Next Article in Journal
Constitutive Oxidative Stress by SEPHS1 Deficiency Induces Endothelial Cell Dysfunction
Next Article in Special Issue
Tadalafil and Steroid Hormones Interactions in Adipose, Bone and Prostate Tissues: Focus on Translational Perspectives
Previous Article in Journal
The Role of Thromboxane in the Course and Treatment of Ischemic Stroke: Review
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Deciphering Evolutionary Dynamics and Lineage Plasticity in Aggressive Prostate Cancer

by
Natasha Kyprianou
1,* and
Fabrice Lucien
2,*
1
Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
2
Department of Urology, Mayo Clinic, Rochester, MN 55902, USA
*
Authors to whom correspondence should be addressed.
Int. J. Mol. Sci. 2021, 22(21), 11645; https://doi.org/10.3390/ijms222111645
Submission received: 7 October 2021 / Accepted: 8 October 2021 / Published: 28 October 2021
This Special Issue focuses on the molecular mechanisms involved in therapeutic resistance, lineage plasticity, and phenotypic reprogramming leading to prostate cancer recurrence and, ultimately, lethal disease. Over the past decade, scientists and clinicians have teamed up to develop novel therapeutic agents for the treatment of advanced prostate cancer, such as second-generation androgen deprivation therapy, PARP inhibitors, and radionuclide therapy [1,2,3,4,5,6]. While these treatments led to improvements in patient overall survival, therapeutic resistance invariably develops, leading to mortality. Therefore, there is a critical need to understand the underpinnings of acquired resistance and develop effective therapeutic approaches for the treatment of advanced prostate cancer.
Androgen signaling is a major driver of prostate growth, prostate cancer development, and progression; thus, the blockade of the androgen receptor (AR)/androgen axis is effective in impairing tumor growth. Androgen deprivation therapy (ADT) and AR-targeting agents, particularly in combination with microtubule-targeting taxane chemotherapy, offer survival benefits in recurrent prostate cancer patients. However, most patients eventually develop castration-refractory disease, the most lethal form of prostate cancer. Understanding the mechanisms underlying resistance is critical to improving therapeutic outcomes. Recent advances in next-generation sequencing technologies have allowed for the characterization of the molecular landscape of metastatic prostate cancer leading to important insights on the mechanisms of therapeutic resistance and tumor progression to lethal disease [7,8,9,10,11]. High intratumoral heterogeneity and the presence of mixed phenotypes reveal evolutionary dynamics and the emergence of treatment-resistant populations which, ultimately, outcompete sensitive ones [12]. Some treatment-resistant clones emerged as a consequence of persistent androgen receptor addiction, which is reflected by the aberrant expression and amplification of the AR gene, de novo intraprostatic androgen production, and cross-talk between androgen signaling and other oncogenic pathways [13,14,15]. Other resistant clones become insensitive to androgens through the upregulation of constitutively active AR splice variants (i.e., AR-Vs) and the epigenetic reprogramming of AR activity [16,17,18]. In addition, genomic alterations on tumor suppressors RB1, TP53, and PTEN can contribute to the transition towards a resistant phenotype to antiandrogen therapy [19,20]. An emerging and significant subtype of treatment-resistant prostate cancer, called neuroendocrine (NEPC), is characterized by AR silencing, transcriptional reprogramming supporting proliferative capacity, and phenotypic switching towards stemness features [21,22,23,24,25]. No therapeutic strategy is available for the treatment of NEPC and patient outcome remains extremely poor.
Further work is needed to decipher the cascade of molecular and cellular events mediating lineage plasticity and the establishment of treatment-resistant tumor phenotypes. Emphasis should be given on the establishment of patient-derived xenograft models from metastatic biopsies and genetically engineered mouse prostate cancer models that recapitulate tumor evolution and intratumoral heterogeneity. Furthermore, a deep and comprehensive molecular profiling of metastatic tumors at different stages of the disease will be critical to understand the temporal and spatial determinants of treatment resistance. Molecular subtyping of metastatic castration-refractory prostate cancer will help treatment decision making and the identification of therapeutic vulnerabilities for drug discovery [9]. Given that a multiregional and longitudinal tumor biopsy can be very challenging for metastatic patients, it is anticipated that liquid biopsy (ctDNA, CTC, and extracellular vesicles) will become a preferred alternative to capture tumor heterogeneity and monitor lineage plasticity and treatment resistance in real time [26,27].

Funding

This research was funded by NIH/National Cancer Institute, R01 CA232574 (NK).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Fizazi, K.; Scher, H.I.; Molina, A.; Logothetis, C.J.; Chi, K.N.; Jones, R.J.; Staffurth, J.N.; North, S.; Vogelzang, N.J.; Saad, F.; et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: Final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2012, 13, 983–992. [Google Scholar] [CrossRef]
  2. Scher, H.I.; Fizazi, K.; Saad, F.; Taplin, M.E.; Sternberg, C.N.; Miller, K.; de Wit, R.; Mulders, P.; Chi, K.N.; Shore, N.D.; et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 2012, 367, 1187–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. Parker, C.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fossa, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; Seke, M.; et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 2013, 369, 213–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  4. Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef]
  5. Mateo, J.; Porta, N.; Bianchini, D.; McGovern, U.; Elliott, T.; Jones, R.; Syndikus, I.; Ralph, C.; Jain, S.; Varughese, M.; et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): A multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020, 21, 162–174. [Google Scholar] [CrossRef]
  6. Abida, W.; Patnaik, A.; Campbell, D.; Shapiro, J.; Bryce, A.H.; McDermott, R.; Sautois, B.; Vogelzang, N.J.; Bambury, R.M.; Voog, E.; et al. Rucaparib in Men With Metastatic Castration-Resistant Prostate Cancer Harboring a BRCA1 or BRCA2 Gene Alteration. J. Clin. Oncol. 2020, 38, 3763–3772. [Google Scholar] [CrossRef]
  7. Wang, L.; Dehm, S.M.; Hillman, D.W.; Sicotte, H.; Tan, W.; Gormley, M.; Bhargava, V.; Jimenez, R.; Xie, F.; Yin, P.; et al. A prospective genome-wide study of prostate cancer metastases reveals association of wnt pathway activation and increased cell cycle proliferation with primary resistance to abiraterone acetate-prednisone. Ann. Oncol. 2018, 29, 352–360. [Google Scholar] [CrossRef] [PubMed]
  8. Labrecque, M.P.; Coleman, I.M.; Brown, L.G.; True, L.D.; Kollath, L.; Lakely, B.; Nguyen, H.M.; Yang, Y.C.; da Costa, R.M.G.; Kaipainen, A.; et al. Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer. J. Clin. Investig. 2019, 129, 4492–4505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  9. Aggarwal, R.; Rydzewski, N.R.; Zhang, L.; Foye, A.; Kim, W.; Helzer, K.T.; Bakhtiar, H.; Chang, S.L.; Perry, M.D.; Gleave, M.; et al. Prognosis Associated with Luminal and Basal Subtypes of Metastatic Prostate Cancer. JAMA Oncol. 2021. [Google Scholar] [CrossRef]
  10. Quigley, D.A.; Dang, H.X.; Zhao, S.G.; Lloyd, P.; Aggarwal, R.; Alumkal, J.J.; Foye, A.; Kothari, V.; Perry, M.D.; Bailey, A.M.; et al. Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell 2018, 174, 758–769.e759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  11. Abida, W.; Cyrta, J.; Heller, G.; Prandi, D.; Armenia, J.; Coleman, I.; Cieslik, M.; Benelli, M.; Robinson, D.; Van Allen, E.M.; et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 11428–11436. [Google Scholar] [CrossRef] [Green Version]
  12. Zhang, J.; Cunningham, J.J.; Brown, J.S.; Gatenby, R.A. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat. Commun. 2017, 8, 1816. [Google Scholar] [CrossRef]
  13. Robinson, D.; Van Allen, E.M.; Wu, Y.M.; Schultz, N.; Lonigro, R.J.; Mosquera, J.M.; Montgomery, B.; Taplin, M.E.; Pritchard, C.C.; Attard, G.; et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015, 161, 1215–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Locke, J.A.; Guns, E.S.; Lubik, A.A.; Adomat, H.H.; Hendy, S.C.; Wood, C.A.; Ettinger, S.L.; Gleave, M.E.; Nelson, C.C. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res. 2008, 68, 6407–6415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Chen, C.D.; Welsbie, D.S.; Tran, C.; Baek, S.H.; Chen, R.; Vessella, R.; Rosenfeld, M.G.; Sawyers, C.L. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 2004, 10, 33–39. [Google Scholar] [CrossRef]
  16. Antonarakis, E.S.; Lu, C.; Wang, H.; Luber, B.; Nakazawa, M.; Roeser, J.C.; Chen, Y.; Mohammad, T.A.; Chen, Y.; Fedor, H.L.; et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 2014, 371, 1028–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  17. Li, Y.; Yang, R.; Henzler, C.M.; Ho, Y.; Passow, C.; Auch, B.; Carreira, S.; Nava Rodrigues, D.; Bertan, C.; Hwang, T.H.; et al. Diverse AR Gene Rearrangements Mediate Resistance to Androgen Receptor Inhibitors in Metastatic Prostate Cancer. Clin. Cancer Res. 2020, 26, 1965–1976. [Google Scholar] [CrossRef]
  18. Davies, A.; Nouruzi, S.; Ganguli, D.; Namekawa, T.; Thaper, D.; Linder, S.; Karaoglanoglu, F.; Omur, M.E.; Kim, S.; Kobelev, M.; et al. An androgen receptor switch underlies lineage infidelity in treatment-resistant prostate cancer. Nat. Cell Biol. 2021, 23, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
  19. Ku, S.Y.; Rosario, S.; Wang, Y.; Mu, P.; Seshadri, M.; Goodrich, Z.W.; Goodrich, M.M.; Labbe, D.P.; Gomez, E.C.; Wang, J.; et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 2017, 355, 78–83. [Google Scholar] [CrossRef] [Green Version]
  20. Mu, P.; Zhang, Z.; Benelli, M.; Karthaus, W.R.; Hoover, E.; Chen, C.C.; Wongvipat, J.; Ku, S.Y.; Gao, D.; Cao, Z.; et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 2017, 355, 84–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  21. Beltran, H.; Prandi, D.; Mosquera, J.M.; Benelli, M.; Puca, L.; Cyrta, J.; Marotz, C.; Giannopoulou, E.; Chakravarthi, B.V.; Varambally, S.; et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 2016, 22, 298–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  22. Yasumizu, Y.; Rajabi, H.; Jin, C.; Hata, T.; Pitroda, S.; Long, M.D.; Hagiwara, M.; Li, W.; Hu, Q.; Liu, S.; et al. MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer. Nat. Commun. 2020, 11, 338. [Google Scholar] [CrossRef] [Green Version]
  23. Bishop, J.L.; Thaper, D.; Vahid, S.; Davies, A.; Ketola, K.; Kuruma, H.; Jama, R.; Nip, K.M.; Angeles, A.; Johnson, F.; et al. The Master Neural Transcription Factor BRN2 Is an Androgen Receptor-Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer. Cancer Discov. 2017, 7, 54–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Guo, H.; Ci, X.; Ahmed, M.; Hua, J.T.; Soares, F.; Lin, D.; Puca, L.; Vosoughi, A.; Xue, H.; Li, E.; et al. ONECUT2 is a driver of neuroendocrine prostate cancer. Nat. Commun. 2019, 10, 278. [Google Scholar] [CrossRef] [Green Version]
  25. Alumkal, J.J.; Sun, D.; Lu, E.; Beer, T.M.; Thomas, G.V.; Latour, E.; Aggarwal, R.; Cetnar, J.; Ryan, C.J.; Tabatabaei, S.; et al. Transcriptional profiling identifies an androgen receptor activity-low, stemness program associated with enzalutamide resistance. Proc. Natl. Acad. Sci. USA 2020, 117, 12315–12323. [Google Scholar] [CrossRef] [PubMed]
  26. Beltran, H.; Romanel, A.; Conteduca, V.; Casiraghi, N.; Sigouros, M.; Franceschini, G.M.; Orlando, F.; Fedrizzi, T.; Ku, S.Y.; Dann, E.; et al. Circulating tumor DNA profile recognizes transformation to castration-resistant neuroendocrine prostate cancer. J. Clin. Investig. 2020, 130, 1653–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  27. Sperger, J.M.; Emamekhoo, H.; McKay, R.R.; Stahlfeld, C.N.; Singh, A.; Chen, X.E.; Kwak, L.; Gilsdorf, C.S.; Wolfe, S.K.; Wei, X.X.; et al. Prospective Evaluation of Clinical Outcomes Using a Multiplex Liquid Biopsy Targeting Diverse Resistance Mechanisms in Metastatic Prostate Cancer. J. Clin. Oncol. 2021, 39, 2926–2937. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Kyprianou, N.; Lucien, F. Deciphering Evolutionary Dynamics and Lineage Plasticity in Aggressive Prostate Cancer. Int. J. Mol. Sci. 2021, 22, 11645. https://doi.org/10.3390/ijms222111645

AMA Style

Kyprianou N, Lucien F. Deciphering Evolutionary Dynamics and Lineage Plasticity in Aggressive Prostate Cancer. International Journal of Molecular Sciences. 2021; 22(21):11645. https://doi.org/10.3390/ijms222111645

Chicago/Turabian Style

Kyprianou, Natasha, and Fabrice Lucien. 2021. "Deciphering Evolutionary Dynamics and Lineage Plasticity in Aggressive Prostate Cancer" International Journal of Molecular Sciences 22, no. 21: 11645. https://doi.org/10.3390/ijms222111645

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop