 3% | 45 | Dark green, but too many and small | |
Shoot Elongation Stage | 1/2 MS | 1% | 20 | Abnormal with curly leaves |
1/2 MS | 2% | 20 | Well-developed leaves and root systems | |
1/2 MS | 3% | 20 | Grow very slowly | |
MS | 1% | 20 | Grow very slowly | |
MS | 2% | 20 | Grow relatively slowly with curly leaves | |
MS | 3% | 20 | Abnormal with curly leaves |
Parameters | Before Optimization [27] | After Optimization (This Study) |
---|---|---|
Explant orientation | Random | Adaxial leaf surfaces upward |
Agrobacterium strain | LBA4404 | EHA105, GV3101, LBA4404 |
AS concentration | 150 mg/L (764 μM) | 50 μM |
OD600 value | 0.6 | 0.4–0.6 |
Co-culture condition | 2 days, room temperature | 3 days, 26 °C; |
Induction medium and duration | MS, 3% sucrose, 0.5 mg/L 6-BA, 0.1 mg/L NAA, 20 mg/L hygromycin, and 300 mg/L carbenicillin for 7–8 weeks | 1/2 MS, 1% sucrose, 0.5 mg/L 6-BA, 0.1 mg/L NAA, 10 mg/L hygromycin, and 150 mg/L cefotaxime for 3–4 weeks |
Selection medium and duration | MS, 3% sucrose, 0.5 mg/L 6-BA, 0.1 mg/L NAA, 20 mg/L hygromycin, and 300 mg/L carbenicillin before excised from explants | 1/2 MS, 2% sucrose, and 10 mg/L hygromycin before transplanted to pots and cultured in greenhouse |
Assessment way of the transformation system | Induction frequency | Transformation rate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, J.-J.; Wu, J.; Wang, Y.; Liu, Q.; Liu, F.-P.; Yang, X.; Wang, Y.-Z. An Optimized Transformation System and Functional Test of CYC-Like TCP Gene CpCYC in Chirita pumila (Gesneriaceae). Int. J. Mol. Sci. 2021, 22, 4544. https://doi.org/10.3390/ijms22094544
Liu J, Wang J-J, Wu J, Wang Y, Liu Q, Liu F-P, Yang X, Wang Y-Z. An Optimized Transformation System and Functional Test of CYC-Like TCP Gene CpCYC in Chirita pumila (Gesneriaceae). International Journal of Molecular Sciences. 2021; 22(9):4544. https://doi.org/10.3390/ijms22094544
Chicago/Turabian StyleLiu, Jing, Juan-Juan Wang, Jie Wu, Yang Wang, Qi Liu, Fang-Pu Liu, Xia Yang, and Yin-Zheng Wang. 2021. "An Optimized Transformation System and Functional Test of CYC-Like TCP Gene CpCYC in Chirita pumila (Gesneriaceae)" International Journal of Molecular Sciences 22, no. 9: 4544. https://doi.org/10.3390/ijms22094544
APA StyleLiu, J., Wang, J.-J., Wu, J., Wang, Y., Liu, Q., Liu, F.-P., Yang, X., & Wang, Y.-Z. (2021). An Optimized Transformation System and Functional Test of CYC-Like TCP Gene CpCYC in Chirita pumila (Gesneriaceae). International Journal of Molecular Sciences, 22(9), 4544. https://doi.org/10.3390/ijms22094544