Hydrogen Production through Catalytic Water Splitting Using Liquid-Phase Plasma over Bismuth Ferrite Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Properties of BF Photocatalysts
2.2. H2 production by the Photocatalytic Decomposition Using LPP
3. Materials and Methods
3.1. Preparation of BF Nanoparticle Photocatalyst
3.2. Catalytic water Splitting Using LPP
3.3. Characterization of BF Photocatalysts and Optical Emission of the LPP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pulido, M.E.; González, D.O.; Ortega, M.A.; López, C.R.; Nereida, S.M.; Doña, R.J.M.; Navío, J.A.; Fernández, H.D.; Pérez, P.J. Efficient and affordable hydrogen production by water photo-splitting using TiO2-based photocatalysts. Int. J. Hydrog. Energy 2013, 38, 2144–2152. [Google Scholar] [CrossRef]
- Al-Mazroai, L.S.; Bowker, M.; Davies, P.; Dickinson, A.; Greaves, J.; James, D.; Millard, L. The photocatalytic reforming of methanol. Catal. Today 2007, 122, 46–50. [Google Scholar] [CrossRef]
- Kirste, K.G.; McAulay, K.; Bell, T.E.; Stoian, D.; Laassiri, S.; Daisley, A.; Hargreaves, J.S.J.; Mathisen, K.; Torrente-Murciano, L. Cox-free hydrogen production from ammonia-mimicking the activity of Ru catalysts with unsupported Co-Re alloys. Appl. Catal. B Environ. 2021, 280, 119405. [Google Scholar] [CrossRef]
- Zamfirescu, C.; Dincer, I. Ammonia as a green fuel and hydrogen source for vehicular applications. Fuel Process. Technol. 2009, 90, 729–737. [Google Scholar] [CrossRef]
- Lam, S.S.; Liew, R.K.; Cheng, C.K.; Chase, H.A. Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char. Appl. Catal. B Environ. 2015, 176–177, 601–617. [Google Scholar] [CrossRef] [Green Version]
- Chiarello, G.L.; Myriam, H.; Aguire, E.S. Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2. J. Catal. 2010, 273, 182–190. [Google Scholar] [CrossRef]
- Ahmad, H.; Kamarudin, S.K.; Minggu, L.J.; Kassim, M. Hydrogen from photocatalytic water splitting process: A review. Renew. Sustain. Energy Rev. 2015, 43, 599–610. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 2015, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Y.; Wolcott, A.; Wang, G.M.; Sobo, A.; Fitzmorris, R.C.; Qian, F.; Zhang, J.Z.; Li, Y. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2009, 9, 2331–2336. [Google Scholar] [CrossRef]
- Wolcott, A.; Smith, W.A.; Kuykendall, T.R.; Zhao, Y.P.; Zhang, J.Z. Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv. Funct. Mater. 2009, 19, 1849–1856. [Google Scholar] [CrossRef]
- Zhang, Z.; Hossain, N.F.; Takahashi, T. Self-assembled hematite (α-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation. Appl. Catal. B Environ. 2010, 95, 423–429. [Google Scholar] [CrossRef]
- Weinhardt, L.; Blum, M.; Bar, M.; Heske, C.; Cole, B.; Marsen, B.; Miller, E.L. Electronic surface level positions of WO3 thin films for photoelectrochemical hydrogen production. J. Phys. Chem. C 2008, 112, 3078–3082. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Z. High photoelectrochemical water splitting performance on nitrogen doped double-wall TiO2 nanotube array electrodes. Int. J. Hydrog. Energy 2011, 36, 13481–13487. [Google Scholar] [CrossRef]
- Tian, J.; Leng, Y.; Zhao, Z.; Xia, Y.; Sang, Y.; Hao, P.; Zhan, J.; Li, M.; Liu, H. Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Nano Energy 2015, 11, 419–427. [Google Scholar] [CrossRef]
- Sharotri, N.; Sud, D. Ultrasound-assisted synthesis and characterization of visible light responsive nitrogen-doped TiO2 nanomaterials for removal of 2-chlorophenol. Desalin. Water Treat. 2016, 57, 8776–8788. [Google Scholar] [CrossRef]
- Zhang, L.; Jing, D.; She, X.; Liu, H.; Yang, D.; Lu, Y.; Li, J.; Zheng, Z.; Guo, L. Heterojunctions in g-C3N4/TiO2(B) nanofibers with exposed (001) plane and enhanced visible-light photoactivity. J. Mater. Chem. A 2014, 2, 2071–2078. [Google Scholar] [CrossRef] [Green Version]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Ikeue, K.; Anpo, M. Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J. Photochem. Photobiol. A Chem. 2002, 148, 257–261. [Google Scholar] [CrossRef]
- Jedsukontorn, T.; Ueno, T.; Saito, N.; Hunsom, M. Narrowing bandgap energy of defective black TiO2 fabricated by solution plasma process and its photocatalytic activity on glycerol transformation. J. Alloys Compd. 2018, 757, 188–199. [Google Scholar] [CrossRef]
- Martin, L.W.; Crane, S.P.; Chu, Y.H.; Holcomb, M.B.; Gajek, M.; Huijben, M.; Yang, C.H.; Balke, N.; Ramesh, R. Multiferroics and magnetoelectrics: Thin films and nanostructures. J. Phys. Condens. Matter. 2008, 20, 434220–434233. [Google Scholar] [CrossRef]
- Yi, H.T.; Choi, T.; Choi, S.G.; Oh, Y.S.; Cheong, S.W. Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3. Adv. Mater. 2011, 23, 3403–3407. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Yao, K.; Liang, Y.C. Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films. Adv. Mater. 2010, 22, 1763–1766. [Google Scholar] [CrossRef]
- Catalan, G.; Scott, J.F. Physics and applications of bismuth ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Yang, S.Y.; Martin, L.W.; Byrnes, S.J.; Conry, T.E.; Basu, S.R.; Paran, D.; Reichertz, L.; Ihlefeld, J.; Adamo, C.; Melville, A.; et al. Photovoltaic effects in BiFeO3. Appl. Phys. Lett. 2009, 95, 062909. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Lin, Y.H.; Zhang, B.P.; Wang, Y.; Nan, C.W. Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors. J. Phys. Chem. C 2010, 114, 2903–2908. [Google Scholar] [CrossRef]
- Ichiki, M.; Morikawa, Y.; Nakada, T. Electrical properties of ferroelectric lead lanthanum zirconate titanate as an energy transducer for application to electrostatic-optical motor. Jpn. J. Appl. Phys. 2002, 41, 6993–6996. [Google Scholar] [CrossRef]
- Qin, M.; Yao, K.; Liang, Y.C.; Shannigrahi, S. Thickness effects on photoinduced current in ferroelectric Pb0. 97La0. 03Zr0.52Ti0.48O3 thin films. J. Appl. Phys. 2007, 104, 014104–014108. [Google Scholar] [CrossRef]
- Gao, F.; Chen, X.Y.; Yin, K.B.; Dong, S.; Ren, Z.F.; Yuan, F.; Yu, T.; Zou, Z.G.; Liu, J.M. Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv. Mater. 2007, 19, 2889–2892. [Google Scholar] [CrossRef]
- Guo, R.; Fang, L.; Dong, W.; Zheng, F.; Shen, M. Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. J. Phys. Chem. C 2010, 114, 21390–213906. [Google Scholar] [CrossRef]
- Azmy, H.A.M.; Razuki, N.A.; Aziz, A.W.; Satar, N.S.A.; Kaus, N.H.M. Visible light photocatalytic activity of BiFeO3 nanoparticles for degradation of methylene blue. J. Phys. Sci. 2017, 28, 85–103. [Google Scholar] [CrossRef] [Green Version]
- Pang, J.; Han, Q.; Liu, W.; Shen, Z.; Wang, X.; Zhu, J. Two basic bismuth nitrates: [Bi6O6(OH)2](NO3)4 2H2O with superior photodegradation activity for rhodamine B and [Bi6O5(OH)3](NO3)5 ·3H2O with ultrahigh adsorption capacity for methyl orange. Appl. Surf. Sci. 2017, 422, 283–294. [Google Scholar] [CrossRef]
- Yang, X.; Xu, G.; Ren, Z.; Wei, X.; Chao, C.; Gong, S.; Shen, G.; Han, G. The hydrothermal synthesis and formation mechanism of single-crystalline perovskite BiFeO3 microplates with dominant (012) facets. Cryst. Eng. Comn. 2014, 16, 4176–4182. [Google Scholar] [CrossRef]
- Bhalodia, J.A.; Kanjariya, P.V.; Mankadia, S.R.; Jadav, G.D. Structural and magnetic characterization of BiFeO3 nano-particles synthesized using auto-combustion technique. Int. J. Chem. Tech. 2014, 6, 2144–2146. [Google Scholar]
- Vijayasundaram, S.V.; Kanagadurai, R. Size dependent magnetic properties of BiFeO3 nanoparticles: A multifunctional material for saving energy. Int. J. Chem. Tech. Res. 2015, 8, 436–440. [Google Scholar]
- Chaturvedi, S.C.; Shirolkar, M.M.; Rajendra, R.; Singh, S.; Ballav, N.; Kulkarni, S. Coercivity and exchange bias of bismuth ferrite nanoparticles isolated by polymer coating. J. Appl. Phys. 2014, 115, 123906. [Google Scholar] [CrossRef]
- Rao, G.V.S.; Rao, C.N.R.; Ferraro, J.R. Infrared and electronic spectra of rare earth perovskites: Ortho-chromites, -manganites and -ferrites. Appl. Spectrosc. 1970, 24, 436–445. [Google Scholar] [CrossRef]
- Hua, K.; Wang, W.; Wang, Y.; Xu, J.; Jia, D.; Lu, Z.; Zhou, Y. Factors controlling pure-phase multiferroic BiFeO3 powders synthesized by chemical co-precipitation. J. Alloys Compd. 2011, 509, 2192–2197. [Google Scholar]
- Dash, S.; Choundhary, R.N.P.; Goswami, M.N. Enhanced dielectric and ferroelectric properties of PVDF-BiFeO3 composites in 0e3 connectivity. J. Alloys Compd. 2017, 715, 29–35. [Google Scholar] [CrossRef]
- Wang, X.; Lin, Y.; Ding, X.F.; Jiang, J.G. Enhanced visible-light-response photocatalytic activity of bismuth ferrite nanoparticles. J. Alloys Compd. 2011, 509, 6585–6588. [Google Scholar] [CrossRef]
- Gao, T.; Chen, Z.; Zhu, Y.; Niu, F.; Huanh, Q.; Qin, L.; Sun, X.; Huang, Y. Synthesis of BiFeO3 nanoparticles for the visible-light induced photocatalytic property. Mater. Res. Bull. 2014, 59, 6–12. [Google Scholar] [CrossRef]
- García-Zaldívar, O.; Díaz-Castañón, S.; Espinoza-Beltran, F.J.; Hernandez-Landaverde, M.A.; López, Z.; Faloh-Gandarilla, J.; Calderón-Piñar, F. BiFeO3 codoping with Ba, La and Ti: Magnetic and structural studies. J. Adv. Dielectr. 2015, 5, 1550034. [Google Scholar] [CrossRef] [Green Version]
- Lijing, D.; Yang, H.; Xian, T.; Chen, X. Enhanced Photocatalytic Activity of NaBH4 Reduced BiFeO3 Nanoparticles for Rhodamine B Decolorization. Materials 2017, 10, 1118. [Google Scholar]
- Kübelka, P.; Münk, F. Ein beitrag zür optik der farbanstriche. Zeitschrift für Physik 1931, 12, 593–596. [Google Scholar]
- Park, Y.K.; Kim, B.J.; Jeong, S.; Jeon, K.J.; Chung, K.H.; Jung, S.C. Characteristics of hydrogen production by photocatalytic waster splitting using liquid phase plasma over Ag-doped TiO2 photocatalysts. Environ. Res. 2020, 188, 109630. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.H.; Park, H.; Jeon, K.J.; Park, Y.K.; Jung, S.C. Irradiation of liquid phase plasma on photocatalytic decomposition of acetic acid-containing wastewater over metal oxide photocatalysts. Catal. Today 2018, 307, 131–139. [Google Scholar] [CrossRef]
- Kim, S.C.; Park, Y.K.; Jung, S.C. Recent applications of the liquid phase plasma process. Korean J. Chem. Eng. 2021, 38, 885–898. [Google Scholar] [CrossRef]
- Jeong, S.; Chung, K.H.; Lee, H.; Park, H.; Jeon, K.J.; Park, Y.K.; Jung, S.C. Enhancement of hydrogen evolution from water photocatalysis using liquid phase plasma on metal oxide-loaded photocatalysts. ACS Sustain. Chem. Eng. 2017, 5, 3659–3666. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, K.-H.; Jung, H.-H.; Kim, S.-J.; Park, Y.-K.; Kim, S.-C.; Jung, S.-C. Hydrogen Production through Catalytic Water Splitting Using Liquid-Phase Plasma over Bismuth Ferrite Catalyst. Int. J. Mol. Sci. 2021, 22, 13591. https://doi.org/10.3390/ijms222413591
Chung K-H, Jung H-H, Kim S-J, Park Y-K, Kim S-C, Jung S-C. Hydrogen Production through Catalytic Water Splitting Using Liquid-Phase Plasma over Bismuth Ferrite Catalyst. International Journal of Molecular Sciences. 2021; 22(24):13591. https://doi.org/10.3390/ijms222413591
Chicago/Turabian StyleChung, Kyong-Hwan, Hyun-Hak Jung, Sun-Jae Kim, Young-Kwon Park, Sang-Chai Kim, and Sang-Chul Jung. 2021. "Hydrogen Production through Catalytic Water Splitting Using Liquid-Phase Plasma over Bismuth Ferrite Catalyst" International Journal of Molecular Sciences 22, no. 24: 13591. https://doi.org/10.3390/ijms222413591
APA StyleChung, K.-H., Jung, H.-H., Kim, S.-J., Park, Y.-K., Kim, S.-C., & Jung, S.-C. (2021). Hydrogen Production through Catalytic Water Splitting Using Liquid-Phase Plasma over Bismuth Ferrite Catalyst. International Journal of Molecular Sciences, 22(24), 13591. https://doi.org/10.3390/ijms222413591