Novel Hybrid Polymer Composites Based on Anthraquinone and Eco-Friendly Dyes with Potential for Use in Intelligent Packaging Materials
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Solvent Dyes and Quercetin Powders
2.2. Characterization of Ethylene-Propylene Composites
2.2.1. Morphology and Optical Properties
2.2.2. Surface Properties
2.2.3. Thermal Properties
2.2.4. Fungistatic Tests
3. Materials and Methods
3.1. Materials
3.2. Fabrication of Ethylene-Propylene (EPM) Composites
3.3. Controlled Aging Processes
3.4. Fourier-Transform Infrared and UV-Visible Spectroscopy
3.5. Optical Microscopy
3.6. Scanning Electron Microscopy (SEM)
3.7. Contact Angle Measurements and Surface Energy Determination
3.8. Color Change Measurements
3.9. Thermal Analysis
3.10. Fungistatic Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ambrogi, V.; Carfagna, C.; Cerruti, P.; Marturano, V. Chapter 4: Additives in Polymers. In Modification of Polymer Properties; Jasso-Gastinel, C.F., Kenny, J.M., Eds.; William Andrew Publishing: Norwich, NY, USA, 2017; pp. 87–108. [Google Scholar]
- Hunt, T.P. Polymer additives: Supercritical fluid chromatography. In Encyclopedia of Separation Science; Wilson, I.D., Ed.; Academic Press: Cambridge, MA, USA, 2000; pp. 3901–3906. [Google Scholar]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, J.; Zeng, H. Chapter 8: Polymer processing and rheology. In Polymer Science and Nanotechnology; Ravin, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 149–178. [Google Scholar]
- Mansour, D.E.A.; Abdel-Gawad, N.M.K.; El Dein, A.Z.; Ahmed, H.M.; Darwish, M.M.F.; Lehtonen, M. Recent advances in polymer nanocomposites based on polyethylene and polyvinylchloride for power cables. Materials 2021, 14, 66. [Google Scholar] [CrossRef] [PubMed]
- Tikhomirova, T.I.; Ramazanova, G.R.; Apyari, V.V. A hybrid sorption—Spectrometric method for determination of synthetic anionic dyes in foodstuffs. Food Chem. 2017, 221, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Clodoaldo, S.; Felisberti, M.I. Influence of colorants on the degradation and stabilization of polymers. Química Nova 2006, 29, 124–128. [Google Scholar]
- Lv, D.; Zhang, M.; Cui, J.; Li, W.; Zhu, G. A novel preparation method of two polymer dyes with low cytotoxicity. Materials 2017, 10, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, J.R.; Shyichuk, A.V.; Turton, T.J.; Syrotynska, I.D. Effect of stabilizer and pigment on photodegradation of polypropylene as revealed by macromolecule scission and crosslinking measurements. Polym. Degrad. Stab. 2006, 91, 1755–1760. [Google Scholar] [CrossRef]
- Marzec, A.; Szadkowski, B.; Rogowski, J.; Maniukiewicz, W.; Zaborski, M. Characterization and structure–property relationships of organic–inorganic hybrid composites based on aluminum–magnesium hydroxycarbonate and azo chromophore. Molecules 2019, 24, 880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Freitas Cavalcanti, R.S.; Rabelloa, M.S. The effect of red pigment and photo stabilizers on the photo degradation of polypropylene films. Mater. Res. 2019, 22, e20180708. [Google Scholar] [CrossRef]
- Gürses, A.; Açıkyıldız, M.; Güneş, K.; Gürses, M.S. Chapter 2: Dyes and Pigments: Their Structure and Properties. In Dyes and Pigments; Springer International Publishing: New York, NY, USA, 2016; pp. 13–29. ISBN 9783319338927. [Google Scholar]
- Nikfar, S.; Jaberidoost, M. Dyes and Colorants. In Encyclopedia of Toxicology, 3rd ed.; Philip Wexler, Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 252–261. [Google Scholar]
- Marzec, A.; Chrzescijanska, E.; Boruszczak, Z.; Zaborski, M.; Laskowska, A.; Boiteux, G.; Gain, O. Novel dyed ethylene-norbornene composites with enhanced aging resistance. Polym. Degrad. Stab. 2016, 123, 137–145. [Google Scholar] [CrossRef]
- Marzec, A.; Boruszczak, Z.; Rogowski, J.; Zaborski, M. Effects of solar irradiation on the properties of ethylene-norbornene composites containing solvent dyes. Polym. Test. 2017, 62, 392–401. [Google Scholar] [CrossRef]
- Mahmud-Ali, A.; Fitz-Binder, C.; Bechtold, T. Aluminium based dye lakes from plant extracts for textile coloration. Dye. Pigment. 2012, 94, 533–540. [Google Scholar] [CrossRef]
- Kohno, Y.; Totsuka, K.; Ikoma, S.; Yoda, K.; Shibata, M.; Matsushima, R.; Tomita, Y.; Maeda, Y.; Kobayashi, K. Photostability enhancement of anionic natural dye by intercalation into hydrotalcite. J. Colloid Interface Sci. 2009, 337, 117–121. [Google Scholar] [CrossRef] [Green Version]
- Ngamwonglumlert, L.; Devahastin, S.; Chiewchan, N. Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Crit. Rev. Food Sci. Nutr. 2017, 57, 3243–3259. [Google Scholar] [CrossRef] [PubMed]
- Bayram, O.; Sagdic, O.; Ekici, L. Natural food colorants and bioactive extracts from some edible flowers. J. Appl. Bot. Food Qual. 2015, 88, 170–176. [Google Scholar] [CrossRef]
- Chalitangkoon, J.; Monvisade, P. Synthesis of chitosan-based polymeric dyes as colorimetric pH-sensing materials: Potential for food and biomedical applications. Carbohydr. Polym. 2021, 260, 117836. [Google Scholar] [CrossRef] [PubMed]
- Mansour, R. Chapter 5: Natural Dyes and Pigments: Extraction and Applications. In Handbook of Renewable Materials for Coloration and Finishing; Yusuf, M., Ed.; Scrivener Publishing LLC: Beverly, MA, USA, 2018; pp. 75–102. [Google Scholar]
- Latos-Brozio, M.; Masek, A. The application of natural food colorants as indicator substances in intelligent biodegradable packaging materials. Food Chem. Toxicol. 2020, 135, 110975. [Google Scholar] [CrossRef] [PubMed]
- Luzardo-Ocampo, I.; Ramírez-Jiménez, A.K.; Yañez, J.; Mojica, L.; Luna-Vital, D.A. Technological applications of natural colorants in food systems: A review. Foods 2021, 10, 634. [Google Scholar] [CrossRef] [PubMed]
- Inayat, A.; Khan, S.R.; Waheed, A.; Deeba, F. Applications of eco friendly natural dyes on leather using different modrants. Proc. Pak. Acad. Sci. 2010, 47, 131–135. [Google Scholar]
- Loum, J.; Byamukama, R.; Wanyama, P. Application of natural dyes from selected indigenous plants on cotton and silk fabrics. J. Text. Eng. Fash. Technol. 2021, 7, 71–77. [Google Scholar] [CrossRef]
- Puoci, F.; Morelli, C.; Cirillo, G.; Curcio, M.; Parisi, O.I.; Maris, P.; Sisci, D.; Picci, N. Anticancer activity of a quercetin-based polymer towards HeLa cancer cells. Anticancer Res. 2012, 32, 2843–2847. [Google Scholar] [PubMed]
- Masek, A.; Cichosz, S. Biocomposites of epoxidized natural rubber/poly(Lactic acid) modified with natural substances: Influence of biomolecules on the aging properties (part ii). Polymers 2021, 13, 1677. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hou, A.; Xie, K.; Gao, A. Smart color-changing paper packaging sensors with pH sensitive chromophores based on azo-anthraquinone reactive dyes. Sens. Actuators B Chem. 2019, 286, 362–369. [Google Scholar] [CrossRef]
- Dirpan, A.; Latief, R.; Syarifuddin, A.; Rahman, A.N.F.; Putra, R.P.; Hidayat, S.H. The use of colour indicator as a smart packaging system for evaluating mangoes Arummanis (Mangifera indica L. var. Arummanisa) freshness. IOP Conf. Ser. Earth Environ. Sci. 2018, 157, 012031. [Google Scholar] [CrossRef]
- Luzi, F.; Pannucci, E.; Santi, L.; Kenny, J.M.; Torre, L.; Bernini, R.; Puglia, D. Gallic acid and quercetin as intelligent and active ingredients in poly(vinyl alcohol) films for food packaging. Polymers 2019, 11, 1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łopusiewicz, Ł.; Zdanowicz, M.; Macieja, S.; Kowalczyk, K.; Bartkowiak, A. Development and characterization of bioactive poly(Butylene-succinate) films modified with quercetin for food packaging applications. Polymers 2021, 13, 1798. [Google Scholar] [CrossRef] [PubMed]
- Catauro, M.; Papale, F.; Bollino, F.; Piccolella, S.; Marciano, S.; Nocera, P.; Pacifico, S. Silica/quercetin sol-gel hybrids as antioxidant dental implant materials. Sci. Technol. Adv. Mater. 2015, 16, 035001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porto, I.C.C.M.; Nascimento, T.G.; Oliveira, J.M.S.; Freitas, P.H.; Haimeur, A.; França, R. Use of polyphenols as a strategy to prevent bond degradation in the dentin–resin interface. Eur. J. Oral Sci. 2018, 126, 146–158. [Google Scholar] [CrossRef]
- Sadeq, T.W.; Kamel, F.H.; Qader, K.O. A novel preparation of thyme cream as superficial antimicrobial treatment. J. Int. Pharm. Res. 2019, 46, 373–381. [Google Scholar]
- Gelbrich, J.; Mai, C.; Militz, H. Evaluation of bacterial wood degradation by Fourier Transform Infrared (FTIR) measurements. J. Cult. Herit. 2012, 13, 135–138. [Google Scholar] [CrossRef]
- Ranjitha, S.; Aroulmoji, V.; Mohr, T.; Anbarasan, P.M.; Rajarajan, G. Structural and spectral properties of 1,2-dihydroxy-9,10-anthraquinone dye sensitizer for solar cell applications. Acta Phys. Pol. A 2014, 126, 833–839. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to read and interpret ftir spectroscope of organic material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- Renjith, R.; Sheena Mary, Y.; Tresa Varghese, H.; Yohannan Panicker, C.; Thiemann, T.; Shereef, A.; Al-Saadi, A.A. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 1-hydroxy-4,5,8-tris(4-methoxyphenyl) anthraquinone. J. Phys. Chem. Solids 2015, 87, 110–121. [Google Scholar] [CrossRef]
- Song, Z.; Zhan, H.; Zhou, Y. Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries. Chem. Commun. 2009, 448–450. [Google Scholar] [CrossRef] [PubMed]
- Celik, S.; Ozkok, F.; Ozel, A.E.; Müge Sahin, Y.; Akyuz, S.; Sigirci, B.D.; Kahraman, B.B.; Darici, H.; Karaoz, E. Synthesis, FT-IR and NMR characterization, antimicrobial activity, cytotoxicity and DNA docking analysis of a new anthraquinone derivate compound. J. Biomol. Struct. Dyn. 2020, 38, 756–770. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Chowdhury, A.R.; Maurya, S. Antimicrobial Efficacy of Methylated Lac Dye, an Anthraquinone Derivative. Indian J. Microbiol. 2017, 57, 470–476. [Google Scholar] [CrossRef]
- Krishnakumar, V.; Balachandran, V. FTIR, FT-Raman spectral analysis and normal coordinate calculations of 2-hydroxy-3-methoxybenzaldehyde thiosemicarbozone. Indian J. Pure Appl. Phys. 2004, 42, 313–318. [Google Scholar]
- Gunasekaran, S.; Anita, B. Spectral investigation and normal coordinate analysis of piperazine. Indian J. Pure Appl. Phys. 2008, 46, 833–838. [Google Scholar]
- Cichosz, S.; Masek, A. Cellulose fibers hydrophobization via a hybrid chemical modification. Polymers 2019, 11, 1174. [Google Scholar] [CrossRef] [Green Version]
- Tyliszczak, B.; Kudłacik-Kramarczyk, S.; Drabczyk, A. Caffeine as a modifying agent in acrylic hydrogels. Eng. Biomater. 2017, 142, 17–24. [Google Scholar]
- Fan, Y.; Zhang, Y.Q.; Yan, K.; Long, J.J. Synthesis of a Novel Disperse Reactive Dye Involving a Versatile Bridge Group for the Sustainable Coloration of Natural Fibers in Supercritical Carbon Dioxide. Adv. Sci. 2019, 6, 1801368. [Google Scholar] [CrossRef] [PubMed]
- Gattuso, G.; Barreca, D.; Gargiulli, C.; Leuzzi, U.; Caristi, C. Flavonoid composition of citrus juices. Molecules 2007, 12, 1641–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zvezdanović, J.B.; Stanojević, J.S.; Marković, D.Z.; Cvetković, D. Irreversible UV-induced quercetin and rutin degradation in solution studied by UV spectrophotometry and HPLC chromatography. J. Serb. Chem. Soc. 2012, 77, 297–312. [Google Scholar] [CrossRef]
- Anouar, E.H.; Osman, C.P.; Weber, J.F.F.; Ismail, N.H. UV/Visible spectra of a series of natural and synthesised anthraquinones: Experimental and quantum chemical approaches. Springerplus 2014, 3, 233. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Lv, R.; Qi, L.; Zou, Y.; Zou, J.; Luo, Z.; Shao, P.; Tamer, T.M. Preparation and structural properties of amylose complexes with quercetin and their preliminary evaluation in delivery application. Int. J. Food Prop. 2019, 22, 1445–1462. [Google Scholar] [CrossRef] [Green Version]
- Van Den Oever, M.J.A.; Boeriu, C.G.; Blaauw, R.; Van Haveren, J. Colorants based on renewable resources and food-grade colorants for application in thermoplastics. J. Appl. Polym. Sci. 2004, 92, 2961–2969. [Google Scholar] [CrossRef]
- Hariri, K.; Ruch, T.; Riess, G. Block copolymers as dispersants and migration inhibitors: Incorporation of fluorescent dyes in polyethylene. e-Polymers 2009, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Alappat, B.; Alappat, J. Anthocyanin pigments: Beyond aesthetics. Molecules 2020, 25, 5500. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, J.; Atala, E.; Pastene, E.; Carrasco-Pozo, C.; Speisky, H. Quercetin Oxidation Paradoxically Enhances its Antioxidant and Cytoprotective Properties. J. Agric. Food Chem. 2017, 65, 11002–11010. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Gaikwad, K.K.; Lee, Y.S. Anthocyanin—A Natural Dye for Smart Food Packaging Systems. Korean J. Packag. Sci. Technol. 2018, 24, 167–180. [Google Scholar] [CrossRef]
- Masek, A.; Latos, M.; Piotrowska, M.; Zaborski, M. The potential of quercetin as an effective natural antioxidant and indicator for packaging materials. Food Packag. Shelf Life 2018, 16, 51–58. [Google Scholar] [CrossRef]
- Trouillas, P.; Marsal, P.; Siri, D.; Lazzaroni, R.; Duroux, J.L. A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: The specificity of the 3-OH site. Food Chem. 2006, 97, 679–688. [Google Scholar] [CrossRef]
- Olewnik-Kruszkowska, E.; Gierszewska, M.; Richert, A.; Grabska-Zielińska, S.; Rudawska, A.; Bouaziz, M. Antibacterial films based on polylactide with the addition of quercetin and poly(ethylene glycol). Materials 2021, 14, 1643. [Google Scholar] [CrossRef] [PubMed]
- Slepickova Kasalkova, N.; Slepicka, P.; Kolska, Z.; Svorcik, V. Chapter 12: Wettability and Other Surface Properties of Modified Polymers. In Wetting and Wettability; Mahmood, A., Ed.; IntechOpen: London, UK, 2015; pp. 323–356. ISBN 978-953-51-2215-9. [Google Scholar]
- Kim, T.; Yoon, S.; Hong, J.; Kim, H.; Bae, J. Coloration of Pure Polypropylene Fiber with Super Hydrophobic Dyes; Application of Anthraquinone Derivatives with Linear Alkyl Substituents. J. Korean Soc. Dye. Finish. 2006, 18, 30–34. [Google Scholar]
- Salabert, J.; Sebastián, R.M.; Vallribera, A. Anthraquinone dyes for superhydrophobic cotton. Chem. Commun. 2015, 51, 14251–14254. [Google Scholar] [CrossRef]
- Samper, M.D.; Fages, E.; Fenollar, O.; Boronat, T.; Balart, R. The potential of flavonoids as natural antioxidants and UV light stabilizers for polypropylene. J. Appl. Polym. Sci. 2013, 129, 1707–1716. [Google Scholar] [CrossRef]
- Marzec, A.; Szadkowski, B. Improved aging stability of ethylene-norbornene composites filled with lawsone-based hybrid pigment. Polymer 2019, 11, 723. [Google Scholar] [CrossRef] [Green Version]
- Latos-Brozio, M.; Masek, A. Environmentally friendly polymer compositions with natural amber acid. Int. J. Mol. Sci. 2021, 22, 1556. [Google Scholar] [CrossRef]
- Latos-Brozio, M.; Masek, A.; Piotrowska, M. Novel polymeric biomaterial based on naringenin. Materials 2021, 14, 2142. [Google Scholar] [CrossRef]
Sample | CIE-Lab Space Coordinates [a.u.] | |||||
---|---|---|---|---|---|---|
Thermo-Oxidation | Weathering | |||||
0 h | 200 h | 400 h | 0 h | 200 h | 400 h | |
L* parameter | ||||||
EPM | 90.6 ± 0.5 | 89.7 ± 1.2 | 87.6 ± 2.2 | 90.6 ± 0.5 | 90.6 ± 1.2 | 89.2 ± 1.5 |
EPM-Quercetin | 47.5 ± 0.4 | 46.7 ± 0.4 | 47.8 ± 0.1 | 47.5 ± 0.4 | 35.4 ± 0.1 | 31.7 ± 0.3 |
EPM-S.Y. 163 | 56.3 ± 2.3 | 49.4 ± 0.2 | 50.2 ± 0.1 | 56.3 ± 2.3 | 51.9 ± 0.4 | 50.6 ± 0.5 |
EPM-S.R. 207 | 26.5 ± 0.3 | 27.0 ± 0.1 | 27.9 ± 0.3 | 26.5 ± 0.3 | 26.7 ± 0.4 | 27.6 ± 0.2 |
EPM-Quercetin-S.Y. 163 | 43.7 ± 0.8 | 42.6 ± 0.3 | 41.0 ± 0.3 | 43.7 ± 0.8 | 34.7 ± 0.3 | 33.5 ± 0.5 |
EPM-Quercetin-S.R. 207 | 28.3 ± 0.5 | 27.0 ±0.4 | 26.5 ± 1.0 | 28.3 ± 0.5 | 24.9 ± 0.2 | 25.7 ± 0.2 |
a* parameter | ||||||
EPM | −1.3 ± 0.1 | −2.9 ± 0.4 | −1.8 ± 1.0 | −1.3 ± 0.1 | −2.5 ± 0.1 | −2.8 ± 0.2 |
EPM-Quercetin | −4.7 ± 0.1 | −4.9 ± 0.1 | −4.4 ± 0.1 | −4.7 ± 0.1 | 3.2 ± 0.1 | 3.8 ± 0.2 |
EPM-S.Y. 163 | 29.8 ± 1.7 | 34.1 ± 0.2 | 32.9 ± 1.3 | 29.8 ± 1.7 | 33.3 ± 0.3 | 31.9 ± 1.3 |
EPM-S.R. 207 | 9.4 ± 0.8 | 10.5 ± 1.3 | 14.2 ± 0.1 | 9.4 ± 0.8 | 14.3 ± 0.1 | 14.8 ± 0.1 |
EPM-Quercetin-S.Y. 163 | 12.2 ± 2.5 | 13.8 ± 0.1 | 11.8 ± 1.1 | 12.2 ± 2.5 | 3.0 ± 0.3 | 0.6 ± 0.4 |
EPM-Quercetin-S.R. 207 | 10.6 ± 0.2 | 13.9 ± 0.4 | 14.1 ± 0.3 | 10.6 ± 0.2 | 4.4 ± 0.6 | 7.6 ± 0.5 |
b* parameter | ||||||
EPM | 4.2 ± 0.1 | 10.9 ± 0.3 | 10.2 ± 1.0 | 4.2 ± 0.1 | 7.3 ± 0.3 | 8.9 ± 0.6 |
EPM-Quercetin | 24.8 ± 1.3 | 23.3 ± 0.2 | 23.0 ± 0.1 | 24.8 ± 1.3 | 12.5 ± 0.2 | 7.3 ± 0.1 |
EPM-S.Y. 163 | 40.6 ± 2.0 | 41.7 ± 0.3 | 40.7 ± 0.3 | 40.6 ± 2.0 | 28.7 ± 5.2 | 36.8 ± 0.2 |
EPM-S.R. 207 | 7.9 ± 1.7 | 7.7 ± 0.7 | 10.0 ± 0.6 | 7.9 ± 1.7 | 9.4 ± 0.9 | 10.1 ± 0.4 |
EPM-Quercetin-S.Y. 163 | 26.8 ± 1.6 | 27.3 ± 0.4 | 25.5 ± 0.7 | 26.8 ± 1.6 | 10.9 ± 0.2 | 9.2 ± 0.2 |
EPM-Quercetin-S.R. 207 | 9.3 ± 1.2 | 7.3 ± 0.2 | 7.1 ± 0.8 | 9.3 ± 1.2 | 2.6 ± 0.2 | 6.6 ± 0.5 |
Sample | Temperatures of Mass Loss [°C] | |||
---|---|---|---|---|
T5% | T10% | T50% | T90% | |
EPM | 401 | 423 | 466 | 484 |
EPM–Quercetin | 421 | 439 | 469 | 486 |
EPM–S.Y. 163 | 425 | 442 | 473 | 491 |
EPM–S.R. 207 | 427 | 445 | 475 | 491 |
EPM–Quercetin–S.Y. 163 | 425 | 442 | 472 | 489 |
EPM–Quercetin–S.R. 207 | 433 | 449 | 476 | 491 |
Sample | Number of Microorganisms [jtk/cm2] | Log (Number of Microorganisms) | D | ||
---|---|---|---|---|---|
t = 0 | t = 24 | t = 0 | t = 24 | ||
Candida albicans | |||||
EPM | 5.7 ± 0.64×104 | 8.3 ± 0.35 × 104 | 4.76 ± 0.05 a | 4.92 ± 0.02 bA | −0.16 |
EPM-Quercetin–S.Y. 163 | 9.5 ± 0.42 × 104 | 4.98 ± 0.02 bB | −0.22 | ||
EPM-Quercetin-S.R. 207 | 7.8 ± 0.53 × 104 | 4.89 ± 0.03 bA | −0.13 | ||
Aspergillus niger | |||||
EPM | 2.7 ± 0.26 × 104 | 3.5 ± 0.62 × 103 | 4.43 ± 0.04 a | 3.54 ± 0.08 bA | 0.89 |
EPM-Quercetin–S.Y. 163 | 6.7 ± 0.35 × 103 | 3.83 ± 0.02 bB | 0.60 | ||
EPM-Quercetin-S.R. 207 | 4.3 ± 0.42 × 103 | 3.63 ± 0.04 bA | 0.80 |
Mixture | Weight Composition (phr) | |||||
---|---|---|---|---|---|---|
EPM | DCP | TTT | Quercetin | C.I. Solvent Yellow 163 | C.I. Solvent Red 207 | |
1 | 100 | 4 | 0.5 | - | - | - |
2 | 100 | 4 | 0.5 | 1.5 | - | - |
3 | 100 | 4 | 0.5 | - | 1.5 | - |
4 | 100 | 4 | 0.5 | - | - | 1.5 |
5 | 100 | 4 | 0.5 | 0.7 | 0.8 | - |
6 | 100 | 4 | 0.5 | 0.7 | - | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masek, A.; Plota, A.; Chrzastowska, J.; Piotrowska, M. Novel Hybrid Polymer Composites Based on Anthraquinone and Eco-Friendly Dyes with Potential for Use in Intelligent Packaging Materials. Int. J. Mol. Sci. 2021, 22, 12524. https://doi.org/10.3390/ijms222212524
Masek A, Plota A, Chrzastowska J, Piotrowska M. Novel Hybrid Polymer Composites Based on Anthraquinone and Eco-Friendly Dyes with Potential for Use in Intelligent Packaging Materials. International Journal of Molecular Sciences. 2021; 22(22):12524. https://doi.org/10.3390/ijms222212524
Chicago/Turabian StyleMasek, Anna, Angelika Plota, Julia Chrzastowska, and Małgorzata Piotrowska. 2021. "Novel Hybrid Polymer Composites Based on Anthraquinone and Eco-Friendly Dyes with Potential for Use in Intelligent Packaging Materials" International Journal of Molecular Sciences 22, no. 22: 12524. https://doi.org/10.3390/ijms222212524
APA StyleMasek, A., Plota, A., Chrzastowska, J., & Piotrowska, M. (2021). Novel Hybrid Polymer Composites Based on Anthraquinone and Eco-Friendly Dyes with Potential for Use in Intelligent Packaging Materials. International Journal of Molecular Sciences, 22(22), 12524. https://doi.org/10.3390/ijms222212524