Insects as a New Complex Model in Hormonal Basis of Obesity
Abstract
:1. Introduction
2. Peptides–Neuropeptides–Hormones
2.1. Insulin-Like Peptides
2.2. Adipokinetic Hormones
2.3. Corazonin
2.4. Hugin
2.5. Unpaired-1 and Unpaired-2
2.6. Allatostatin-A and C
2.7. Sulfakinins
2.8. Short Neuropeptides F
2.9. Neuropeptide F
2.10. Tachykinin-Related Peptides
2.11. CAPA-PVK Neuropeptides
2.12. Other Peptides
2.12.1. RYamides
2.12.2. CCHa-2
2.12.3. SIFamides
2.12.4. Allatotropins
2.12.5. Leucokinins
2.12.6. Limostatin
Insect Neuropeptide | Resemblance to Vertebrate Neuroendocrine System | Potential Usage as Obesity Model | References |
---|---|---|---|
Insulin-like peptides (ILPs) | Structural homology to insulin and insulin-growth factor and their receptors | [26,30,31,32,35,38,52,53,56,65] | |
Insect ILPs are able to bind and activate human insulin receptors | Molecular basis of insulin signaling and sugar and lipid metabolism | ||
Human insulin can activate insect ILP receptor | Participation of different components of insulin signaling in obesity development | ||
The mode of action (including signaling pathways) | Interplays of different hormones in regulation of sugar and lipid metabolism | ||
The physiological role | |||
Adipokinetic hormones (AKHs) | Physiological counterpart of mammalian glucagon | The role of glucagon signalization disturbance in development of obesity and metabolic disorders | [75,82,83,86,87,88,99,100,106,195] |
AKH receptors (AKHR) is a rhodopsin-like G protein-coupled receptor, which is related to the vertebrate gonadotropin-releasing hormone receptors | Hormonal regulation of lipid and sugar metabolism and interdependencies between hormones (glucagon, insulin, orexigenic factors) | ||
Corazonin (Crz) | Homologous of human gonadotropin-releasing hormone (GnRH) | The interactions between different neuropeptides and insulin signaling in development of obesity | [75,107,108,114,115,117] |
Influence of neuropeptides on food intake, starvation, and regulation of sugar level | |||
Hugin | Homolog of mammalian neuromedin U8 | Participation of neuropeptides in taste recognition and feeding behavior in response to gustatory/nutrient signals | [118,120,121,123] |
Role of hormones in modulation of locomotion (including active food searching) and food intake | |||
Unpaired-1 (Upd1) and Unpaired-2 (Upd2) | Structural and functional analogues of leptin | Hormonal regulation of food intake and presence of satiety sign | [5,125,196,197,198,199,200] |
Resemblance of Upd1//Neuropeptide F dependencies to Leptin/Neuropeptide Y interplays | Drosophila with genetically induced obesity (e.g., upd1Δ or upd2Δ mutants) might be used as a good model for human obesity | ||
Allatostatin A and C (AST A and C) | Structural and functional homology to galanin (GAL) and its receptor | Participation of neuropeptides in regulation of feeding choices/decisions between different types of nutrients, which is crucial for balance of food intake and metabolic needs | [75,130,131,132,133,134,136,138,139,195] |
Structural and functional resemblance to somatostatin (SST) | Hormonal regulation of food intake and satiety | ||
Sulfakinins (SKs) | Structural and functional homology to cholecystokinin (CCK) and its receptor | Basis of signaling involved in modulation of sugar, protein, and lipid level | [52,140,142,143,144,145,148,149] |
Model for development of active substance based on SKs and CCK, which may lead to discovery of anti-obesity agent | |||
Short neuropeptides F (sNPF) | Structural and functional homology to prolactin releasing peptide receptor (PrPR) | Interplay of different neuropeptides with insulin signaling | [28,126,151,154,155] |
Due to orthology between PrPR signaling and sNPF, useful in research concern novel anti-obesity agents | |||
Neuropeptide F (NPF) | Structural resemblance to Neuropeptide Y (NPY) | Hormonal regulation of feeding choice | [125,126,157,158] |
Similar orexigenic action to NPY | NPF/Upd1 system a perfect target in studying obesity grounds, especially molecular basis of NPY and leptin signaling | ||
NPF receptor could be activated by mammalian NPY | |||
Tachykinin-related peptides (TRPs) | Structural and functional similarity to vertebrate tachykinin (TKs) | Model organism in basis of participation TK signaling in development of the obesity | [11,89,99,159,161,201] |
Activation by Substance P (one of vertebrate TKs) insect TRP receptor | Molecular basis of lipogenesis | ||
The interactions between different neuropeptides and insulin signaling | |||
CAPA-PVK neuropeptides | NMU homolog | Molecular basis of NMU-signaling in food intake and locomotor activity | [172,174,202,203] |
3. Non-Peptide Hormones
4. Other Factors
5. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Adamski, Z.; Bufo, S.A.; Chowański, S.; Falabella, P.; Lubawy, J.; Marciniak, P.; Pacholska-Bogalska, J.; Salvia, R.; Scrano, L.; Słocińska, M.; et al. Beetles as model organisms in physiological, biomedical and environmental studies—A review. Front. Physiol. 2019, 10, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stankiewicz, M.; Dąbrowski, M.; Lima, M. Nervous system of Periplaneta americana cockroach as a model in toxinological studies: A short historical and actual view. J. Toxicol. 2012, 2012, 143740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikulak, E.; Gliniewicz, A.; Przygodzka, M.; Solecka, J. Galleria mellonella L. as model organism used in biomedical and other studies. Przegl. Epidemiol. 2018, 72, 57–73. [Google Scholar] [PubMed]
- Wang, X.; Fang, X.; Yang, P.; Jiang, X.; Jiang, F.; Zhao, D.; Li, B.; Cui, F.; Wei, J.; Ma, C.; et al. The locust genome provides insight into swarm formation and long-distance flight. Nat. Commun. 2014, 5, 2957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajan, A.; Perrimon, N. Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 2012, 151, 123–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeya, T.; Galic, M.; Belawat, P.; Nairz, K.; Hafen, E. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr. Biol. 2002, 12, 1293–1300. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.K.; Rulifson, E.J. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 2004, 431, 316–320. [Google Scholar] [CrossRef]
- Rulifson, E.J.; Kim, S.K.; Nusse, R. Ablation of insulin-producing neurons in flies: Growth and diabetic phenotypes. Science 2002, 296, 1118–1120. [Google Scholar] [CrossRef] [PubMed]
- Van Wielendaele, P.; Dillen, S.; Zels, S.; Badisco, L.; Vanden Broeck, J. Regulation of feeding by Neuropeptide F in the desert locust, Schistocerca gregaria. Insect Biochem. Mol. Biol. 2013, 43, 102–114. [Google Scholar]
- Bharucha, K.N. The epicurean fly: Using Drosophila melanogaster to study metabolism. Pediatric Res. 2009, 65, 132–137. [Google Scholar]
- Chowański, S.; Adamski, Z.; Lubawy, J.; Marciniak, P.; Pacholska-Bogalska, J.; Słocińska, M.; Spochacz, M.; Szymczak, M.; Urbański, A.; Walkowiak-Nowicka, K.; et al. Insect peptides—Perspectives in human diseases treatment. Curr. Med. Chem. 2017, 24, 3116–3152. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.J.; Almén, M.S.; Fredriksson, R.; Schiöth, H.B. What model organisms and interactomics can reveal about the genetics of human obesity. Cell. Mol. Life Sci. 2012, 69, 3819–3834. [Google Scholar] [CrossRef] [PubMed]
- Yoshiga, D.; Sato, N.; Torisu, T.; Mori, H.; Yoshida, R.; Nakamura, S.; Takaesu, G.; Kobayashi, T.; Yoshimura, A. Adaptor protein SH2-B linking receptor-tyrosine kinase and Akt promotes adipocyte differentiation by regulating peroxisome proliferator-activated receptor gamma messenger ribonucleic acid levels. Mol. Endocrinol. 2007, 21, 1120–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, W.; Ren, D.; Li, W.; Jiang, L.; Cho, K.W.; Huang, P.; Fan, C.; Song, Y.; Liu, Y.; Rui, L. SH2B regulation of growth, metabolism, and longevity in both insects and mammals. Cell Metab. 2010, 11, 427–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slack, C.; Werz, C.; Wieser, D.; Alic, N.; Foley, A.; Stocker, H.; Withers, D.J.; Thornton, J.M.; Hafen, E.; Partridge, L. Regulation of lifespan, metabolism, and stress responses by the Drosophila SH2B protein, Lnk. PLoS Genet. 2010, 6, e1000881. [Google Scholar] [CrossRef] [Green Version]
- Belgacem, Y.H.; Martin, J.R. Hmgcr in the corpus allatum controls sexual dimorphism of locomotor activity and body size via the insulin pathway in Drosophila. PLoS ONE 2007, 2, e187. [Google Scholar] [CrossRef]
- Gruntenko, N.E.; Wen, D.; Karpova, E.K.; Adonyeva, N.V.; Liu, Y.; He, Q.; Faddeeva, N.V.; Fomin, A.S.; Li, S.; Rauschenbach, I.Y. Altered juvenile hormone metabolism, reproduction and stress response in Drosophila adults with genetic ablation of the corpus allatum cells. Insect Biochem. Mol. Biol. 2010, 40, 891–897. [Google Scholar] [CrossRef]
- Kleyn, P.W.; Fan, W.; Kovats, S.G.; Lee, J.J.; Pulido, J.C.; Wu, Y.; Berkemeier, L.R.; Misumi, D.J.; Holmgren, L.; Charlat, O.; et al. Identification and characterization of the mouse obesity gene tubby: A member of a novel gene family. Cell 1996, 85, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Browne, N.; Heelan, M.; Kavanagh, K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence 2013, 4, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Arbouzova, N.I.; Zeidler, M.P. JAK/STAT signalling in Drosophila: Insights into conserved regulatory and cellular functions. Development 2006, 133, 2605–2616. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Khanuja, B.S.; Ip, Y.T. Toll receptor-mediated Drosophila immune response requires Dif, an NF-kappaB factor. Genes Dev. 1999, 13, 792–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coast, G.M.; Schooley, D.A. Toward a consensus nomenclature for insect neuropeptides and peptide hormones. Peptides 2011, 32, 620–631. [Google Scholar] [CrossRef]
- Veenstra, J.A. Arthropod IGF, relaxin and gonadulin, putative orthologs of Drosophila insulin-like peptides 6, 7 and 8, likely originated from an ancient gene triplication. PeerJ 2020, 8, e9534. [Google Scholar] [CrossRef] [PubMed]
- Magkos, F.; Wang, X.; Mittendorfer, B. Metabolic actions of insulin in men and women. Nutrition 2010, 26, 686–693. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, A.M.; Torres-Alemán, I. The many faces of insulin-like peptide signalling in the brain. Nat. Rev. Neurosci. 2012, 13, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Grönke, S.; Partridge, L. The functions of insulin-like peptides in insects. In IGFs: Local Repair and Survival Factors Throughout Life Span; Clemmons, D., Robinson, I.C.A.F., Christen, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 105–124. [Google Scholar]
- Nagasawa, H.; Kataoka, H.; Isogai, A.; Tamura, S.; Suzuki, A.; Ishizaki, H.; Mizoguchi, A.; Fujiwara, Y.; Suzuki, A. Amino-terminal amino acid sequence of the silkworm prothoracicotropic hormone: Homology with insulin. Science 1984, 226, 1344–1346. [Google Scholar] [CrossRef] [PubMed]
- Nässel, D.R.; Vanden Broeck, J. Insulin/IGF signaling in Drosophila and other insects: Factors that regulate production, release and post-release action of the insulin-like peptides. Cell. Mol. Life Sci. 2016, 73, 271–290. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, N.; Yamanaka, N. Nutrition-dependent control of insect development by insulin-like peptides. Curr. Opin. Insect Sci. 2015, 11, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Chowański, S.; Walkowiak-Nowicka, K.; Winkiel, M.; Marciniak, P.; Urbański, A.; Pacholska-Bogalska, J. Insulin-like peptides and cross-talk with other factors in the regulation of insect metabolism. Front. Physiol. 2021, 12, 973. [Google Scholar] [CrossRef] [PubMed]
- Semaniuk, U.; Piskovatska, V.; Strilbytska, O.; Strutynska, T.; Burdyliuk, N.; Vaiserman, A.; Bubalo, V.; Storey, K.B.; Lushchak, O. Drosophila insulin-like peptides: From expression to functions—A review. Entomol. Exp. Appl. 2021, 169, 195–208. [Google Scholar]
- Wu, Q.; Brown, M.R. Signaling and function of insulin-like peptides in insects. Annu. Rev. Entomol. 2006, 51, 1–24. [Google Scholar] [CrossRef]
- Wang, S.; Tulina, N.; Carlin, D.L.; Rulifson, E.J. The origin of islet-like cells in Drosophila identifies parallels to the vertebrate endocrine axis. Proc. Natl. Acad. Sci. USA 2007, 104, 19873–19878. [Google Scholar] [CrossRef] [Green Version]
- Mizoguchi, A.; Okamoto, N. Insulin-like and IGF-like peptides in the silkmoth Bombyx mori: Discovery, structure, secretion, and function. Front. Physiol. 2013, 2, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sajid, W.; Kulahin, N.; Schluckebier, G.; Ribel, U.; Henderson, H.R.; Tatar, M.; Hansen, B.F.; Svendsen, A.M.; Kiselyov, V.V.; Norgaard, P.; et al. Structural and biological properties of the Drosophila insulin-like peptide 5 show evolutionary conservation. J. Biol. Chem. 2011, 286, 661–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Nuss, A.B.; Gulia-Nuss, M. Insulin-like peptide signaling in mosquitoes: The road behind and the road ahead. Front. Endocrinol. 2019, 10, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drexler, A.; Nuss, A.; Hauck, E.; Glennon, E.; Cheung, K.; Brown, M.; Luckhart, S. Human IGF1 extends lifespan and enhances resistance to Plasmodium falciparum infection in the malaria vector Anopheles stephensi. J. Exp. Biol. 2013, 216, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Defferrari, M.S.; Da Silva, S.R.; Orchard, I.; Lange, A.B. A Rhodnius prolixus insulin receptor and its conserved intracellular signaling pathway and regulation of metabolism. Front. Endocrinol. 2018, 9, 745. [Google Scholar] [CrossRef] [Green Version]
- Garofalo, R.S. Genetic analysis of insulin signaling in Drosophila. Trends Endocrinol. Metab. 2002, 13, 156–162. [Google Scholar] [CrossRef]
- Laakso, M. Not for the eyes only: PAX6 and glucose metabolism. Diabetologia 2009, 52, 381–384. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, N.; Nishimori, Y.; Nishimura, T. Conserved role for the Dachshund protein with Drosophila Pax6 homolog Eyeless in insulin expression. Proc. Natl. Acad. Sci. USA 2012, 109, 2406–2411. [Google Scholar] [CrossRef] [Green Version]
- Kalousova, A.; Mavropoulos, A.; Adams, B.A.; Nekrep, N.; Li, Z.; Krauss, S.; Stainier, D.Y.; German, M.S. Dachshund homologues play a conserved role in islet cell development. Dev. Biol. 2010, 348, 143–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozcan, L.; Ghorpade, D.S.; Zheng, Z.; de Souza, J.C.; Chen, K.; Bessler, M.; Bagloo, M.; Schrope, B.; Pestell, R.; Tabas, I. Hepatocyte DACH1 is increased in obesity via nuclear exclusion of HDAC4 and promotes hepatic insulin resistance. Cell Rep. 2016, 15, 2214–2225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Z.; Gilbert, E.R.; Liu, D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr. Diabetes Rev. 2013, 9, 25–53. [Google Scholar] [CrossRef] [PubMed]
- Masumura, M.; Satake, S.I.; Saegusa, H.; Mizoguchi, A. Glucose stimulates the release of bombyxin, an insulin-related peptide of the silkworm Bombyx mori. Gen. Comp. Endocrinol. 2000, 118, 393–399. [Google Scholar] [CrossRef]
- MacDonald, P.E.; Joseph, J.W.; Rorsman, P. Glucose-sensing mechanisms in pancreatic beta-cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360, 2211–2225. [Google Scholar] [CrossRef]
- Schuit, F.C.; Huypens, P.; Heimberg, H.; Pipeleers, D.G. Glucose sensing in pancreatic—Cells a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes 2001, 50, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kannan, K.; Fridell, Y.-W.C. Functional implications of Drosophila insulin-like peptides in metabolism, aging, and dietary restriction. Front. Physiol. 2013, 4, 288. [Google Scholar] [CrossRef] [Green Version]
- Ning, S.-L.; Zheng, W.-S.; Su, J.; Liang, N.; Li, H.; Zhang, D.-L.; Liu, C.-H.; Dong, J.-H.; Zhang, Z.-K.; Cui, M.; et al. Different downstream signalling of CCK1 receptors regulates distinct functions of CCK in pancreatic beta cells. Br. J. Pharmacol. 2015, 172, 5050–5067. [Google Scholar] [CrossRef] [Green Version]
- Ahrén, B.; Holst, J.J.; Efendic, S. Antidiabetogenic action of cholecystokinin-8 in type 2 diabetes. J. Clin. Endocrinol. Metab. 2000, 85, 1043–1048. [Google Scholar] [CrossRef]
- Söderberg, J.A.; Carlsson, M.A.; Nässel, D.R. Insulin-producing cells in the Drosophila brain also express satiety-inducing cholecystokinin-like peptide, drosulfakinin. Front. Endocrinol. 2012, 3, 109. [Google Scholar] [CrossRef] [Green Version]
- Słocińska, M.; Chowański, S.; Marciniak, P. Identification of sulfakinin receptors (SKR) in Tenebrio molitor beetle and the influence of sulfakinins on carbohydrates metabolism. J. Comp. Physiol. B 2020, 190, 669–679. [Google Scholar] [CrossRef]
- Lin, X.; Yu, N.; Smagghe, G. Insulin receptor regulates food intake through sulfakinin signaling in the red flour beetle, Tribolium castaneum. Peptides 2016, 80, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.W.; Sun, A.M. Stimulative effect of substance P on insulin secretion from isolated rat islets under normobaric oxygen incubation. Acta Pharmacol. Sin. 1989, 10, 69–73. [Google Scholar]
- Karagiannides, I.; Stavrakis, D.; Bakirtzi, K.; Kokkotou, E.; Pirtskhalava, T.; Nayeb-Hashemi, H.; Bowe, C.; Bugni, J.M.; Nuño, M.; Lu, B.; et al. Substance P (SP)-neurokinin-1 receptor (NK-1R) alters adipose tissue responses to high-fat diet and insulin action. Endocrinology 2011, 152, 2197–2205. [Google Scholar] [CrossRef] [Green Version]
- Birse, R.T.; Söderberg, J.A.E.; Luo, J.; Winther, Å.M.E.; Nässel, D.R. Regulation of insulin-producing cells in the adult Drosophila brain via the tachykinin peptide receptor DTKR. J. Exp. Biol. 2011, 214, 4201–4208. [Google Scholar] [CrossRef] [Green Version]
- Bruce, M. Acetylcholine regulates insulin secretion. In Metabolism; Bruce, M., Ed.; Reactome: New York, NY, USA, 2009. [Google Scholar]
- Chowański, S.; Pacholska-Bogalska, J.; Rosiński, G. Cholinergic agonists and antagonists have an effect on the metabolism of the beetle Tenebrio molitor. Molecules 2019, 24, 17. [Google Scholar] [CrossRef] [Green Version]
- De Meyts, P. The insulin receptor and its signal transduction network. In Comprehensive Free Online Endocrinology Book; Feingold, K.R., Ed.; Endotext: South Dartmouth, MA, USA, 2016. [Google Scholar]
- Colombani, J.; Andersen, D.S.; Boulan, L.; Boone, E.; Romero, N.; Virolle, V.; Texada, M.; Léopold, P. Drosophila Lgr3 couples organ growth with maturation and ensures developmental stability. Curr. Biol. 2015, 25, 2723–2729. [Google Scholar] [CrossRef] [Green Version]
- Van Hiel, M.B.; Vandersmissen, H.P.; Proost, P.; Vanden Broeck, J. Cloning, constitutive activity and expression profiling of two receptors related to relaxin receptors in Drosophila melanogaster. Peptides 2015, 68, 83–90. [Google Scholar] [CrossRef]
- Kramer, J.M.; Slade, J.D.; Staveley, B.E. foxo is required for resistance to amino acid starvation in Drosophila. Genome 2008, 51, 668–672. [Google Scholar] [CrossRef] [PubMed]
- Kramer, J.M.; Davidge, J.T.; Lockyer, J.M.; Staveley, B.E. Expression of Drosophila FOXO regulates growth and can phenocopy starvation. BMC Dev. Biol. 2003, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Yenush, L.; Fernandez, R.; Myers, M.G., Jr.; Grammer, T.C.; Sun, X.J.; Blenis, J.; Pierce, J.H.; Schlessinger, J.; White, M.F. The Drosophila insulin receptor activates multiple signaling pathways but requires insulin receptor substrate proteins for DNA synthesis. Mol. Cell. Biol. 1996, 16, 2509–2517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galagovsky, D.; Katz, M.J.; Acevedo, J.M.; Sorianello, E.; Glavic, A.; Wappner, P. The Drosophila insulin-degrading enzyme restricts growth by modulating the PI3K pathway in a cell-autonomous manner. Mol. Biol. Cell. 2014, 25, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Ke, B.; Zhao, Z.; Ye, X.; Gao, Z.; Ye, J. Regulation of insulin degrading enzyme activity by obesity-associated factors and pioglitazone in liver of diet-induced obese mice. PLoS ONE 2014, 9, e95399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merino, B.; Fernández-Díaz, C.M.; Parrado-Fernández, C.; González-Casimiro, C.M.; Postigo-Casado, T.; Lobatón, C.D.; Leissring, M.A.; Cózar-Castellano, I.; Perdomo, G. Hepatic insulin-degrading enzyme regulates glucose and insulin homeostasis in diet-induced obese mice. Metabolism 2020, 113, 154352. [Google Scholar] [CrossRef]
- Lewitt, M.S.; Dent, M.S.; Hall, K. The insulin-like growth factor system in obesity, insulin resistance and type 2 diabetes mellitus. J. Clin. Med. 2014, 3, 1561–1574. [Google Scholar] [CrossRef]
- Arquier, N.; Géminard, C.; Bourouis, M.; Jarretou, G.; Honegger, B.; Paix, A.; Léopold, P. Drosophila ALS regulates growth and metabolism through functional interaction with insulin-like peptides. Cell Metab. 2008, 7, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Badisco, L.; Claeys, I.; Van Loy, T.; Van Hiel, M.; Franssens, V.; Simonet, G.; Vanden Broeck, J. Neuroparsins, a family of conserved arthropod neuropeptides. Gen. Comp. Endocrinol. 2007, 153, 64–71. [Google Scholar] [CrossRef]
- Satake, S.; Masumura, M.; Ishizaki, H.; Nagata, K.; Kataoka, H.; Suzuki, A.; Mizoguchi, A. Bombyxin, an insulin-related peptide of insects, reduces the major storage carbohydrates in the silkworm Bombyx mori. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1997, 118, 349–357. [Google Scholar] [CrossRef]
- Brown, M.R.; Clark, K.D.; Gulia, M.; Zhao, Z.; Garczynski, S.F.; Crim, J.W.; Suderman, R.J.; Strand, M.R. An insulin-like peptide regulates egg maturation and metabolism in the mosquito Aedes aegypti. Proc. Natl. Acad. Sci. USA 2008, 105, 5716–5721. [Google Scholar] [CrossRef] [Green Version]
- Semaniuk, U.V.; Gospodaryov, D.V.; Feden’ko, K.M.; Yurkevych, I.S.; Vaiserman, A.M.; Storey, K.B.; Simpson, S.J.; Lushchak, O. Insulin-like peptides regulate feeding preference and metabolism in Drosophila. Front. Physiol. 2018, 9, 1083. [Google Scholar] [CrossRef]
- Ahmad, M.; He, L.; Perrimon, N. Regulation of insulin and adipokinetic hormone/glucagon production in flies. WIREs Dev. Biol. 2020, 9, e360. [Google Scholar] [CrossRef] [PubMed]
- Toprak, U. The role of peptide hormones in insect lipid metabolism. Front. Physiol. 2020, 11, 434. [Google Scholar] [CrossRef]
- Gäde, G.; Šimek, P.; Clark, K.D.; Auerswald, L. Unique translational modification of an invertebrate neuropeptide: A phosphorylated member of the adipokinetic hormone peptide family. Biochem. J. 2006, 393, 705–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Bustamante, E.L.; Antonova, J.; McLean, G.W.; Kim, S.K. Specification of Drosophila corpora cardiaca neuroendocrine cells from mesoderm is regulated by Notch signaling. PLoS Genet. 2011, 7, e1002241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rix, I.; Nexøe-Larsen, C.; Bergmann, N.C.; Lund, A.; Knop, F.K. Glucagon physiology. In Comprehensive Free Online Endocrinology Book; Feingold, K.R., Ed.; Endotext: South Dartmouth, MA, USA, 2016. [Google Scholar]
- Kim, J.; Neufeld, T.P. Dietary sugar promotes systemic TOR activation in Drosophila through AKH-dependent selective secretion of Dilp3. Nat. Commun. 2015, 6, 6846. [Google Scholar] [CrossRef] [Green Version]
- Braco, J.T.; Gillespie, E.L.; Alberto, G.E.; Brenman, J.E.; Johnson, E.C. Energy-dependent modulation of glucagon-like signaling in Drosophila via the AMP-activated protein kinase. Genetics 2012, 192, 457–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gromada, J.; Ma, X.; Høy, M.; Bokvist, K.; Salehi, A.; Berggren, P.O.; Rorsman, P. ATP-sensitive K+ channel-dependent regulation of glucagon release and electrical activity by glucose in wild-type and SUR1-/- mouse alpha-cells. Diabetes 2004, 53, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Marchal, E.; Schellens, S.; Monjon, E.; Bruyninckx, E.; Marco, H.G.; Gäde, G.; Vanden Broeck, J.; Verlinden, H. Analysis of peptide ligand specificity of different insect adipokinetic hormone receptors. Int. J. Mol. Sci. 2018, 19, 542. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, C.; Merzendorfer, H.; Gäde, G. The adipokinetic hormone system in Culicinae (Diptera: Culicidae): Molecular identification and characterization of two adipokinetic hormone (AKH) precursors from Aedes aegypti and Culex pipiens and two putative AKH receptor variants from A. aegypti. Insect Biochem. Mol. Biol. 2009, 39, 770–781. [Google Scholar] [CrossRef]
- Ziegler, R.; Isoe, J.; Moore, W.; Riehle, M.A.; Wells, M.A. The putative AKH receptor of the tobacco hornworm, Manduca sexta, and its expression. J. Insect Sci. 2011, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Gäde, G.; Auerswald, L. Mode of action of neuropeptides from the adipokinetic hormone family. Gen. Comp. Endocrinol. 2003, 132, 10–20. [Google Scholar] [CrossRef]
- Van der Horst, D.J.; Rodenburg, K.W. Locust flight activity as a model for hormonal regulation of lipid mobilization and transport. J. Insect Physiol. 2010, 56, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Arrese, E.L.; Mirza, S.; Rivera, L.; Howard, A.D.; Chetty, P.S.; Soulages, J.L. Expression of lipid storage droplet protein-1 may define the role of AKH as a lipid mobilizing hormone in Manduca sexta. Insect Biochem. Mol. Biol. 2008, 38, 993–1000. [Google Scholar] [CrossRef] [Green Version]
- Arrese, E.L.; Patel, R.T.; Soulages, J.L. The main triglyceride-lipase from the insect fat body is an active phospholipase A(1): Identification and characterization. J. Lipid Res. 2006, 47, 2656–2667. [Google Scholar] [CrossRef] [Green Version]
- Toprak, U.; Hegedus, D.; Doğan, C.; Güney, G. A journey into the world of insect lipid metabolism. Arch. Insect Biochem. Physiol. 2020, 104, e21682. [Google Scholar] [CrossRef] [PubMed]
- Beller, M.; Bulankina, A.V.; Hsiao, H.H.; Urlaub, H.; Jäckle, H.; Kühnlein, R.P. PERILIPIN-dependent control of lipid droplet structure and fat storage in Drosophila. Cell Metab. 2010, 12, 521–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galsgaard, K.D.; Pedersen, J.; Knop, F.K.; Holst, J.J.; Wewer Albrechtsen, N.J. Glucagon receptor signaling and lipid metabolism. Front. Physiol. 2019, 10, 413. [Google Scholar] [CrossRef] [PubMed]
- Grönke, S.; Mildner, A.; Fellert, S.; Tennagels, N.; Petry, S.; Müller, G.; Jäckle, H.; Kühnlein, R.P. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab. 2005, 1, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Moya, N.; Niessen, S.; Hoover, H.; Mihaylova, M.M.; Shaw, R.J.; Yates, J.R., 3rd; Fischer, W.H.; Thomas, J.B.; Montminy, M. A hormone-dependent module regulating energy balance. Cell 2011, 145, 596–606. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Lim, D.S.; Chung, J. Feeding and fasting signals converge on the LKB1-SIK3 pathway to regulate Lipid metabolism in drosophila. PLoS Genet. 2015, 11, e1005263. [Google Scholar] [CrossRef] [Green Version]
- Alves-Bezerra, M.; Gondim, K.C. Triacylglycerol biosynthesis occurs via the glycerol-3-phosphate pathway in the insect Rhodnius prolixus. Biochim. Biophys. Acta 2012, 1821, 1462–1471. [Google Scholar] [CrossRef]
- Konuma, T.; Morooka, N.; Nagasawa, H.; Nagata, S. Knockdown of the adipokinetic hormone receptor increases feeding frequency in the two-spotted cricket Gryllus bimaculatus. Endocrinology 2012, 153, 3111–3122. [Google Scholar] [CrossRef] [Green Version]
- Hou, Q.L.; Chen, E.H.; Jiang, H.B.; Wei, D.D.; Gui, S.H.; Wang, J.J.; Smagghe, G. Adipokinetic hormone receptor gene identification and its role in triacylglycerol mobilization and sexual behavior in the oriental fruit fly (Bactrocera dorsalis). Insect Biochem. Mol. Biol. 2017, 90, 1–13. [Google Scholar] [CrossRef]
- Grönke, S.; Muller, G.; Hirsch, J.; Fellert, S.; Andreou, A.; Haase, T.; Jackle, H.; Kuhnlein, R.P. Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol. 2007, 5, e137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gáliková, M.; Klepsatel, P.; Xu, Y.; Kühnlein, R.P. The obesity-related Adipokinetic hormone controls feeding and expression of neuropeptide regulators of Drosophila metabolism. Eur. J. Lipid Sci. Technol. 2017, 119, 1600138. [Google Scholar] [CrossRef]
- Yoshinari, Y.; Kosakamoto, H.; Kamiyama, T.; Hoshino, R.; Matsuoka, R.; Kondo, S.; Tanimoto, H.; Nakamura, A.; Obata, F.; Niwa, R. The sugar-responsive enteroendocrine neuropeptide F regulates lipid metabolism through glucagon-like and insulin-like hormones in Drosophila melanogaster. Nat. Commun. 2021, 12, 4818. [Google Scholar] [CrossRef] [PubMed]
- Ahrén, B.; Mårtensson, H.; Falck, B. Effects of neuropeptide Y on insulin and glucagon secretion in the pig. Neuropeptides 1991, 20, 49–55. [Google Scholar] [CrossRef]
- Opara, E.C.; Burch, W.M.; Taylor, I.L.; Akwari, O.E. Pancreatic hormone response to neuropeptide Y (NPY) perifusion in vitro. Regul. Pept. 1991, 34, 225–233. [Google Scholar] [CrossRef]
- Baumbach, J.; Hummel, P.; Bickmeyer, I.; Kowalczyk, K.M.; Frank, M.; Knorr, K.; Hildebrandt, A.; Riedel, D.; Jäckle, H.; Kühnlein, R.P. A Drosophila in vivo screen identifies store-operated calcium entry as a key regulator of adiposity. Cell Metab. 2014, 19, 331–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramanian, M.; Jayakumar, S.; Richhariya, S.; Hasan, G. Loss of IP3 receptor function in neuropeptide secreting neurons leads to obesity in adult Drosophila. BMC Neurosci. 2013, 14, 157. [Google Scholar] [CrossRef] [Green Version]
- Vroemen, S.F.; Van Marrewijk, W.J.; Schepers, C.C.; Van der Horst, D.J. Signal transduction of adipokinetic hormones involves Ca2+ fluxes and depends on extracellular Ca2+ to potentiate cAMP-induced activation of glycogen phosphorylase. Cell Calcium 1995, 17, 459–467. [Google Scholar] [CrossRef]
- Song, W.; Cheng, D.; Hong, S.; Sappe, B.; Hu, Y.; Wei, N.; Zhu, C.; O’Connor, M.B.; Pissios, P.; Perrimon, N. Midgut-derived activin regulates glucagon-like action in the fat body and glycemic control. Cell Metab. 2017, 25, 386–399. [Google Scholar] [CrossRef] [Green Version]
- Veenstra, J.A. Does corazonin signal nutritional stress in insects? Insect Biochem. Mol. Biol. 2009, 39, 755–762. [Google Scholar] [CrossRef]
- Kubrak, O.I.; Lushchak, O.V.; Zandawala, M.; Nässel, D.R. Systemic corazonin signalling modulates stress responses and metabolism in Drosophila. Open Biol. 2016, 6, 160152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, J.L.; Oliphant, A.; Wilcockson, D.C.; Audsley, N.; Down, R.E.; Lafont, R.; Webster, S.G. Functional characterization and signaling systems of corazonin and red pigment concentrating hormone in the green shore crab, Carcinus maenas. Front. Neurosci. 2017, 11, 752. [Google Scholar] [CrossRef] [Green Version]
- Cazzamali, G.; Saxild, N.; Grimmelikhuijzen, C. Molecular cloning and functional expression of a Drosophila corazonin receptor. Biochem. Biophys. Res. Commun. 2002, 298, 31–36. [Google Scholar] [CrossRef]
- Tayler, T.; Pacheco Pinedo, D.; Hergarden, A.; Murthy, M.; Anderson, D. A neuropeptide circuit that coordinates sperm transfer and copulation duration in Drosophila. Proc. Natl. Acad. Sci. USA 2012, 109, 20697–20702. [Google Scholar] [CrossRef] [Green Version]
- Gospocic, J.; Shields, E.J.; Glastad, K.M.; Lin, Y.; Penick, C.A.; Yan, H.; Mikheyev, A.S.; Linksvayer, T.A.; Garcia, B.A.; Berger, S.L.; et al. The neuropeptide corazonin controls social behavior and caste identity in ants. Cell 2017, 170, 748–759.e12. [Google Scholar] [CrossRef]
- Boerjan, B.; Verleyen, P.; Huybrechts, J.; Schoofs, L.; De Loof, A. In search for a common denominator for the diverse functions of arthropod corazonin: A role in the physiology of stress? Gen. Comp. Endocrinol. 2010, 166, 222–233. [Google Scholar] [CrossRef]
- Choi, S.H.; Lee, G.; Monahan, P.; Park, J.H. Spatial regulation of Corazonin neuropeptide expression requires multiple cis-acting elements in Drosophila melanogaster. J. Comp. Neurol. 2008, 507, 1184–1195. [Google Scholar] [CrossRef]
- Lee, K.-S.; Kwon, O.Y.; Lee, J.H.; Kwon, K.; Min, K.-J.; Jung, S.-A.; Kim, A.-K.; You, K.-H.; Tatar, M.; Yu, K. Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nat. Cell Biol. 2008, 10, 468–475. [Google Scholar] [CrossRef]
- Veenstra, J.A.; Sellami, A. Regulatory peptides in fruit fly midgut. Cell Tissue Res. 2008, 334, 499–516. [Google Scholar] [CrossRef]
- Zhao, Y.; Bretz, C.A.; Hawksworth, S.A.; Hirsh, J.; Johnson, E.C. Corazonin neurons function in sexually dimorphic circuitry that shape behavioral responses to stress in Drosophila. PLoS ONE 2010, 5, e9141. [Google Scholar] [CrossRef] [Green Version]
- Bader, R.; Wegener, C.; Pankratz, M.J. Comparative neuroanatomy and genomics of hugin and pheromone biosynthesis activating neuropeptide (PBAN). Fly 2007, 1, 228–231. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Kim, Y.-J.; Adams, M.E. Identification of G protein-coupled receptors for Drosophila PRXamide peptides, CCAP, corazonin, and AKH supports a theory of ligand-receptor coevolution. Proc. Natl. Acad. Sci. USA 2002, 99, 11423–11428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melcher, C.; Pankratz, M.J. Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain. PLoS Biol. 2005, 3, e305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melcher, C.; Bader, R.; Walther, S.; Simakov, O.; Pankratz, M.J. Neuromedin U and its putative Drosophila homolog hugin. PLoS Biol. 2006, 4, e68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlegel, P.; Texada, M.J.; Miroschnikow, A.; Schoofs, A.; Hückesfeld, S.; Peters, M.; Schneider-Mizell, C.M.; Lacin, H.; Li, F.; Fetter, R.D.; et al. Synaptic transmission parallels neuromodulation in a central food-intake circuit. Elife 2016, 5, e16799. [Google Scholar] [CrossRef] [PubMed]
- Hückesfeld, S.; Schoofs, A.; Schlegel, P.; Miroschnikow, A.; Pankratz, M.J. Localization of motor neurons and central pattern generators for motor patterns underlying feeding behavior in Drosophila larvae. PLoS ONE 2015, 10, e0135011. [Google Scholar] [CrossRef] [Green Version]
- Schoofs, A.; Hückesfeld, S.; Schlegel, P.; Miroschnikow, A.; Peters, M.; Zeymer, M.; Spieß, R.; Chiang, A.S.; Pankratz, M.J. Selection of motor programs for suppressing food intake and inducing locomotion in the Drosophila brain. PLoS Biol. 2014, 12, e1001893. [Google Scholar] [CrossRef] [Green Version]
- Beshel, J.; Dubnau, J.; Zhong, Y. A leptin analog locally produced in the brain acts via a conserved neural circuit to modulate obesity-linked behaviors in Drosophila. Cell Metab. 2017, 25, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Fadda, M.; Hasakiogullari, I.; Temmerman, L.; Beets, I.; Zels, S.; Schoofs, L. Regulation of feeding and metabolism by neuropeptide F and short neuropeptide F in invertebrates. Front. Endocrinol. 2019, 10, 64. [Google Scholar] [CrossRef] [Green Version]
- Lubawy, J.; Marciniak, P.; Kuczer, M.; Rosiński, G. Myotropic activity of allatostatins in tenebrionid beetles. Neuropeptides 2018, 70, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Chowański, S.; Lubawy, J.; Urbański, A.; Rosiński, G. Cardioregulatory functions of neuropeptides and peptide hormones in insects. Protein Pept. Lett. 2016, 23, 913–931. [Google Scholar] [CrossRef] [PubMed]
- Sivasubramanian, P.; Sood, P. Allatostatin-like immunoreactivity in the optic lobe of the fly Sarcophaga bullata. Cell. Mol. Biol. 2003, 49, 641–644. [Google Scholar] [PubMed]
- Aguilar, R.; Maestro, J.L.; Vilaplana, L.; Pascual, N.; Piulachs, M.-D.; Bellés, X. Allatostatin gene expression in brain and midgut, and activity of synthetic allatostatins on feeding-related processes in the cockroach Blattella germanica. Regul. Pept. 2003, 115, 171–177. [Google Scholar] [CrossRef]
- Zandawala, M.; Orchard, I. Post-feeding physiology in Rhodnius prolixus: The possible role of FGLamide-related allatostatins. Gen. Comp. Endocrinol. 2013, 194, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Hergarden, A.C.; Tayler, T.D.; Anderson, D.J. Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. Proc. Natl. Acad. Sci. USA 2012, 109, 3967–3972. [Google Scholar] [CrossRef] [Green Version]
- Hentze, J.L.; Carlsson, M.A.; Kondo, S.; Nässel, D.R.; Rewitz, K.F. The neuropeptide allatostatin A regulates metabolism and feeding decisions in Drosophila. Sci. Rep. 2015, 5, 11680. [Google Scholar] [CrossRef] [Green Version]
- Kh, S.D.; Keshan, B. Larval feeding status regulates the transcript levels of genes encoding PTTH and allatoregulatory peptides in silkworm Bombyx mori. Insect Sci. 2020, 28, 680–691. [Google Scholar] [CrossRef]
- Strowski, M.; Parmar, R.; Blake, A.; Schaeffer, J. Somatostatin inhibits insulin and glucagon secretion via two receptors subtypes: An in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology. 2000, 141, 111–117. [Google Scholar] [CrossRef]
- Fang, P.; Yu, M.; Guo, L.; Bo, P.; Zhang, Z.; Shi, M. Galanin and its receptors: A novel strategy for appetite control and obesity therapy. Peptides 2012, 36, 331–339. [Google Scholar] [CrossRef]
- Marcos, P.; Coveñas, R. Neuropeptidergic Control of Feeding: Focus on the Galanin Family of Peptides. Int. J. Mol. Sci. 2021, 22, 2544. [Google Scholar] [CrossRef]
- Mills, E.G.; Izzi-Engbeaya, C.; Abbara, A.; Comninos, A.N.; Dhillo, W.S. Functions of galanin, spexin and kisspeptin in metabolism, mood and behaviour. Nat. Rev. Endocrinol. 2020, 17, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Birgül, N.; Weise, C.; Kreienkamp, H.J.; Richter, D. Reverse physiology in Drosophila: Identification of a novel allatostatin-like neuropeptide and its cognate receptor structurally related to the mammalian somatostatin/galanin/opioid receptor family. EMBO J. 1999, 18, 5892–5900. [Google Scholar] [CrossRef] [Green Version]
- Rehfeld, J.F. Cholecystokinin from local gut hormone to ubiquitous messenger. Front. Endocrinol. 2017, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Nachman, R.J.; Holman, G.M.; Haddon, W.F.; Ling, N. Leucosulfakinin, a sulfated insect neuropeptide with homology to gastrin and cholecystokinin. Science 1986, 234, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Bloom, M.; Lange, A.B.; Orchard, I. Identification, functional characterization, and pharmacological analysis of two sulfakinin receptors in the medically-important insect Rhodnius prolixus. Sci. Rep. 2019, 9, 13437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Słocińska, M.; Czubak, T.; Marciniak, P.; Jarmuszkiewicz, W.; Rosiński, G. The activity of the nonsulfated sulfakinin Zopat-SK-1 in the neck-ligated larvae of the beetle Zophobas atratus. Peptides 2015, 69, 127–132. [Google Scholar] [CrossRef]
- Al-Alkawi, H.; Lange, A.B.; Orchard, I. Cloning, localization, and physiological effects of sulfakinin in the kissing bug, Rhodnius prolixus. Peptides 2017, 98, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Meyering-Vos, M.; Müller, A. RNA interference suggests sulfakinins as satiety effectors in the cricket Gryllus bimaculatus. J. Insect Physiol. 2007, 53, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Nachman, R.J.; Smagghe, G. Characterization of sulfakinin and sulfakinin receptor and their roles in food intake in the red flour beetle Tribolium castaneum. Gen. Comp. Endocrinol. 2013, 188, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, P.; Kuczer, M.; Rosinski, G. New physiological activities of myosuppressin, sulfakinin and NVP-like peptide in Zophobas atratus beetle. J. Comp. Physiol. B 2011, 181, 721–730. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.M.; Sun, E.W.; Keating, D.J. Mechanisms controlling hormone secretion in human gut and its relevance to metabolism. J. Endocrinol. 2019, 244, r1–r15. [Google Scholar] [CrossRef] [Green Version]
- Słocińska, M.; Kuczer, M.; Gołębiowski, M. Sulfakinin signalling influences fatty acid levels and composition in Tenebrio molitor beetle. Protein Pept. Lett. 2019, 26, 949–958. [Google Scholar] [CrossRef]
- Mirabeau, O.; Joly, J.S. Molecular evolution of peptidergic signaling systems in bilaterians. Proc. Natl. Acad. Sci. USA 2013, 110, E2028–E2037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marciniak, P.; Urbański, A.; Lubawy, J.; Szymczak, M.; Pacholska-Bogalska, J.; Chowański, S.; Kuczer, M.; Rosiński, G. Short neuropeptide F signaling regulates functioning of male reproductive system in Tenebrio molitor beetle. J. Comp. Physiol. B 2020, 190, 521–534. [Google Scholar] [CrossRef]
- Elphick, M.R.; Mirabeau, O. The evolution and variety of RFamide-type neuropeptides: Insights from deuterostomian invertebrates. Front. Endocrinol. 2014, 5, 93. [Google Scholar] [CrossRef] [Green Version]
- Kapan, N.; Lushchak, O.V.; Luo, J.; Nässel, D.R. Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin. Cell. Mol. Life Sci. 2012, 69, 4051–4066. [Google Scholar] [CrossRef]
- Jékely, G. Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc. Natl. Acad. Sci. USA 2013, 110, 8702–8707. [Google Scholar] [CrossRef] [Green Version]
- Kuneš, J.; Pražienková, V.; Popelová, A.; Mikulášková, B.; Zemenová, J.; Maletínská, L. Prolactin-releasing peptide: A new tool for obesity treatment. J. Endocrinol. 2016, 230, R51–R58. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.J.; Herzog, H. Coordinated regulation of energy and glucose homeostasis by insulin and the NPY system. J. Neuroendocrinol. 2021, 33, e12925. [Google Scholar] [CrossRef] [PubMed]
- Nässel, D.R.; Wegener, C. A comparative review of short and long neuropeptide F signaling in invertebrates: Any similarities to vertebrate neuropeptide Y signaling? Peptides 2011, 32, 1335–1355. [Google Scholar] [CrossRef] [PubMed]
- Beshel, J.; Zhong, Y. Graded encoding of food odor value in the Drosophila brain. J. Neurosci. 2013, 33, 15693–15704. [Google Scholar] [CrossRef] [Green Version]
- Nachman, R.J.; Moyna, G.; Williams, H.J.; Zabrocki, J.; Zadina, J.E.; Coast, G.M.; Broeck, J. Comparison of active conformations of the Insecta tachykinin/tachykinin and insect kinin/Tyr-W-MIF-1 neuropeptide family pairs. Ann. N. Y. Acad. Sci. 1999, 897, 388–400. [Google Scholar] [CrossRef]
- Urbański, A.; Konopińska, N.; Lubawy, J.; Walkowiak-Nowicka, K.; Marciniak, P.; Rolff, J. A possible role of tachykinin-related peptide on an immune system activity of mealworm beetle, Tenebrio molitor L. Dev. Comp. Immunol. 2021, 120, 104065. [Google Scholar] [CrossRef]
- Song, W.; Veenstra, J.A.; Perrimon, N. Control of lipid metabolism by tachykinin in Drosophila. Cell Rep. 2014, 9, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Nässel, D.R.; Zandawala, M.; Kawada, T.; Satake, H. Tachykinins: Neuropeptides that are ancient, diverse, widespread and functionally pleiotropic. Front. Neurosci. 2019, 13, 1262. [Google Scholar] [CrossRef]
- Karagiannides, I.; Pothoulakis, C. Substance P, obesity and gut inflammation. Curr. Opin. Endocrinol. Diabetes Obes. 2009, 16, 47. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Liu, B.; Liu, P.; Liu, L.; Li, G.; Wu, B.; Liu, X. Substance P is associated with the development of obesity, chronic inflammation and type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 2011, 119, 177–181. [Google Scholar] [CrossRef]
- Baroncelli, G.; Bertelloni, S.; Buggiani, B.; Papini, A.; Gualtieri, M.; Saggese, G. Evidence of increased levels of substance P in obese children. Funct. Neurol. 1989, 4, 183–184. [Google Scholar] [PubMed]
- Ribeiro-da-Silva, A.; Hökfelt, T. Neuroanatomical localisation of substance P in the CNS and sensory neurons. Neuropeptides 2000, 34, 256–271. [Google Scholar] [CrossRef] [PubMed]
- Karagiannides, I.; Torres, D.; Tseng, Y.H.; Bowe, C.; Carvalho, E.; Espinoza, D.; Pothoulakis, C.; Kokkotou, E. Substance P as a novel anti-obesity target. Gastroenterology 2008, 134, 747–755.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramalho, R.; Almeida, J.; Beltrão, M.; Pirraco, A.; Costa, R.; Sokhatska, O.; Guardão, L.; Palmares, C.; Guimarães, J.; Delgado, L. Substance P antagonist improves both obesity and asthma in a mouse model. Allergy 2013, 68, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Nässel, D.R.; Passier, P.C.; Elekes, K.; Dircksen, H.; Vullings, H.G.; Cantera, R. Evidence that locusta tachykinin I is involved in release of adipokinetic hormone from locust corpora cardiaca. Regul. Pept. 1995, 57, 297–310. [Google Scholar] [CrossRef]
- Huesmann, G.R.; Cheung, C.C.; Loi, P.K.; Lee, T.D.; Swiderek, K.M.; Tublitz, N.J. Amino acid sequence of CAP 2b, an insect cardioacceleratory peptide from the tobacco hawkmoth Manduca sexta. FEBS Lett. 1995, 371, 311–314. [Google Scholar]
- Predel, R.; Wegener, C. Biology of the CAPA peptides in insects. Cell. Mol. Life Sci. 2006, 63, 2477–2490. [Google Scholar] [CrossRef]
- Terhzaz, S.; Cabrero, P.; Robben, J.; Radford, J.; Hudson, B.; Milligan, G.; Dow, J.; Davies, S. Mechanism and function of Drosophila capa GPCR: A desiccation stress-responsive receptor with functional homology to human neuromedin U receptor. PLoS ONE 2012, 7, e29897. [Google Scholar] [CrossRef] [Green Version]
- Kono, T.; Hamasuna, S.; Korenaga, H.; Iizasa, T.; Nagamine, R.; Ida, T.; Sakai, M. The role of neuromedin U during inflammatory response in the common carp. Fish Shellfish Immunol. 2012, 32, 151–160. [Google Scholar] [CrossRef]
- Micewicz, E.D.; Bahattab, O.S.; Willars, G.B.; Waring, A.J.; Navab, M.; Whitelegge, J.P.; McBride, W.H.; Ruchala, P. Small lipidated anti-obesity compounds derived from neuromedin U. Eur. J. Med. Chem. 2015, 101, 616–626. [Google Scholar] [CrossRef] [Green Version]
- Sangha, V.; Nachman, R.J.; Lange, A.; Orchard, I. Physiological effects of biostable kinin and CAPA analogs in the Chagas disease vector, Rhodnius prolixus. Insect Biochem. Mol. Biol. 2019, 114, 103223. [Google Scholar] [CrossRef] [PubMed]
- Ida, T.; Takahashi, T.; Tominaga, H.; Sato, T.; Kume, K.; Ozaki, M.; Hiraguchi, T.; Maeda, T.; Shiotani, H.; Terajima, S.; et al. Identification of the novel bioactive peptides dRYamide-1 and dRYamide-2, ligands for a neuropeptide Y-like receptor in Drosophila. Biochem. Biophys. Res. Commun. 2011, 410, 872–877. [Google Scholar] [CrossRef]
- Guo, Z.; He, X.; Jiang, C.; Shi, Y.; Zhou, N. Activation of Bombyx mori neuropeptide G protein-coupled receptor A19 by neuropeptide RYamides couples to G(q) protein-dependent signaling pathways. J. Cell. Biochem. 2021, 122, 456–471. [Google Scholar] [CrossRef] [PubMed]
- Roller, L.; Čižmár, D.; Bednár, B.; Žitňan, D. Expression of RYamide in the nervous and endocrine system of Bombyx mori. Peptides 2016, 80, 72–79. [Google Scholar] [CrossRef]
- Roller, L.; Yamanaka, N.; Watanabe, K.; Daubnerová, I.; Zitnan, D.; Kataoka, H.; Tanaka, Y. The unique evolution of neuropeptide genes in the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 2008, 38, 1147–1157. [Google Scholar] [CrossRef]
- Ren, G.R.; Hauser, F.; Rewitz, K.F.; Kondo, S.; Engelbrecht, A.F.; Didriksen, A.K.; Schjøtt, S.R.; Sembach, F.E.; Li, S.; Søgaard, K.C.; et al. CCHamide-2 is an orexigenic brain-gut peptide in Drosophila. PLoS ONE 2015, 10, e0133017. [Google Scholar] [CrossRef] [Green Version]
- Ida, T.; Takahashi, T.; Tominaga, H.; Sato, T.; Sano, H.; Kume, K.; Ozaki, M.; Hiraguchi, T.; Shiotani, H.; Terajima, S.; et al. Isolation of the bioactive peptides CCHamide-1 and CCHamide-2 from Drosophila and their putative role in appetite regulation as ligands for G protein-coupled receptors. Front. Endocrinol. 2012, 3, 177. [Google Scholar] [CrossRef] [Green Version]
- Verleyen, P.; Chen, X.; Baron, S.; Preumont, A.; Hua, Y.J.; Schoofs, L.; Clynen, E. Cloning of neuropeptide-like precursor 1 in the gray flesh fly and peptide identification and expression. Peptides 2009, 30, 522–530. [Google Scholar] [CrossRef]
- Ayub, M.; Hermiz, M.; Lange, A.B.; Orchard, I. SIFamide influences feeding in the Chagas disease vector, Rhodnius prolixus. Front. Neurosci. 2020, 14, 134. [Google Scholar] [CrossRef] [Green Version]
- Ubuka, T.; Tsutsui, K. Evolution of gonadotropin-inhibitory hormone receptor and its ligand. Gen. Comp. Endocrinol. 2014, 209, 148–161. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-Y.; Horodyski, F.M. Effects of starvation and mating on corpora allata activity and allatotropin (Manse-AT) gene expression in Manduca sexta. Peptides 2006, 27, 567–574. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, L.; Jiang, X. Starvation influences allatotropin gene expression and juvenile hormone titer in the female adult oriental armyworm, Mythimna separata. Arch. Insect Biochem. Physiol. 2008, 68, 63–70. [Google Scholar] [CrossRef]
- Matsumoto, S.; Kutsuna, N.; Daubnerová, I.; Roller, L.; Žitňan, D.; Nagasawa, H.; Nagata, S. Enteroendocrine peptides regulate feeding behavior via controlling intestinal contraction of the silkworm Bombyx mori. PLoS ONE 2019, 14, e0219050. [Google Scholar] [CrossRef]
- Nässel, D.R. Leucokinin and associated neuropeptides regulate multiple aspects of physiology and behavior in Drosophila. Int. J. Mol. Sci. 2021, 22, 1940. [Google Scholar] [CrossRef] [PubMed]
- Al-Anzi, B.; Armand, E.; Nagamei, P.; Olszewski, M.; Sapin, V.; Waters, C.; Zinn, K.; Wyman, R.J.; Benzer, S. The leucokinin pathway and its neurons regulate meal size in Drosophila. Curr. Biol. 2010, 20, 969–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, H.; Agha, M.A.; Smith, R.C.; Nachman, R.J.; Marion-Poll, F.; Pietrantonio, P.V. Leucokinin mimetic elicits aversive behavior in mosquito Aedes aegypti (L.) and inhibits the sugar taste neuron. Proc. Natl. Acad. Sci. USA 2016, 113, 6880–6885. [Google Scholar] [CrossRef] [Green Version]
- Yurgel, M.E.; Kakad, P.; Zandawala, M.; Nässel, D.R.; Godenschwege, T.A.; Keene, A.C. A single pair of leucokinin neurons are modulated by feeding state and regulate sleep–metabolism interactions. PLoS Biol. 2019, 17, e2006409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harshini, S.; Nachman, R.; Sreekumar, S. Inhibition of digestive enzyme release by neuropeptides in larvae of Opisina arenosella (Lepidoptera: Cryptophasidae). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2002, 132, 353–358. [Google Scholar] [CrossRef]
- Zandawala, M.; Yurgel, M.E.; Texada, M.J.; Liao, S.; Rewitz, K.F.; Keene, A.C.; Nässel, D.R. Modulation of Drosophila post-feeding physiology and behavior by the neuropeptide leucokinin. PLoS Genet. 2018, 14, e1007767. [Google Scholar] [CrossRef] [Green Version]
- Alfa, R.W.; Park, S.; Skelly, K.R.; Poffenberger, G.; Jain, N.; Gu, X.; Kockel, L.; Wang, J.; Liu, Y.; Powers, A.C.; et al. Suppression of insulin production and secretion by a decretin hormone. Cell Metab. 2015, 21, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Chowański, S.; Spochacz, M.; Szymczak, M.; Rosiński, G. Effect of biogenic amines on the contractile activity of visceral muscles in the beetle Tenebrio molitor. Bull. Insectol. 2017, 70, 209–220. [Google Scholar]
- Boulay, J.L.; O’Shea, J.J.; Paul, W.E. Molecular phylogeny within type I cytokines and their cognate receptors. Immunity 2003, 19, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Domingos, A.I.; Vaynshteyn, J.; Sordillo, A.; Friedman, J.M. The reward value of sucrose in leptin-deficient obese mice. Mol. Metab. 2014, 3, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Tartaglia, L.A.; Dembski, M.; Weng, X.; Deng, N.; Culpepper, J.; Devos, R.; Richards, G.J.; Campfield, L.A.; Clark, F.T.; Deeds, J.; et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995, 83, 1263–1271. [Google Scholar] [CrossRef] [Green Version]
- Thanos, P.K.; Robison, L.S.; Robinson, J.K.; Michaelides, M.; Wang, G.J.; Volkow, N.D. Obese rats with deficient leptin signaling exhibit heightened sensitivity to olfactory food cues. Synapse 2013, 67, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Halaas, J.L.; Gajiwala, K.S.; Maffei, M.; Cohen, S.L.; Chait, B.T.; Rabinowitz, D.; Lallone, R.L.; Burley, S.K.; Friedman, J.M. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995, 269, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Urbański, A.; Walkowiak-Nowicka, K.; Nowicki, G.; Chowański, S.; Rosiński, G. Effect of short-term desiccation, recovery time and CAPA-PVK neuropeptides on the immune system of the burying beetle Nicrophorus vespilloides. Front. Physiol. 2021, 12, 845. [Google Scholar] [CrossRef]
- Brighton, P.J.; Szekeres, P.G.; Willars, G.B. Neuromedin U and its receptors: Structure, function, and physiological roles. Pharmacol. Rev. 2004, 56, 231–248. [Google Scholar] [CrossRef] [Green Version]
- Budhiraja, S.; Chugh, A. Neuromedin U: Physiology, pharmacology and therapeutic potential. Fundam. Clin. Pharmacol. 2009, 23, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, H.; Liu, S.; Wang, S.; Jiang, R.J.; Li, S. Hormonal and nutritional regulation of insect fat body development and function. Arch. Insect Biochem. Physiol. 2009, 71, 16–30. [Google Scholar] [CrossRef]
- Liu, W.; Tan, Q.Q.; Zhu, L.; Li, Y.; Zhu, F.; Lei, C.L.; Wang, X.P. Absence of juvenile hormone signalling regulates the dynamic expression profiles of nutritional metabolism genes during diapause preparation in the cabbage beetle Colaphellus bowringi. Insect Mol. Biol. 2017, 26, 530–542. [Google Scholar] [CrossRef]
- Buniam, J.; Chukijrungroat, N.; Rattanavichit, Y.; Surapongchai, J.; Weerachayaphorn, J.; Bupha-Intr, T.; Saengsirisuwan, V. 20-Hydroxyecdysone ameliorates metabolic and cardiovascular dysfunction in high-fat-high-fructose-fed ovariectomized rats. BMC Complement. Med. Ther. 2020, 20, 140. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.-L.; Zhang, J.-Y.; Wang, D.; Zhao, Y.-M.; Han, X.-L.; Wang, J.-X.; Zhao, X.-F. The steroid hormone 20-hydroxyecdysone binds to dopamine receptor to repress lepidopteran insect feeding and promote pupation. PLoS Genet. 2019, 15, e1008331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamoshida, Y.; Fujiyama-Nakamura, S.; Kimura, S.; Suzuki, E.; Lim, J.; Shiozaki-Sato, Y.; Kato, S.; Takeyama, K. Ecdysone receptor (EcR) suppresses lipid accumulation in the Drosophila fat body via transcription control. Biochem. Biophys. Res. Commun. 2012, 421, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, S.; Liu, H.; Wang, J.; Zhou, S.; Jiang, R.-J.; Bendena, W.G.; Li, S. 20-hydroxyecdysone reduces insect food consumption resulting in fat body lipolysis during molting and pupation. J. Mol. Cell. Biol. 2010, 2, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Liu, S.; Liu, H.; Li, S. 20-hydroxyecdysone upregulates apoptoti genes and induces apoptosis in th Bombyx fat body. Arch. Insect Biochem. Physiol. 2012, 79, 207–219. [Google Scholar] [CrossRef]
- Rovenko, B.M.; Kubrak, O.I.; Gospodaryov, D.V.; Perkhulyn, N.V.; Yurkevych, I.S.; Sanz, A.; Lushchak, V.; Lushchak, V.I. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. J. Insect Physiol. 2015, 79, 42–54. [Google Scholar] [CrossRef]
- Ling, L.; Raikhel, A.S. Cross-talk of insulin-like peptides, juvenile hormone, and 20-hydroxyecdysone in regulation of metabolism in the mosquito Aedes aegypti. Proc. Natl. Acad. Sci. USA 2021, 118, e2023470118. [Google Scholar] [CrossRef]
- Kizelsztein, P.; Govorko, D.; Komarnytsky, S.; Evans, A.; Wang, Z.; Cefalu, W.T.; Raskin, I. 20-Hydroxyecdysone decreases weight and hyperglycemia in a diet-induced obesity mice model. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E433–E439. [Google Scholar] [CrossRef] [Green Version]
- Foucault, A.S.; Mathé, V.; Lafont, R.; Even, P.; Dioh, W.; Veillet, S.; Tomé, D.; Huneau, J.F.; Hermier, D.; Quignard-Boulangé, A. Quinoa extract enriched in 20-hydroxyecdysone protects mice from diet-induced obesity and modulates adipokines expression. Obesity 2012, 20, 270–277. [Google Scholar] [CrossRef]
- Li, K.; Jia, Q.Q.; Li, S. Juvenile hormone signaling–a mini review. Insect Sci. 2019, 26, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Abrisqueta, M.; Süren-Castillo, S.; Maestro, J.L. Insulin receptor-mediated nutritional signalling regulates juvenile hormone biosynthesis and vitellogenin production in the German cockroach. Insect Biochem. Mol. Biol. 2014, 49, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Maestro, J.L.; Cobo, J.; Bellés, X. Target of rapamycin (TOR) mediates the transduction of nutritional signals into juvenile hormone production. J. Biol. Chem. 2009, 284, 5506–5513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Hedo, M.; Rivera-Perez, C.; Noriega, F.G. Starvation increases insulin sensitivity and reduces juvenile hormone synthesis in mosquitoes. PLoS ONE 2014, 9, e86183. [Google Scholar] [CrossRef] [PubMed]
- Kang, P.; Chang, K.; Liu, Y.; Bouska, M.; Birnbaum, A.; Karashchuk, G.; Thakore, R.; Zheng, W.; Post, S.; Brent, C.S. Drosophila Kruppel homolog 1 represses lipolysis through interaction with dFOXO. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sim, C.; Denlinger, D.L. Juvenile hormone III suppresses forkhead of transcription factor in the fat body and reduces fat accumulation in the diapausing mosquito, Culex pipiens. Insect Mol. Biol. 2013, 22, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Caccia, S.; Casartelli, M.; Tettamanti, G. The amazing complexity of insect midgut cells: Types, peculiarities, and functions. Cell Tissue Res. 2019, 377, 505–525. [Google Scholar] [CrossRef]
- Meunier, N.; Belgacem, Y.H.; Martin, J.-R. Regulation of feeding behaviour and locomotor activity by takeout in Drosophila. J. Exp. Biol. 2007, 210, 1424–1434. [Google Scholar] [CrossRef] [Green Version]
- Gáliková, M.; Klepsatel, P. Obesity and aging in the Drosophila model. Int. J. Mol. Sci. 2018, 19, 1896. [Google Scholar] [CrossRef] [Green Version]
- Wong, A.; Vanhove, A.; Watnick, P. The interplay between intestinal bacteria and host metabolism in health and disease: Lessons from Drosophila melanogaster. Dis. Model. Mech. 2016, 9, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Shen, J.; Li, Z.; Yao, J.; Li, W.; Xue, L.; Vandenberg, L.N.; Yin, D. Obesogenic effect of sulfamethoxazole on Drosophila melanogaster with simultaneous disturbances on eclosion rhythm, glucolipid metabolism, and, microbiota. Environ. Sci. Technol. 2020, 54, 5667–5675. [Google Scholar] [CrossRef]
- Zheng, H.; Steele, M.I.; Leonard, S.P.; Motta, E.V.; Moran, N.A. Honey bees as models for gut microbiota research. Lab Anim. 2018, 47, 317–325. [Google Scholar] [CrossRef]
- De Greeve, P.; De Leeuw, W.; van Zutphen, B. Trends in animal use and animal alternatives. Altern. Lab. Anim. 2004, 32, 13–19. [Google Scholar] [CrossRef]
- Bier, E.; Bodmer, R. Drosophila, an emerging model for cardiac disease. Gene 2004, 342, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ambegaokar, S.S.; Roy, B.; Jackson, G.R. Neurodegenerative models in Drosophila: Polyglutamine disorders, Parkinson disease, and amyotrophic lateral sclerosis. Neurobiol. Dis. 2010, 40, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Wells, D.J.; Wells, K.E. What do animal models have to tell us regarding Duchenne muscular dystrophy? Acta Myol. 2005, 24, 172–180. [Google Scholar] [PubMed]
- Russel, W.M.S.; Burch, R.L. The principles of humane experimental technique. Med. J. Aust. 1960, 1, 500. [Google Scholar]
- Reiter, L.T.; Potocki, L.; Chien, S.; Gribskov, M.; Bier, E. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 2001, 11, 1114–1125. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, Y.; Sumiya, E.; Sugita, T.; Sekimizu, K. An invertebrate hyperglycemic model for the identification of anti-diabetic drugs. PLoS ONE 2011, 6, e18292. [Google Scholar] [CrossRef] [Green Version]
- Warbrick-Smith, J.; Behmer, S.T.; Lee, K.P.; Raubenheimer, D.; Simpson, S.J. Evolving resistance to obesity in an insect. Proc. Natl. Acad. Sci. USA 2006, 103, 14045–14049. [Google Scholar] [CrossRef] [Green Version]
- Schilder, R.J.; Marden, J.H. Metabolic syndrome and obesity in an insect. Proc. Natl. Acad. Sci. USA 2006, 103, 18805–18809. [Google Scholar] [CrossRef] [Green Version]
- Ahn, M.Y.; Kim, B.J.; Yoon, H.J.; Hwang, J.S.; Park, K.K. Anti-diabetic effects of dung beetle glycosaminoglycan on db mice and gene expression profiling. Toxicol. Res. 2018, 34, 151–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, M.Y.; Kim, B.J.; Kim, H.J.; Yoon, H.J.; Jee, S.D.; Hwang, J.S.; Park, K.K. Anti-obesity effect of Bombus ignitus queen glycosaminoglycans in rats on a high-fat diet. Int. J. Mol. Sci. 2017, 18, 681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Gu, H.; Jo, J.M.; Shin, M.; Kim, S.Y.; Gam, D.H.; Imamura, S.; Kim, J.W. Production of functional peptide with anti-obesity effect from defatted Tenebrio molitor larvae using proteolytic enzyme. Biotechnol. Bioprocess Eng. 2020, 25, 374–383. [Google Scholar] [CrossRef]
- Seo, M.; Goo, T.-W.; Chung, M.Y.; Baek, M.; Hwang, J.-S.; Kim, M.-A.; Yun, E.-Y. Tenebrio molitor larvae inhibit adipogenesis through AMPK and MAPKs signaling in 3T3-L1 adipocytes and obesity in high-fat diet-induced obese mice. Int. J. Mol. Sci. 2017, 18, 518. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walkowiak-Nowicka, K.; Chowański, S.; Urbański, A.; Marciniak, P. Insects as a New Complex Model in Hormonal Basis of Obesity. Int. J. Mol. Sci. 2021, 22, 11066. https://doi.org/10.3390/ijms222011066
Walkowiak-Nowicka K, Chowański S, Urbański A, Marciniak P. Insects as a New Complex Model in Hormonal Basis of Obesity. International Journal of Molecular Sciences. 2021; 22(20):11066. https://doi.org/10.3390/ijms222011066
Chicago/Turabian StyleWalkowiak-Nowicka, Karolina, Szymon Chowański, Arkadiusz Urbański, and Paweł Marciniak. 2021. "Insects as a New Complex Model in Hormonal Basis of Obesity" International Journal of Molecular Sciences 22, no. 20: 11066. https://doi.org/10.3390/ijms222011066
APA StyleWalkowiak-Nowicka, K., Chowański, S., Urbański, A., & Marciniak, P. (2021). Insects as a New Complex Model in Hormonal Basis of Obesity. International Journal of Molecular Sciences, 22(20), 11066. https://doi.org/10.3390/ijms222011066