Comparative Analysis of Coding and Non-Coding Features within Insect Tolerance Loci in Wheat with Their Homologs in Cereal Genomes
Abstract
:1. Introduction
2. Results
2.1. The Content and Organization of the Coding Features around the SSt1 Locus Appear to Be Widely Conserved across Homologous Regions in Cereal Genomes
2.2. Several Precursor Sequences Are Predicted from the SSt1 and Homologous Loci in Cereals That Encodes miRNAs, Which Are Widely Conserved at the Family Level
2.3. Both the Content and Organization of the Coding Features across Genomic Regions Homologous to Sm1 Locus Suggest Considerable Rearrangements between Rye and Other Triticeae Genomes
2.4. Genomic Loci Homologous to the Sm1 Locus in Cereals Putatively Contain Several miRNA Precursors
2.5. A Comparison of the Coding Features across Genomic Regions Homologous to Additional Loci Associated with OWBM Resistance Suggests Evident Inversions in One or More Cereal Genomes
2.6. The Comparison of miRNAs across Genomic Regions Homologous to Additional Loci Associated with OWBM Resistance in Cereal Genomes
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Molecular Markers of OWBM and WSS Resistance Loci
5.2. Datasets Used in the Study
5.3. Homology Searches Using BLAST+
5.4. Extracting Transcripts from Homologous Regions
5.5. Comparative Analysis of Transcripts in Homologous Regions
5.6. Identification of Putative microRNAs and Target Sequences
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Budak, H.; Kantar, M.; Bulut, R.; Akpinar, B.A. Stress responsive miRNAs and isomiRs in cereals. Plant Sci. 2015, 235, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Campi, M.; Dueñas, M.; Fagiolo, G. Specialization in food production affects global food security and food systems sustainability. World Dev. 2021, 141, 105411. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017. [Google Scholar]
- The International Wheat Genome Sequencing Consortium (IWGSC); Appels, R.; Eversole, K.; Feuillet, C.; Keller, B.; Rogers, J.; Stein, N.; Pozniak, C.J.; Choulet, F.; Distelfeld, A.; et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361, eaar7191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO-Food and Agricultural Organization of the United Nations. FAOSTAT Statistical Database. Available online: http://www.fao.org/faostat/ (accessed on 23 October 2021).
- WHEAT in the World. Available online: https://wheat.org/wheat-in-the-world/ (accessed on 23 October 2021).
- Dresselhaus, T.; Hückelhoven, R. Biotic and Abiotic Stress Responses in Crop Plants. Agronomy 2018, 8, 267. [Google Scholar] [CrossRef] [Green Version]
- Harris, M.O.; Stuart, J.J.; Mohan, M.; Nair, S.; Lamb, R.J.; Rohfritsch, O. Grasses and Gall Midges: Plant Defense and Insect Adaptation. Annu. Rev. Entomol. 2003, 48, 549–577. [Google Scholar] [CrossRef] [PubMed]
- Cagirici, H.B.; Biyiklioglu, S.; Budak, H. Assembly and Annotation of Transcriptome Provided Evidence of miRNA Mobility between Wheat and Wheat Stem Sawfly. Front. Plant Sci. 2017, 8, 1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varella, A.C.; Talbert, L.E.; Hofland, M.L.; Buteler, M.; Sherman, J.D.; Blake, N.K.; Heo, H.-Y.; Martin, J.M.; Weaver, D.K. Alleles at a quantitative trait locus for stem solidness in wheat affect temporal patterns of pith expression and level of resistance to the wheat stem sawfly. Plant Breed. 2016, 135, 546–551. [Google Scholar] [CrossRef]
- Shrestha, G.; Briar, S.S.; Reddy, G.V. Plant defense elicitors: Plant fitness versus wheat stem sawfly. PeerJ 2018, 6, e5892. [Google Scholar] [CrossRef] [Green Version]
- Nilsen, K.; N’Diaye, A.; MacLachlan, P.R.; Clarke, J.M.; Ruan, Y.; Cuthbert, R.; Knox, R.; Wiebe, K.; Cory, A.; Walkowiak, S.; et al. High density mapping and haplotype analysis of the major stem-solidness locus SSt1 in durum and common wheat. PLoS ONE 2017, 12, e0175285. [Google Scholar] [CrossRef]
- Biyiklioglu, S.; Alptekin, B.; Akpinar, B.A.; Varella, A.C.; Hofland, M.L.; Weaver, D.K.; Bothner, B.; Budak, H. A large-scale multiomics analysis of wheat stem solidness and the wheat stem sawfly feeding response, and syntenic associations in barley, Brachypodium, and rice. Funct. Integr. Genom. 2018, 18, 241–259. [Google Scholar] [CrossRef] [Green Version]
- Cockrell, D.M.; Griffin-Nolan, R.J.; Rand, T.A.; Altilmisani, N.; Ode, P.J.; Peairs, F. Host Plants of the Wheat Stem Sawfly (Hymenoptera: Cephidae). Environ. Entomol. 2017, 46, 847–854. [Google Scholar] [CrossRef]
- Szczepaniec, A.; Glover, K.D.; Berzonsky, W. Impact of Solid and Hollow Varieties of Winter and Spring Wheat on Severity of Wheat Stem Sawfly (Hymenoptera: Cephidae) Infestations and Yield and Quality of Grain. J. Econ. Entomol. 2015, 108, 2316–2323. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.P.; Wichman, D.M.; Martin, J.M.; Bruckner, P.L.; Talbert, L.E. Identification of Microsatellite Markers Associated with a Stem Solidness Locus in Wheat. Crop Sci. 2004, 44, 1397–1402. [Google Scholar] [CrossRef]
- Nilsen, K.T.; Walkowiak, S.; Xiang, D.; Gao, P.; Quilichini, T.D.; Willick, I.R.; Byrns, B.; N’Diaye, A.; Ens, J.; Wiebe, K.; et al. Copy number variation of TdDof controls solid-stemmed architecture in wheat. Proc. Natl. Acad. Sci. USA 2020, 117, 28708–28718. [Google Scholar] [CrossRef] [PubMed]
- Thambugala, D.; Pozniak, C.J.; Kumar, S.; Burt, A.J.; Wise, I.L.; Smith, M.A.H.; Fox, S.L.; Costamagna, A.C.; McCartney, C.A. Genetic analysis of oviposition deterrence to orange wheat blossom midge in spring wheat. Theor. Appl. Genet. 2021, 134, 647–660. [Google Scholar] [CrossRef]
- Kassa, M.T.; Haas, S.; Schliephake, E.; Lewis, C.; You, F.M.; Pozniak, C.J.; Krämer, I.; Perovic, A.; Sharpe, A.G.; Fobert, P.R.; et al. A saturated SNP linkage map for the orange wheat blossom midge resistance gene Sm1. Theor. Appl. Genet. 2016, 129, 1507–1517. [Google Scholar] [CrossRef]
- Gong, Z.-J.; Wu, Y.-Q.; Miao, J.; Duan, Y.; Jiang, Y.-L.; Li, T. Global Transcriptome Analysis of Orange Wheat Blossom Midge, Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae) to Identify Candidate Transcripts Regulating Diapause. PLoS ONE 2013, 8, e71564. [Google Scholar] [CrossRef]
- McKenzie, R.I.H.; Lamb, R.J.; Aung, T.; Wise, I.L.; Barker, P.; Olfert, O.O. Inheritance of resistance to wheat midge, Sitodiplosis mosellana, in spring wheat. Plant Breed. 2002, 121, 383–388. [Google Scholar] [CrossRef]
- Thomas, J.; Fineberg, N.; Penner, G.; McCartney, C.; Aung, T.; Wise, I.; McCallum, B. Chromosome location and markers of Sm1: A gene of wheat that conditions antibiotic resistance to orange wheat blossom midge. Mol. Breed. 2005, 15, 183–192. [Google Scholar] [CrossRef]
- Walkowiak, S.; Gao, L.; Monat, C.; Haberer, G.; Kassa, M.T.; Brinton, J.; Ramirez-Gonzalez, R.H.; Kolodziej, M.C.; Delorean, E.; Thambugala, D.; et al. Multiple wheat genomes reveal global variation in modern breeding. Nat. Cell Biol. 2020, 588, 277–283. [Google Scholar] [CrossRef]
- Lamb, R.; Wise, I.; Smith, M.; McKenzie, R.; Thomas, J.; Olfert, O. Oviposition deterrence against Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat (Gramineae). Can. Entomol. 2002, 134, 85–96. [Google Scholar] [CrossRef]
- Zhang, L.; Geng, M.; Zhang, Z.; Zhang, Y.; Yan, G.; Wen, S.; Liu, G.; Wang, R. Molecular mapping of major QTL conferring resistance to orange wheat blossom midge (Sitodiplosis mosellana) in Chinese wheat varieties with selective populations. Theor. Appl. Genet. 2019, 133, 491–502. [Google Scholar] [CrossRef]
- Blake, N.K.; Stougaard, R.N.; Weaver, D.K.; Sherman, J.D.; Lanning, S.P.; Naruoka, Y.; Xue, Q.; Martin, J.M.; Talbert, L.E. Identification of a quantitative trait locus for resistance to Sitodiplosis mosellana (Géhin), the orange wheat blossom midge, in spring wheat. Plant Breed. 2010, 130, 25–30. [Google Scholar] [CrossRef]
- Devos, K.M.; Atkinson, M.D.; Chinoy, C.N.; Francis, H.A.; Harcourt, R.L.; Koebner, R.M.D.; Liu, C.J.; Masojć, P.; Xie, D.X.; Gale, M.D. Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 1993, 85, 673–680. [Google Scholar] [CrossRef]
- Sasaki, T. International Rice Genome Sequencing Project The map-based sequence of the rice genome. Nat. Cell Biol. 2005, 436, 793–800. [Google Scholar] [CrossRef]
- Avena Sativa v1.0. The Oat Genome Project. Available online: https://avenagenome.org/ (accessed on 3 March 2021).
- Hao, Z.; Geng, M.; Hao, Y.; Zhang, Y.; Zhang, L.; Wen, S.; Wang, R.; Liu, G. Screening for differential expression of genes for resistance to Sitodiplosis mosellana in bread wheat via BSR-seq analysis. Theor. Appl. Genet. 2019, 132, 3201–3221. [Google Scholar] [CrossRef]
- Murat, F.; Armero, A.; Pont, C.; Klopp, C.; Salse, J. Reconstructing the genome of the most recent common ancestor of flowering plants. Nat. Genet. 2017, 49, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Pont, C.; Salse, J. Wheat paleohistory created asymmetrical genomic evolution. Curr. Opin. Plant Biol. 2017, 36, 29–37. [Google Scholar] [CrossRef] [PubMed]
- The International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nat. Cell Biol. 2010, 463, 763–768. [Google Scholar] [CrossRef]
- Mayer, K.; Martis, M.; Hedley, P.; Šimková, H.; Liu, H.; Morris, J.A.; Steuernagel, B.; Taudien, S.; Roessner, S.; Gundlach, H.; et al. Unlocking the Barley Genome by Chromosomal and Comparative Genomics. Plant Cell 2011, 23, 1249–1263. [Google Scholar] [CrossRef] [Green Version]
- Rabanus-Wallace, M.T.; Hackauf, B.; Mascher, M.; Lux, T.; Wicker, T.; Gundlach, H.; Baez, M.A.; Houben, A.; Mayer, K.F.X.; Guo, L.; et al. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat. Genet. 2021, 53, 564–573. [Google Scholar] [CrossRef]
- Budak, H.; Akpinar, B.A.; Unver, T.; Turktas, M. Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI–MS/MS. Plant Mol. Biol. 2013, 83, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Yano, K.; Yoshida, S.; Müller, J.; Singh, S.; Banba, M.; Vickers, K.; Markmann, K.; White, C.; Schuller, B.; Sato, S.; et al. CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc. Natl. Acad. Sci. USA 2008, 105, 20540–20545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, U.; Rioflorido, I.; Hong, S.-W.; Larkindale, J.; Waters, E.R.; Vierling, E. The Arabidopsis ClpB/Hsp100 family of proteins: Chaperones for stress and chloroplast development. Plant J. 2006, 49, 115–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagatoshi, M.; Terasaka, K.; Nagatsu, A.; Mizukami, H. Iridoid-specific Glucosyltransferase from Gardenia jasminoides. J. Biol. Chem. 2011, 286, 32866–32874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Lin, J.; Johnson, A.; Morgan, R.L.; Zhong, W.; Ma, W. Pseudomonas syringae Type III Effector HopZ1 Targets a Host Enzyme to Suppress Isoflavone Biosynthesis and Promote Infection in Soybean. Cell Host Microbe 2011, 9, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Budak, H.; Kaya, S.B.; Cagirici, H.B. Long Non-coding RNA in Plants in the Era of Reference Sequences. Front. Plant Sci. 2020, 11, 276. [Google Scholar] [CrossRef] [Green Version]
- Djami-Tchatchou, A.T.; Sanan-Mishra, N.; Ntushelo, K.; Dubery, I.A. Functional Roles of microRNAs in Agronomically Important Plants—Potential as Targets for Crop Improvement and Protection. Front. Plant Sci. 2017, 8, 378. [Google Scholar] [CrossRef] [Green Version]
- Hands, P.; Drea, S. A comparative view of grain development in Brachypodium distachyon. J. Cereal Sci. 2012, 56, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhang, L.; Yang, Y.; Schmid, M.; Wang, Y. miRNA Mediated Regulation and Interaction between Plants and Pathogens. Int. J. Mol. Sci. 2021, 22, 2913. [Google Scholar] [CrossRef]
- Brant, E.J.; Budak, H. Plant Small Non-coding RNAs and Their Roles in Biotic Stresses. Front. Plant Sci. 2018, 9, 1038. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L.; et al. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014, 12, 787–796. [Google Scholar] [CrossRef] [Green Version]
- Howe, K.L.; Contreras-Moreira, B.; De Silva, N.; Maslen, G.; Akanni, W.; Allen, J.; Alvarez-Jarreta, J.; Barba, M.; Bolser, D.M.; Cambell, L.; et al. Ensembl Genomes 2020—Enabling non-vertebrate genomic research. Nucleic Acids Res. 2020, 48, D689–D695. [Google Scholar] [CrossRef] [Green Version]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.S.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozomara, A.; Griffiths-Jones, S. miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011, 39, D152–D157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cagirici, H.B.; Sen, T.Z.; Budak, H. mirMachine: A One-Stop Shop for Plant miRNA Annotation. J. Vis. Exp. 2021, 171, e62430. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, R.; Bernhart, S.H.; Siederdissen, C.H.z.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Kantar, M.; Akpinar, B.A.; Valárik, M.; Lucas, S.J.; Dolezel, J.; Hernández, P.; Budak, H. Subgenomic analysis of microRNAs in polyploid wheat. Funct. Integr. Genom. 2012, 12, 465–479. [Google Scholar] [CrossRef]
- Akpinar, B.A.; Kantar, M.; Budak, H. Root precursors of microRNAs in wild emmer and modern wheats show major differences in response to drought stress. Funct. Integr. Genom. 2015, 15, 587–598. [Google Scholar] [CrossRef]
- Muslu, T.; Biyiklioglu-Kaya, S.; Akpinar, B.; Yuce, M.; Budak, H. Pan-Genome miRNomics in Brachypodium. Plants 2021, 10, 991. [Google Scholar] [CrossRef]
- Dai, X.; Zhao, P.X. psRNATarget: A plant small RNA target analysis server. Nucleic Acids Res. 2011, 39, W155–W159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muslu, T.; Akpinar, B.A.; Biyiklioglu-Kaya, S.; Yuce, M.; Budak, H. Comparative Analysis of Coding and Non-Coding Features within Insect Tolerance Loci in Wheat with Their Homologs in Cereal Genomes. Int. J. Mol. Sci. 2021, 22, 12349. https://doi.org/10.3390/ijms222212349
Muslu T, Akpinar BA, Biyiklioglu-Kaya S, Yuce M, Budak H. Comparative Analysis of Coding and Non-Coding Features within Insect Tolerance Loci in Wheat with Their Homologs in Cereal Genomes. International Journal of Molecular Sciences. 2021; 22(22):12349. https://doi.org/10.3390/ijms222212349
Chicago/Turabian StyleMuslu, Tugdem, Bala Ani Akpinar, Sezgi Biyiklioglu-Kaya, Meral Yuce, and Hikmet Budak. 2021. "Comparative Analysis of Coding and Non-Coding Features within Insect Tolerance Loci in Wheat with Their Homologs in Cereal Genomes" International Journal of Molecular Sciences 22, no. 22: 12349. https://doi.org/10.3390/ijms222212349
APA StyleMuslu, T., Akpinar, B. A., Biyiklioglu-Kaya, S., Yuce, M., & Budak, H. (2021). Comparative Analysis of Coding and Non-Coding Features within Insect Tolerance Loci in Wheat with Their Homologs in Cereal Genomes. International Journal of Molecular Sciences, 22(22), 12349. https://doi.org/10.3390/ijms222212349