Effect of EGFR on SQSTM1 Expression in Malignancy and Tumor Progression of Oral Squamous Cell Carcinoma
Abstract
1. Introduction
2. Results
2.1. Comparison and Correction of EGFR and SQSTM1 Expressions in OSCC Patients
2.2. Association of EGFR and SQSTM1 Expressions with Prognosis in OSCC Patients
2.3. Regulation of SQSTM1 by EGFR and Their Roles in Cell Growth and Invasion/Migration of OSCC Cells
2.4. Cell Viability and Invasion/Migration of SQSTM1-Knockdowned Cells in the Presence of EGFR Kinase Inhibitor
3. Discussion
4. Materials and Methods
4.1. Tissue Specimens
4.2. Tissue Microarray (TMA) Construction
4.3. IHC
4.4. IHC Scoring
4.5. Cell Culture
4.6. WB
4.7. Transient Transfection
4.8. Cell Viability
4.9. Clonogenic Assay
4.10. Cell Invasion Assay
4.11. Wound-Healing Assay
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dikova, V.; Jantus-Lewintre, E.; Bagan, J. Potential Non-Invasive Biomarkers for Early Diagnosis of Oral Squamous Cell Carcinoma. J. Clin. Med. 2021, 10, 1658. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.C.; Hsien, S.I.; Hsu, J.T.; Chen, M.Y.C. Impact on patients with oral squamous cell carcinoma in different anatomical subsites: A single-center study in Taiwan. Sci. Rep. 2021, 11, 15446. [Google Scholar] [CrossRef] [PubMed]
- Anwar, N.; Pervez, S.; Chundriger, Q.; Awan, S.; Moatter, T.; Ali, T.S. Oral cancer: Clinicopathological features and associated risk factors in a high risk population presenting to a major tertiary care center in Pakistan. PLoS ONE 2020, 15, e0236359. [Google Scholar] [CrossRef] [PubMed]
- Jerjes, W.; Upile, T.; Petrie, A.; Riskalla, A.; Hamdoon, Z.; Vourvachis, M.; Karavidas, K.; Jay, A.; Sandison, A.; Thomas, G.J.; et al. Clinicopathological parameters, recurrence, locoregional and distant metastasis in 115 T1-T2 oral squamous cell carcinoma patients. Head Neck Oncol. 2010, 2, 9. [Google Scholar] [CrossRef]
- Huang, S.H.; O’Sullivan, B. Oral cancer: Current role of radiotherapy and chemotherapy. Med. Oral Patol. Oral Cir. Bucal 2013, 18, e233–e240. [Google Scholar] [CrossRef]
- Thavarool, S.B.; Muttath, G.; Nayanar, S.; Duraisamy, K.; Bhat, P.; Shringarpure, K.; Nayak, P.; Tripathy, J.P.; Thaddeus, A.; Philip, S.; et al. Improved survival among oral cancer patients: Findings from a retrospective study at a tertiary care cancer centre in rural Kerala, India. World J. Surg. Oncol. 2019, 17, 15. [Google Scholar] [CrossRef]
- Ahmad, P.; Nawaz, R.; Qurban, M.; Shaikh, G.M.; Mohamed, R.N.; Nagarajappa, A.K.; Asif, J.A.; Alam, M.K. Risk factors associated with the mortality rate of oral squamous cell carcinoma patients: A 10-year retrospective study. Medicine 2021, 100, e27127. [Google Scholar] [CrossRef]
- Chavez-Dominguez, R.; Perez-Medina, M.; Lopez-Gonzalez, J.S.; Galicia-Velasco, M.; Aguilar-Cazares, D. The Double-Edge Sword of Autophagy in Cancer: From Tumor Suppression to Pro-tumor Activity. Front. Oncol. 2020, 10, 578418. [Google Scholar] [CrossRef]
- Islam, M.A.; Sooro, M.A.; Zhang, P. Autophagic Regulation of p62 is Critical for Cancer Therapy. Int. J. Mol. Sci. 2018, 19, 1405. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Y.; He, J.; Tang, J.; Lv, W.; Hu, J. Cytoplasmic SQSTM1/P62 Accumulation Predicates a Poor Prognosis in Patients with Malignant Tumor. J. Cancer 2018, 9, 4072–4086. [Google Scholar] [CrossRef]
- Schlafli, A.M.; Adams, O.; Galvan, J.A.; Gugger, M.; Savic, S.; Bubendorf, L.; Schmid, R.A.; Becker, K.F.; Tschan, M.P.; Langer, R.; et al. Prognostic value of the autophagy markers LC3 and p62/SQSTM1 in early-stage non-small cell lung cancer. Oncotarget 2016, 7, 39544–39555. [Google Scholar] [CrossRef]
- Iwadate, R.; Inoue, J.; Tsuda, H.; Takano, M.; Furuya, K.; Hirasawa, A.; Aoki, D.; Inazawa, J. High Expression of p62 Protein Is Associated with Poor Prognosis and Aggressive Phenotypes in Endometrial Cancer. Am. J. Pathol. 2015, 185, 2523–2533. [Google Scholar] [CrossRef]
- Uribe, M.L.; Marrocco, I.; Yarden, Y. EGFR in Cancer: Signaling Mechanisms, Drugs, and Acquired Resistance. Cancers 2021, 13, 2748. [Google Scholar] [CrossRef]
- Thomas, R.; Weihua, Z. Rethink of EGFR in Cancer with Its Kinase Independent Function on Board. Front. Oncol. 2019, 9, 800. [Google Scholar] [CrossRef]
- Wang, D.; Wang, B.; Wang, R.; Zhang, Z.; Lin, Y.; Huang, G.; Lin, S.; Jiang, Y.; Wang, W.; Wang, L.; et al. High expression of EGFR predicts poor survival in patients with resected T3 stage gastric adenocarcinoma and promotes cancer cell survival. Oncol. Lett. 2017, 13, 3003–3013. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kwon, Y.; Kim, M.; Jung, H.S.; Kim, Y.; Jeoung, D. Targeting Autophagy for Overcoming Resistance to Anti-EGFR Treatments. Cancers 2019, 11, 1374. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zou, Z.; Becker, N.; Anderson, M.; Sumpter, R.; Xiao, G.; Kinch, L.; Koduru, P.; Christudass, C.S.; Veltri, R.W.; et al. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 2013, 154, 1269–1284. [Google Scholar] [CrossRef]
- Jutten, B.; Rouschop, K.M. EGFR signaling and autophagy dependence for growth, survival, and therapy resistance. Cell Cycle 2014, 13, 42–51. [Google Scholar] [CrossRef]
- Qian, H.R.; Yang, Y. Functional role of autophagy in gastric cancer. Oncotarget 2016, 7, 17641–17651. [Google Scholar] [CrossRef] [PubMed]
- Moscat, J.; Karin, M.; Diaz-Meco, M.T. p62 in Cancer: Signaling Adaptor Beyond Autophagy. Cell 2016, 167, 606–609. [Google Scholar] [CrossRef]
- Liu, P.F.; Chang, H.W.; Cheng, J.S.; Lee, H.P.; Yen, C.Y.; Tsai, W.L.; Cheng, J.T.; Li, Y.J.; Huang, W.C.; Lee, C.H.; et al. Map1lc3b and Sqstm1 Modulated Autophagy for Tumorigenesis and Prognosis in Certain Subsites of Oral Squamous Cell Carcinoma. J. Clin. Med. 2018, 7, 478. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Bae, G.E.; Kim, K.H.; Lee, S.I.; Chung, C.; Lee, D.; Lee, T.H.; Kwon, I.S.; Yeo, M.K. Prognostic Significance of LC3B and p62/SQSTM1 Expression in Gastric Adenocarcinoma. Anticancer Res. 2019, 39, 6711–6722. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Garbutt, C.; Ma, H.; Gao, P.; Hornicek, F.J.; Kan, Q.; Shi, H.; Duan, Z. Expression and role of autophagy-associated p62 (SQSTM1) in multidrug resistant ovarian cancer. Gynecol. Oncol. 2018, 150, 143–150. [Google Scholar] [CrossRef]
- Umemura, A.; He, F.; Taniguchi, K.; Nakagawa, H.; Yamachika, S.; Font-Burgada, J.; Zhong, Z.; Subramaniam, S.; Raghunandan, S.; Duran, A.; et al. p62, Upregulated during Preneoplasia, Induces Hepatocellular Carcinogenesis by Maintaining Survival of Stressed HCC-Initiating Cells. Cancer Cell 2016, 29, 935–948. [Google Scholar] [CrossRef]
- Yu, J.J.; Zhou, D.D.; Yang, X.X.; Cui, B.; Tan, F.W.; Wang, J.; Li, K.; Shang, S.; Zhang, C.; Lv, X.X.; et al. TRIB3-EGFR interaction promotes lung cancer progression and defines a therapeutic target. Nat. Commun. 2020, 11, 3660. [Google Scholar] [CrossRef]
- Del Carmen, S.; Corchete, L.A.; Gervas, R.; Rodriguez, A.; Garcia, M.; Alcazar, J.A.; Garcia, J.; Bengoechea, O.; Munoz-Bellvis, L.; Sayagues, J.M.; et al. Prognostic implications of EGFR protein expression in sporadic colorectal tumors: Correlation with copy number status, mRNA levels and miRNA regulation. Sci. Rep. 2020, 10, 4662. [Google Scholar] [CrossRef]
- Hsu, F.; De Caluwe, A.; Anderson, D.; Nichol, A.; Toriumi, T.; Ho, C. EGFR mutation status on brain metastases from non-small cell lung cancer. Lung Cancer 2016, 96, 101–107. [Google Scholar] [CrossRef]
- Rolland, P.; Madjd, Z.; Durrant, L.; Ellis, I.O.; Layfield, R.; Spendlove, I. The ubiquitin-binding protein p62 is expressed in breast cancers showing features of aggressive disease. Endocr. Relat. Cancer 2007, 14, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Kansy, B.A.; Li, J.; Cong, L.; Liu, Y.; Trivedi, S.; Wen, H.; Ting, J.P.; Ouyang, H.; Ferris, R.L. EGFR-targeted mAb therapy modulates autophagy in head and neck squamous cell carcinoma through NLRX1-TUFM protein complex. Oncogene 2016, 35, 4698–4707. [Google Scholar] [CrossRef]
- Wang, T.H.; Wu, C.C.; Huang, K.Y.; Chuang, W.Y.; Hsueh, C.; Li, H.J.; Chen, C.Y. Profiling of subcellular EGFR interactome reveals hnRNP A3 modulates nuclear EGFR localization. Oncogenesis 2020, 9, 40. [Google Scholar] [CrossRef]
- Yan, G.; Saeed, M.E.M.; Foersch, S.; Schneider, J.; Roth, W.; Efferth, T. Relationship between EGFR expression and subcellular localization with cancer development and clinical outcome. Oncotarget 2019, 10, 1918–1931. [Google Scholar] [CrossRef] [PubMed]
- Kallio, J.P.; Hirvikoski, P.; Helin, H.; Kellokumpu-Lehtinen, P.; Luukkaala, T.; Tammela, T.L.; Martikainen, P.M. Membranous location of EGFR immunostaining is associated with good prognosis in renal cell carcinoma. Br. J. Cancer 2003, 89, 1266–1269. [Google Scholar] [CrossRef] [PubMed]
- Piyathilake, C.J.; Frost, A.R.; Manne, U.; Weiss, H.; Bell, W.C.; Heimburger, D.C.; Grizzle, W.E. Differential expression of growth factors in squamous cell carcinoma and precancerous lesions of the lung. Clin. Cancer Res. 2002, 8, 734–744. [Google Scholar]
- Braut, T.; Krstulja, M.; Rukavina, K.M.; Jonjic, N.; Kujundzic, M.; Manestar, I.D.; Katunaric, M.; Manestar, D. Cytoplasmic EGFR staining and gene amplification in glottic cancer: A better indicator of EGFR-driven signaling? Appl. Immunohistochem. Mol. Morphol. 2014, 22, 674–680. [Google Scholar] [CrossRef]
- Liu, P.F.; Chen, H.C.; Shu, C.W.; Sie, H.C.; Lee, C.H.; Liou, H.H.; Cheng, J.T.; Tsai, K.W.; Ger, L.P. Guanylate-binding protein 6 is a novel biomarker for tumorigenesis and prognosis in tongue squamous cell carcinoma. Clin. Oral Investig. 2020, 24, 2673–2682. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.Y.; Tseng, Y.K.; Chen, Y.C.; Shu, C.W.; Lin, M.I.; Liou, H.H.; Fu, T.Y.; Lin, Y.C.; Ger, L.P.; Yeh, M.H.; et al. High snail expression predicts a poor prognosis in breast invasive ductal carcinoma patients with HER2/EGFR-positive subtypes. Surg. Oncol. 2018, 27, 314–320. [Google Scholar] [CrossRef]
- Cheng, J.T.; Liu, P.F.; Yang, H.C.; Huang, S.J.; Griffith, M.; Morgan, P.; Shu, C.W. Tumor Susceptibility Gene 101 facilitates rapamycin-induced autophagic flux in neuron cells. Biomed. Pharmacother. 2021, 134, 111106. [Google Scholar] [CrossRef]
- Liu, P.F.; Chen, C.F.; Shu, C.W.; Chang, H.M.; Lee, C.H.; Liou, H.H.; Ger, L.P.; Chen, C.L.; Kang, B.H. UBE2C is a Potential Biomarker for Tumorigenesis and Prognosis in Tongue Squamous Cell Carcinoma. Diagnostics 2020, 10, 674. [Google Scholar] [CrossRef]
- Tzeng, Y.T.; Liu, P.F.; Li, J.Y.; Liu, L.F.; Kuo, S.Y.; Hsieh, C.W.; Lee, C.H.; Wu, C.H.; Hsiao, M.; Chang, H.T.; et al. Kinome-Wide siRNA Screening Identifies Src-Enhanced Resistance of Chemotherapeutic Drugs in Triple-Negative Breast Cancer Cells. Front. Pharmacol. 2018, 9, 1285. [Google Scholar] [CrossRef]
- Yu, J.J.; Zhou, D.D.; Cui, B.; Zhang, C.; Tan, F.W.; Chang, S.; Li, K.; Lv, X.X.; Zhang, X.W.; Shang, S.; et al. Disruption of the EGFR-SQSTM1 interaction by a stapled peptide suppresses lung cancer via activating autophagy and inhibiting EGFR signaling. Cancer Lett. 2020, 474, 23–35. [Google Scholar] [CrossRef] [PubMed]
Variables | No. | Tumor Adjacent Normal | Tumor | Z | p-Value * | ||
---|---|---|---|---|---|---|---|
Mean ± SD | Median | Mean ± SD | Median | ||||
OSCC | |||||||
EGFR | 344 | 2.43 ± 0.67 | 2.00 | 2.97 ± 0.79 | 3.00 | 8.998 | <0.001 |
SQSTM1 | 328 | 1.88 ± 0.87 | 2.00 | 2.82 ± 1.09 | 2.00 | 10.500 | <0.001 |
BMSCC | |||||||
EGFR | 141 | 2.51 ± 0.70 | 2.00 | 2.99 ± 0.79 | 3.00 | 5.169 | <0.001 |
SQSTM1 | 134 | 1.88 ± 1.00 | 2.00 | 2.88 ± 1.10 | 2.00 | 6.883 | <0.001 |
TSCC | |||||||
EGFR | 203 | 2.38 ± 0.64 | 2.00 | 2.95 ± 0.79 | 3.00 | 7.416 | <0.001 |
SQSTM1 | 194 | 1.89 ± 0.77 | 2.00 | 2.77 ± 1.08 | 2.00 | 7.905 | <0.001 |
Variable | No. (%) | CHR (95% CI) | p-Value | AHR (95% CI) | p-Value * | |
---|---|---|---|---|---|---|
OSCC | ||||||
EGFR | Low (0–3) | 324 (75.5) | 1.00 | 1.00 | ||
High (4–7) | 105 (24.5) | 1.16 (0.83–1.63) | 0.392 | 1.02 (0.73–1.44) | 0.905 | |
SQSTM1 | Low (0–2) | 239 (55.7) | 1.00 | 1.00 | ||
High (3–7) | 190 (44.3) | 1.43 (1.07–1.93) | 0.017 | 1.51 (1.12–2.04) | 0.006 | |
EGFR (L) SQSTM1 (L) | 192 (44.8) | 1 | 1 | |||
either | 179 (41.7) | 1.18 (0.88–1.59) | 0.277 | 1.31 (0.95–1.81) | 0.097 | |
EGFR (H) SQSTM1 (H) | 58 (13.2) | 1.39 (0.92–2.09) | 0.119 | 1.59 (1.02–2.47) | 0.042 | |
BMSCC | ||||||
EGFR | Low (0–3) | 138 (75.8) | 1.00 | 1.00 | ||
High (4–7) | 44 (24.2) | 1.35 (0.81–2.23) | 0.247 | 1.01 (0.61–1.69) | 0.962 | |
SQSTM1 | Low (0–2) | 96 (52.7) | 1.00 | 1.00 | ||
High (3–7) | 86 (47.3) | 1.72 (1.09–2.71) | 0.021 | 1.85 (1.16–2.94) | 0.010 | |
EGFR (L) SQSTM1 (L) | 74 (40.7) | 1 | 1 | |||
either | 86 (47.3) | 1.32 (0.84–2.08) | 0.233 | 1.62 (0.97–2.70) | 0.063 | |
EGFR (H) SQSTM1 (H) | 22 (12.1) | 1.72 (0.93–3.20) | 0.084 | 2.26 (1.13–4.52) | 0.021 | |
TSCC | ||||||
EGFR | Low (0–2) | 83 (33.6) | 1.00 | 1.00 | ||
High (3–7) | 164 (66.4) | 1.13 (0.75–1.72) | 0.553 | 0.97 (0.64–1.47) | 0.875 | |
SQSTM1 | Low (0–2) | 143 (57.9) | 1.00 | 1.00 | ||
High (3–7) | 104 (42.1) | 1.26 (0.85–1.87) | 0.252 | 1.34 (0.90–1.98) | 0.150 | |
EGFR (L) SQSTM1 (L) | 57 (23.1) | 1 | 1 | |||
either | 112 (45.3) | 0.70 (0.47–1.05) | 0.083 | 0.81 (0.49–1.34) | 0.417 | |
EGFR (H) SQSTM1 (H) | 78 (31.6) | 1.48 (0.99–2.22) | 0.058 | 1.30 (0.78–2.16) | 0.316 |
Variable | No. (%) | CHR (95% CI) | p-Value | AHR (95% CI) | p-Value * | |
---|---|---|---|---|---|---|
OSCC | ||||||
EGFR | Low (0–3) | 324 (75.5) | 1.00 | 1.00 | ||
High (4–7) | 105 (24.5) | 0.96 (0.68–1.36) | 0.836 | 0.94 (0.67–1.33) | 0.739 | |
SQSTM1 | Low (0–2) | 239 (55.7) | 1.00 | 1.00 | ||
High (3–7) | 190 (44.3) | 1.31 (0.98–1.76) | 0.070 | 1.27 (0.95–1.71) | 0.109 | |
EGFR (L) SQSTM1 (L) | 192 (44.8) | 1 | 1 | |||
either | 179 (41.7) | 1.20 (0.89–1.61) | 0.225 | 1.25 (0.91–1.71) | 0.165 | |
EGFR (H) SQSTM1 (H) | 58 (13.2) | 1.07 (0.70–1.65) | 0.750 | 1.20 (0.76–1.90) | 0.442 | |
BMSCC | ||||||
EGFR | Low (0–3) | 138 (75.8) | 1.00 | 1.00 | ||
High (4–7) | 44 (24.2) | 1.12 (0.67–1.86) | 0.665 | 1.00 (0.60–1.68) | 0.997 | |
SQSTM1 | Low (0–2) | 96 (52.7) | 1.00 | 1.00 | ||
High (3–7) | 86 (47.3) | 1.21 (0.78–1.88) | 0.392 | 1.16 (0.74–1.81) | 0.519 | |
EGFR (L) SQSTM1 (L) | 74 (40.7) | 1 | 1 | |||
either | 86 (47.3) | 1.01 (0.65–1.56) | 0.979 | 1.09 (0.68–1.76) | 0.713 | |
EGFR (H) SQSTM1 (H) | 22 (12.1) | 1.37 (0.73–2.59) | 0.331 | 1.44 (0.72–2.86) | 0.300 | |
TSCC | ||||||
EGFR | Low (0–2) | 83 (33.6) | 1.00 | 1.00 | ||
High (3–7) | 164 (66.4) | 1.06 (0.70–1.61) | 0.782 | 1.04 (0.68–1.58) | 0.866 | |
SQSTM1 | Low (0–2) | 143 (57.9) | 1.00 | 1.00 | ||
High (3–7) | 104 (42.1) | 1.38 (0.93–2.04) | 0.112 | 1.35 (0.91–2.00) | 0.138 | |
EGFR (L) SQSTM1 (L) | 57 (23.1) | 1 | 1 | |||
either | 112 (45.3) | 0.80 (0.54–1.20) | 0.285 | 0.96 (0.57–1.61) | 0.879 | |
EGFR (H) SQSTM1 (H) | 78 (31.6) | 1.39 (0.92–2.10) | 0.113 | 1.36 (0.80–2.31) | 0.260 |
Variable | No. (%) | CHR (95% CI) | p-Value | AHR (95% CI) | p-Value | |
---|---|---|---|---|---|---|
Overall survival | ||||||
EGFR | Low | 118 (37.8) | 1.00 | 1.00 | ||
High | 194 (62.2) | 1.44 (1.01–2.05) | 0.047 a | 1.47 (1.01–2.16) | 0.047 b | |
SQSTM1 | Low | 171 (54.8) | 1.00 | 1.00 | ||
High | 141 (45.2) | 1.61 (1.15–2.24) | 0.005 a | 1.44 (1.01–2.05) | 0.044 b | |
EGFR(L), SQSTM1 (L) | 59 (18.9) | 1.00 | 1.00 | |||
EGFR (H), SQSTM1 (L) | 112 (35.9) | 0.88 (0.62–1.24) | 0.460 a | 1.58 (0.91–2.73) | 0.101 c | |
EGFR (L), SQSTM1 (H) | 59 (18.9) | 1.02 (0.67–1.57) | 0.915 a | 1.78 (0.96–3.29) | 0.067 c | |
EGFR (H), SQSTM1 (H) | 82 (26.3) | 1.71 (1.21–2.42) | 0.002 a | 2.53 (1.46–4.39) | 0.001c | |
Disease-free survival | ||||||
EGFR | Low | 239 (91.2) | 1.00 | 1.00 | ||
High | 23 (8.8) | 1.44 (0.69–3.02) | 0.336 a | 1.48 (0.70–3.13) | 0.301 b | |
SQSTM1 | Low | 146 (55.7) | 1.00 | 1.00 | ||
High | 116 (44.3) | 1.31 (0.80–2.14) | 0.285 a | 1.15 (0.69–1.94) | 0.587 b | |
EGFR (L), SQSTM1 (L) | 129 (49.2) | 1.00 | 1.00 | |||
EGFR (H), SQSTM1 (L) | 17 (6.5) | 1.85 (0.84–4.06) | 0.126 a | 2.28 (0.98–5.28) | 0.056 c | |
EGFR (L), SQSTM1 (H) | 110 (42.0) | 1.38 (0.84–2.26) | 0.202 a | 1.55 (0.91–2.63) | 0.106 c | |
EGFR (H), SQSTM1 (H) | 6 (2.3) | 0.55 (0.08–3.99) | 0.557 a | 0.73 (0.10–5.36) | 0.753 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseng, Y.-K.; Chen, C.-F.; Shu, C.-W.; Lee, C.-H.; Chou, Y.-T.; Li, Y.-J.; Liou, H.-H.; Cheng, J.-T.; Chen, C.-L.; Ger, L.-P.; et al. Effect of EGFR on SQSTM1 Expression in Malignancy and Tumor Progression of Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2021, 22, 12226. https://doi.org/10.3390/ijms222212226
Tseng Y-K, Chen C-F, Shu C-W, Lee C-H, Chou Y-T, Li Y-J, Liou H-H, Cheng J-T, Chen C-L, Ger L-P, et al. Effect of EGFR on SQSTM1 Expression in Malignancy and Tumor Progression of Oral Squamous Cell Carcinoma. International Journal of Molecular Sciences. 2021; 22(22):12226. https://doi.org/10.3390/ijms222212226
Chicago/Turabian StyleTseng, Yu-Kai, Chun-Feng Chen, Chih-Wen Shu, Cheng-Hsin Lee, Yan-Ting Chou, Yi-Jing Li, Huei-Han Liou, Jiin-Tsuey Cheng, Chun-Lin Chen, Luo-Ping Ger, and et al. 2021. "Effect of EGFR on SQSTM1 Expression in Malignancy and Tumor Progression of Oral Squamous Cell Carcinoma" International Journal of Molecular Sciences 22, no. 22: 12226. https://doi.org/10.3390/ijms222212226
APA StyleTseng, Y.-K., Chen, C.-F., Shu, C.-W., Lee, C.-H., Chou, Y.-T., Li, Y.-J., Liou, H.-H., Cheng, J.-T., Chen, C.-L., Ger, L.-P., & Liu, P.-F. (2021). Effect of EGFR on SQSTM1 Expression in Malignancy and Tumor Progression of Oral Squamous Cell Carcinoma. International Journal of Molecular Sciences, 22(22), 12226. https://doi.org/10.3390/ijms222212226