Development of Pigmentation-Regulating Agents by Drug Repositioning
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection
3. Signaling Pathways in the Regulation of Melanogenesis
3.1. The α-MSH/MC1R Signaling Pathway
3.2. Wnt/β-Catenin Signaling Pathway
3.3. SCF/KIT Signaling Pathway
3.4. Endothelin Signaling Pathway
3.5. Acetylcholine Signaling Pathway
3.6. Phosphatidylinositol 3-Kinase/AKT Signaling Pathway
3.7. Extracellular Signal-Regulated Protein Kinase Signaling Pathway
4. Drug Repositioning
4.1. Concept and Advantage of Drug Repositioning
4.2. Examples of Drug Repositioning in Dermatology
5. Research Results to Develop Pigmentation-Regulating Agents by Drug Repositioning
5.1. Induction of Pigmentation by a Small Molecule Tyrosine Kinase Inhibitor Nilotinib
5.2. Sorafenib Induces Pigmentation via the Regulation of β-Catenin Signaling Pathway in Melanoma Cells
5.3. Wnt/β-Catenin Signaling Inhibitor ICG-001 Enhances Pigmentation of Cultured Melanoma Cells
5.4. Inhibitory Effect of 5-Iodotubercidin on Pigmentation
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
α-MSH | α-melanocyte-stimulating hormone |
ACh | acetylcholine |
AChE | acetylcholinesterase |
AChR | acetylcholine receptor |
AKT | protein kinase B |
APC | adenomatous polyposis coli |
cAMP | cyclic adenosine monophosphate |
c-KIT | tyrosine kinase receptor |
CBP | CREB-binding protein |
CML | chronic myeloid leukemia |
CREB | cAMP response element-binding protein |
DDR | discoidin domain receptor |
DHT | dihydrotestosterone |
ERK | extracellular signal-regulated protein kinase |
GSK3β | glycogen synthase kinase 3β |
HCC | hepatocellular carcinoma |
MAPK | mitogen-activated protein kinase |
MC1R | melanocortin 1 receptor |
MITF | microphthalmia-associated transcription factor |
PDGF | platelet-derived growth factor |
PI3K | phosphatidylinositol 3-kinase |
PKA | protein kinase A |
RCC | renal cell carcinoma |
S9 | serine 9 |
SCF | stem cell factor |
TRPs | tyrosinase-related proteins |
VEGF | vascular endothelial growth factor |
Wnt | wingless-related integration site |
Y216 | tyrosine 216 |
References
- Bastonini, E.; Kovacs, D.; Picardo, M. Skin Pigmentation and Pigmentary Disorders: Focus on Epidermal/Dermal Cross-Talk. Ann. Dermatol. Ann. Dermatol. 2016, 28, 279–289. [Google Scholar] [CrossRef]
- Imokawa, G.; Ishida, K. Inhibitors of intracellular signaling pathways that lead to stimulated epidermal pigmentation: Perspective of anti-pigmenting agents. Int. J. Mol. Sci. 2014, 15, 8293–8315. [Google Scholar] [CrossRef]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef]
- Badria, F.A.; Elgazar, A.A. Drug Repurposing in Dermatology: Molecular Biology and Omics Approach. In Drug Repurposing-Hypothesis, Molecular Aspects and Therapeutic Applications; IntechOpen: London, UK, 2020; pp. 1–15. [Google Scholar]
- Qian, W.; Liu, W.; Zhu, D.; Cao, Y.; Tang, A.; Gong, G.; Su, H. Natural skin-whitening compounds for the treatment of melanogenesis (Review). Exp. Ther. Med. 2020, 20, 173–185. [Google Scholar] [CrossRef]
- Im, S.; Moro, O.; Peng, F.; Medrano, E.E.; Cornelius, J.; Babcock, G.; Nordlund, J.J.; Abdel-Malek, Z.A. Activation of the cyclic AMP pathway by alpha-melanotropin mediates the response of human melanocytes to ultraviolet B radiation. Cancer Res. 1998, 58, 47–54. [Google Scholar] [PubMed]
- Rodríguez, C.I.; Setaluri, V. Cyclic AMP (cAMP) signaling in melanocytes and melanoma. Arch. Biochem. Biophys. 2014, 563, 22–27. [Google Scholar] [CrossRef]
- Beurel, E.; Grieco, S.F.; Jope, R.S. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol. Ther. 2015, 148, 114–131. [Google Scholar] [CrossRef]
- Gao, C.; Chen, G.; Kuan, S.F.; Zhang, D.H.; Schlaepfer, D.D.; Hu, J. FAK/PYK2 promotes the Wnt/β-catenin pathway and intestinal tumorigenesis by phosphorylating GSK3β. eLife 2015, 4, e10072. [Google Scholar] [CrossRef] [PubMed]
- Imokawa, G.; Kobayashi, T.; Miyagishi, M.; Higashi, K.; Yada, Y. The role of endothelin-1 in epidermal hyperpigmentation and signaling mechanisms of mitogenesis and melanogenesis. Pigment. Cell Res. 1997, 10, 218–228. [Google Scholar] [CrossRef]
- Imokawa, G.; Miyagishi, M.; Yada, Y. Endothelin-1 as a new melanogen: Coordinated expression of its gene and the tyrosinase gene in UVB-exposed human epidermis. J. Investig. Dermatol. 1995, 105, 32–37. [Google Scholar] [CrossRef]
- Wu, Q.; Xia, Y.; Dai, K.; Bai, P.; Kwan, K.K.L.; Guo, M.S.S.; Dong, T.T.X.; Tsim, K.W.K. Solar light induces the release of acetylcholine from skin keratinocytes affecting melanogenesis. FASEB J. 2020, 34, 8941–8958. [Google Scholar] [CrossRef]
- Wu, Q.; Bai, P.; Xia, Y.; Lai, Q.W.; Guo, M.S.; Dai, K.; Zheng, Z.; Ling, C.S.; Dong, T.T.; Pi, R.; et al. Solar light induces expression of acetylcholinesterase in skin keratinocytes: Signalling mediated by activator protein 1 transcription factor. Neurochem. Int. 2020, 141, 104861. [Google Scholar] [CrossRef]
- Oka, M.; Nagai, H.; Ando, H.; Fukunaga, M.; Matsumura, M.; Araki, K.; Ogawa, W.; Miki, T.; Sakaue, M.; Tsukamoto, K.; et al. Regulation of melanogenesis through phosphatidylinositol 3-kinase-Akt pathway in human G361 melanoma cells. J. Investig. Dermatol. 2000, 115, 699–703. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, S.Y.; Chung, J.H.; Kim, K.H.; Eun, H.C.; Park, K.C. Delayed ERK activation by ceramide reduces melanin synthesis in human melanocytes. Cell. Signal. 2002, 14, 779–785. [Google Scholar] [CrossRef]
- Xue, H.; Li, J.; Xie, H.; Wang, Y. Review of Drug Repositioning Approaches and Resources. Int. J. Biol. Sci. 2018, 14, 1232–1244. [Google Scholar] [CrossRef]
- Adhya, Z.; Karim, Y. Doxepin may be a useful pharmacotherapeutic agent in chronic urticaria. Clin. Exp. Allergy 2015, 45, 1370. [Google Scholar] [CrossRef]
- Libecco, J.F.; Bergfeld, W.F. Finasteride in the treatment of alopecia. Expert Opin. Pharmacother. 2004, 5, 933–940. [Google Scholar] [CrossRef]
- Weiss, V.C.; West, D.P.; Fu, T.S.; Fobinson, L.A.; Cook, B.; Cohen, R.L.; Chambers, D.A. Alopecia Areata Treated With Topical Minoxidil. Arch. Dermatol. 1984, 120, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Tse, T.W.; Hui, E. Tranexamic acid: An important adjuvant in the treatment of melasma. J. Cosmet. Dermatol. 2013, 12, 57–66. [Google Scholar] [CrossRef]
- Nisticò, S.P.; Tolone, M.; Zingoni, T.; Tamburi, F.; Scali, E.; Bennardo, L.; Cannarozzo, G. A New 675 nm Laser Device in the Treatment of Melasma: Results of a Prospective Observational Study. Photobiomodul. Photomed. Laser Surg. 2020, 38, 560–564. [Google Scholar] [CrossRef]
- Wu, S.; Shi, H.; Wu, H.; Yan, S.; Guo, J.; Sun, Y.; Pan, L. Treatment of melasma with oral administration of tranexamic acid. Aesthetic Plast. Surg. 2012, 36, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Park, S.J.; Jee, J.G. Analogues of ethionamide, a drug used for multidrug-resistant tuberculosis, exhibit potent inhibition of tyrosinase. Eur. J. Med. Chem. 2015, 106, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Lee, Y.M.; Jee, J.G. Thiopurine Drugs Repositioned as Tyrosinase Inhibitors. Int. J. Mol. Sci. 2017, 19, 77. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.P.; Brunton, H.; Rowling, E.J.; Ferguson, J.; Arozarena, I.; Miskolczi, Z.; Lee, J.L.; Girotti, M.R.; Marais, R.; Levesque, M.P.; et al. Inhibiting Drivers of Non-mutational Drug Tolerance Is a Salvage Strategy for Targeted Melanoma Therapy. Cancer Cell 2016, 29, 270–284. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Raouf, H.; Aly, U.F.; Medhat, W.; Ahmed, S.S.; Abdel-Aziz, R.T.A. A novel topical combination of minoxidil and spironolactone for androgenetic alopecia: Clinical, histopathological, and physicochemical study. Dermatol. Ther. 2020, 15, e14678. [Google Scholar]
- Ghaoui, N.; Hanna, E.; Abbas, O.; Kibbi, A.G.; Kurban, M. Update on the use of dapsone in dermatology. Int. J. Dermatol. 2020, 59, 787–795. [Google Scholar] [CrossRef]
- Ullah, S.; Park, C.; Ikram, M.; Kang, D.; Lee, S.; Yang, J.; Park, Y.; Yoon, S.; Chun, P.; Moon, H.R. Tyrosinase inhibition and anti-melanin generation effect of cinnamamide analogues. Bioorg. Chem. 2019, 87, 43–55. [Google Scholar] [CrossRef]
- Goenka, S.; Simon, S.R. Organogold drug Auranofin exhibits anti-melanogenic activity in B16F10 and MNT-1 melanoma cells. Arch. Dermatol. Res. 2019, 312, 213–221. [Google Scholar] [CrossRef]
- Jarkowski, A.; Sweeney, R.P. Nilotinib: A new tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Pharmacotherapy 2008, 28, 1374–1382. [Google Scholar] [CrossRef]
- O’Hare, T.; Walters, D.K.; Deininger, M.W.; Druker, B.J. AMN107: Tightening the grip of imatinib. Cancer Cell 2005, 7, 117–119. [Google Scholar] [CrossRef]
- Contreras, O.; Villarreal, M.; Brandan, E. Nilotinib impairs skeletal myogenesis by increasing myoblast proliferation. Skelet. Muscle 2018, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Jeitany, M.; Leroy, C.; Tosti, P.; Lafitte, M.; Le Guet, J.; Simon, V.; Bonenfant, D.; Robert, B.; Grillet, F.; Mollevi, C.; et al. Inhibition of DDR1-BCR signalling by nilotinib as a new therapeutic strategy for metastatic colorectal cancer. EMBO Mol. Med. 2018, 10, e7918. [Google Scholar] [CrossRef]
- Kim, K.I.; Jo, J.W.; Lee, J.H.; Kim, C.D.; Yoon, T.J. Induction of pigmentation by a small molecule tyrosine kinase inhibitor nilotinib. Biochem. Biophys. Res. Commun. 2018, 503, 2271–2276. [Google Scholar] [CrossRef] [PubMed]
- Khaled, M.; Larribere, L.; Bille, K.; Aberdam, E.; Ortonne, J.P.; Ballotti, R.; Bertolotto, C. Glycogen synthase kinase 3beta is activated by cAMP and plays an active role in the regulation of melanogenesis. J. Biol. Chem. 2002, 277, 33690–33697. [Google Scholar] [CrossRef] [PubMed]
- Abdelgalil, A.A.; Alkahtani, H.M.; Al-Jenoobi, F.I. Sorafenib. Profiles Drug Subst. Excip. Relat. Methodol. 2019, 44, 239–266. [Google Scholar]
- Gauthier, A.; Ho, M. Role of sorafenib in the treatment of advanced hepatocellular carcinoma: An update. Hepatol. Res. 2012, 43, 147–154. [Google Scholar] [CrossRef]
- Kim, K.I.; Jung, K.E.; Shin, Y.B.; Kim, C.D.; Yoon, T.J. Sorafenib induces pigmentation via the regulation of β-catenin signaling pathway in melanoma cells. Exp. Dermatol. 2020. (Epub ahead of print). [Google Scholar] [CrossRef]
- Handeli, S.; Simon, J.A. A small-molecule inhibitor of Tcf/β-catenin signaling down-regulates PPARγ and PPAR δ activities. Mol. Cancer Ther. 2008, 7, 521–529. [Google Scholar] [CrossRef]
- Kim, K.I.; Jeong, D.S.; Jung, E.C.; Lee, J.H.; Kim, C.D.; Yoon, T.J. Wnt/β-catenin signaling inhibitor ICG-001 enhances pigmentation of cultured melanoma cells. J. Dermatol. Sci. 2016, 84, 160–168. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, D.; Liu, H.; Zhu, N.; Zhang, W.; Feng, J.; Yin, J.; Hao, B.; Cui, D.; Deng, Y.; et al. Identification of 5-Iodotubercidin as a genotoxic drug with anti-cancer potential. PLoS ONE 2013, 8, e62527. [Google Scholar] [CrossRef]
- Kim, K.I.; Jeong, H.B.; Ro, H.; Lee, J.H.; Kim, C.D.; Yoon, T.J. Inhibitory effect of 5-iodotubercidin on pigmentation. Biochem. Biophys. Res. Commun. 2017, 490, 1282–1286. [Google Scholar] [CrossRef] [PubMed]
Generic | Original Indication | New Indication | Reference |
---|---|---|---|
Doxepin | Depressive disorder | Chronic urticaria, Pruritus | [17] |
Finasteride | Benign prostatic hyperplasia | Androgenic alopecia | [18] |
Minoxidil | Hypertension | Androgenic alopecia | [19] |
Tranexamic acid | Anticoagulant | Melasma | [20,21,22] |
Ethionamide | Tuberculosis | Anti-melanogenesis | [23] |
Thiopurine | Acute leukemia | Anti-melanogenesis | [24] |
Nelfinavir | HIV1-protease inhibitor | Melanoma | [25] |
Spironolactone | Hypertension | Androgenic alopecia | [26] |
Dapsone | Leprosy | Dermatitis herpetiformis, Acne vulgaris | [27] |
Author | Year of Publication | Results |
---|---|---|
Choi J et al. [23]. | 2015 |
|
Smith MP et al. [25]. | 2016 |
|
Choi J et al. [24]. | 2017 |
|
Ullah S et al. [28]. | 2019 |
|
Goenka S et al. [29]. | 2020 |
|
Substances or Drugs | Pigmentation | Pigmentation— Related Gene Expression | Signal Pathway | Original Indication | |
---|---|---|---|---|---|
Melanin Content | Tyrosinase Activity | ||||
Nilotinib | ↑ | ↑ | ↑ | AKT↓ cAMP/PKA↑ | CML |
Sorafenib | ↑ | ↑ | ↑ | AKT/ERK↓ Wnt/β-catenin↑ | HCC, RCC |
ICG-001 | ↑ | ↑ | ↑ | cAMP/PKA↑ | Colorectal cancer |
5-Iodotubercidin | ↓ | ↓ | ↓ | AKT/ERK↑ cAMP/PKA↓ | Anti-cancer drug |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.-M.-G.; Yoon, T.-J. Development of Pigmentation-Regulating Agents by Drug Repositioning. Int. J. Mol. Sci. 2021, 22, 3894. https://doi.org/10.3390/ijms22083894
Jeong S-M-G, Yoon T-J. Development of Pigmentation-Regulating Agents by Drug Repositioning. International Journal of Molecular Sciences. 2021; 22(8):3894. https://doi.org/10.3390/ijms22083894
Chicago/Turabian StyleJeong, Seo-Mi-Gon, and Tae-Jin Yoon. 2021. "Development of Pigmentation-Regulating Agents by Drug Repositioning" International Journal of Molecular Sciences 22, no. 8: 3894. https://doi.org/10.3390/ijms22083894
APA StyleJeong, S.-M.-G., & Yoon, T.-J. (2021). Development of Pigmentation-Regulating Agents by Drug Repositioning. International Journal of Molecular Sciences, 22(8), 3894. https://doi.org/10.3390/ijms22083894