An In Vivo Study of a Rat Fluid-Percussion-Induced Traumatic Brain Injury Model with [11C]PBR28 and [18F]flumazenil PET Imaging
Abstract
:1. Introduction
2. Results
2.1. PET Imaging
2.2. Immunohistochemical Analyses
3. Materials and Methods
3.1. Preparation for Lateral Fluid Percussion
3.2. Post-FPI Monitoring Phase
3.3. Euthanasia of the Animals
3.4. Perfusion
3.5. Immunohistochemistry
3.6. Synthesis of [11C]PBR28
3.7. Synthesis of [18F]flumazenil
3.8. PET Imaging and Data Analysis
4. Future Direction and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
11C | carbon-11 |
18F | fluorine-18 |
18O | oxygen-18 |
AUC | area-under-curve |
CT | computed tomography |
DAB | 3, 3′-diaminobenzidine tetrachloride |
DMF | N,N-dimethylformamide |
DMSO | dimethylsulfoxide |
GABAA | γ-aminobutyric acid type A |
HPLC | high-performance liquid chromatography |
LFP | lateral fluid percussion |
LFPI | LFP-induced |
LNP | lipid nanoparticle |
PBS | phosphate-buffered saline |
PBS-T | PBS-triton |
PET | positron emission tomography |
SPECT | single-photon emission computed tomography |
SUV | standardized uptake values |
SV2 | synaptic vesicle proteins 2 |
TAC | time activity curve |
TBI | traumatic brain injury |
TSPO | translocator protein |
References
- Faul, M.; Xu, L.; Wald, M.M.; Coronado, V.G. Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalisation and Deaths 2002–2006; Centers for Disease Control and Prevention, National Center for Injury Prevention and Control: Atlanta, GA, USA, 2010; pp. 1–71.
- French, L.M.; Parkinson, G.W. Assessing and treating veterans with traumatic brain injury. J. Clin. Psychol. 2008, 64, 1004–1013. [Google Scholar] [CrossRef] [PubMed]
- Hoge, C.W.; McGurk, D.; Thomas, J.L.; Cox, A.L.; Engel, C.C.; Castro, C.A. Mild traumatic brain injury in US soldiers returning from Iraq. N. Engl. J. Med. 2008, 358, 453–463. [Google Scholar] [CrossRef]
- Dixon, C.E.; Lyeth, B.G.; Povlishock, J.T.; Findling, R.L.; Hamm, R.J.; Marmarou, A.; Young, H.F.; Hayes, R.L. A fluid percussion model of experimental brain injury in the rat. J. Neurosurg. 1987, 67, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Thompson, H.J.; Lifshitz, J.; Marklund, N.; Grady, M.S.; Graham, D.I.; Hovda, D.A.; McIntosh, T.K. Lateral fluid percussion brain injury: A 15-year review and evaluation. J. Neurotrauma 2005, 22, 42–75. [Google Scholar] [CrossRef] [PubMed]
- Dixon, C.E.; Clifton, G.L.; Lighthall, J.W.; Yaghmai, A.A.; Hayes, R.L. A controlled cortical impact model of traumatic brain injury in the rat. J. Neurosci. Methods 1991, 39, 253–262. [Google Scholar] [CrossRef]
- Lighthall, J.W. Controlled cortical impact: A new experimental brain injury model. J. Neurotrauma 1988, 5, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Marmarou, A.; Foda, M.A.A.-E.; Van Den Brink, W.; Campbell, J.; Kita, H.; Demetriadou, K. A new model of diffuse brain injury in rats: Part I: Pathophysiology and biomechanics. J. Neurosurg. 1994, 80, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Alder, J.; Fujioka, W.; Lifshitz, J.; Crockett, D.P.; Thakker-Varia, S. Lateral fluid percussion: Model of traumatic brain injury in mice. JoVE J. Vis. Exp. 2011, e3063. [Google Scholar] [CrossRef] [Green Version]
- Kabadi, S.V.; Hilton, G.D.; Stoica, B.A.; Zapple, D.N.; Faden, A.I. Fluid-percussion–induced traumatic brain injury model in rats. Nat. Protoc. 2010, 5, 1552. [Google Scholar] [CrossRef]
- Ametamey, S.M.; Honer, M.; Schubiger, P.A. Molecular imaging with PET. Chem. Rev. 2008, 108, 1501–1516. [Google Scholar] [CrossRef]
- Zhimin, W.; Yang, C.-T.; Ghosh, K.K.; Kumar, S.; Padmanabhan, P.; Halldin, C.; Gulyás, B. In vivo PET Imaging of the changes in a rat fluid-percussion-induced traumatic brain injury model with [11C] PBR28 and [18F] flumazenil: A preliminary study. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, S450–S451. [Google Scholar]
- Gao, X.; Chen, J. Mild traumatic brain injury results in extensive neuronal degeneration in the cerebral cortex. J. Neuropathol. Exp. Neurol. 2011, 70, 183–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schimmel, S.J.; Acosta, S.; Lozano, D. Neuroinflammation in traumatic brain injury: A chronic response to an acute injury. Brain Circ. 2017, 3, 135–142. [Google Scholar] [PubMed]
- Schain, M.; Kreisl, W.C. Neuroinflammation in neurodegenerative disorders—A review. Curr. Neurol. Neurosci. Rep. 2017, 17, 25. [Google Scholar] [CrossRef] [PubMed]
- Venneti, S.; Lopresti, B.J.; Wiley, C.A. The peripheral benzodiazepine receptor (translocator protein 18 kDa) in microglia: From pathology to imaging. Prog. Neurobiol. 2006, 80, 308–322. [Google Scholar] [CrossRef] [Green Version]
- Venneti, S.; Lopresti, B.J.; Wiley, C.A. Molecular imaging of microglia/macrophages in the brain. Glia 2013, 61, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Owen, D.R.; Howell, O.W.; Tang, S.-P.; Wells, L.A.; Bennacef, I.; Bergstrom, M.; Gunn, R.N.; Rabiner, E.A.; Wilkins, M.R.; Reynolds, R. Two binding sites for [3H] PBR28 in human brain: Implications for TSPO PET imaging of neuroinflammation. J. Cereb. Blood Flow Metab. 2010, 30, 1608–1618. [Google Scholar] [CrossRef] [Green Version]
- Walker, M.D.; Dinelle, K.; Kornelsen, R.; Lee, N.V.; Miao, Q.; Adam, M.; Takhar, C.; Mak, E.; Schulzer, M.; Farrer, M.J. [11C] PBR28 PET imaging is sensitive to neuroinflammation in the aged rat. J. Cereb. Blood Flow Metab. 2015, 35, 1331–1338. [Google Scholar] [CrossRef] [Green Version]
- Zanotti-Fregonara, P.; Pascual, B.; Rizzo, G.; Yu, M.; Pal, N.; Beers, D.; Carter, R.; Appel, S.H.; Atassi, N.; Masdeu, J.C. Head-to-Head Comparison of 11C-PBR28 and 18F-GE180 for Quantification of the Translocator Protein in the Human Brain. J. Nucl. Med. 2018, 59, 1260–1266. [Google Scholar] [CrossRef] [Green Version]
- Pascual, B.; Prieto, E.; Arbizu, J.; Marti-Climent, J.M.; Peñuelas, I.; Quincoces, G.; Zarauza, R.; Pappatà, S.; Masdeu, J.C. Decreased carbon-11-flumazenil binding in early Alzheimer’s disease. Brain 2012, 135, 2817–2825. [Google Scholar] [CrossRef] [Green Version]
- Heiss, W.-D.; Grond, M.; Thiel, A.; Ghaemi, M.; Sobesky, J.; Rudolf, J.; Bauer, B.; Wienhard, K. Permanent cortical damage detected by flumazenil positron emission tomography in acute stroke. Stroke 1998, 29, 454–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odano, I.; Halldin, C.; Karlsson, P.; Varrone, A.; Airaksinen, A.J.; Krasikova, R.N.; Farde, L. [18F] Flumazenil binding to central benzodiazepine receptor studies by PET:–Quantitative analysis and comparisons with [11C] flumazenil–. Neuroimage 2009, 45, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Rodnick, M.E.; Hockley, B.G.; Sherman, P.; Quesada, C.; Battle, M.R.; Jackson, A.; Linder, K.E.; Macholl, S.; Trigg, W.J.; Kilbourn, M.R. Novel fluorine-18 PET radiotracers based on flumazenil for GABAA imaging in the brain. Nucl. Med. Biol. 2013, 40, 901–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bădan, M.-I.; Bonci, E.-A.; Piciu, D. A review on immunohistochemical and histopathologic validation in PET-CT findings with consideration to microRNAs. Med. Pharm. Rep. 2019, 92, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Arenth, P.M.; Russell, K.C.; Scanlon, J.M.; Kessler, L.J.; Ricker, J.H. Corpus callosum integrity and neuropsychological performance after traumatic brain injury: A diffusion tensor imaging study. J. Head Trauma Rehabil. 2014, 29, E1–E10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, V.E.; Stewart, W.; Weber, M.T.; Cullen, D.K.; Siman, R.; Smith, D.H. SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury. Acta Neuropathol. 2016, 131, 115–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loane, D.J.; Kumar, A.; Stoica, B.A.; Cabatbat, R.; Faden, A.I. Progressive neurodegeneration after experimental brain trauma: Association with chronic microglial activation. J. Neuropathol. Exp. Neurol. 2014, 73, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Girgis, F.; Pace, J.; Sweet, J.; Miller, J.P. Hippocampal neurophysiologic changes after mild traumatic brain injury and potential neuromodulation treatment approaches. Front. Syst. Neurosci. 2016, 10, 8. [Google Scholar] [CrossRef]
- Kaur, C.; Ling, E. Activation and re-expression of surface antigen in microglia following an epidural application of kainic acid in the rat brain. J. Anat. 1992, 180, 333–342. [Google Scholar]
- Kanwar, J.R.; Sun, X.; Punj, V.; Sriramoju, B.; Mohan, R.R.; Zhou, S.-F.; Chauhan, A.; Kanwar, R.K. Nanoparticles in the treatment and diagnosis of neurological disorders: Untamed dragon with fire power to heal. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 399–414. [Google Scholar] [CrossRef]
- Padmanabhan, P.; Palanivel, M.; Kumar, A.; Máthé, D.; Radda, G.K.; Lim, K.-L.; Gulyás, B. Nanotheranostic agents for neurodegenerative diseases. Emerg. Top. Life Sci. 2020, 4, 645–675. [Google Scholar]
- Sharma, M.; Dube, T.; Chibh, S.; Kour, A.; Mishra, J.; Panda, J.J. Nanotheranostics, a future remedy of neurological disorders. Expert Opin. Drug Ddelivery 2019, 16, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Goel, S.; England, C.G.; Chen, F.; Cai, W. Positron emission tomography and nanotechnology: A dynamic duo for cancer theranostics. Adv. Drug Deliv. Rev. 2017, 113, 157–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waarde, A.v. Measuring receptor occupancy with PET. Curr. Pharm. Des. 2000, 6, 1593–1610. [Google Scholar] [CrossRef] [PubMed]
- Chakravarty, R.; Hong, H.; Cai, W. Positron emission tomography image-guided drug delivery: Current status and future perspectives. Mol. Pharm. 2014, 11, 3777–3797. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Song, S.; Zhao, J.; Tian, M.; Li, C. Theranostic CuS nanoparticles targeting folate receptors for PET image-guided photothermal therapy. J. Mater. Chem. B 2015, 3, 8939–8948. [Google Scholar] [CrossRef] [Green Version]
- Marcos-Contreras, O.A.; Greineder, C.F.; Kiseleva, R.Y.; Parhiz, H.; Walsh, L.R.; Zuluaga-Ramirez, V.; Myerson, J.W.; Hood, E.D.; Villa, C.H.; Tombacz, I. Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood–brain barrier. Proc. Natl. Acad. Sci. USA 2020, 117, 3405–3414. [Google Scholar] [CrossRef]
- Ling, G.S.; Lee, E.Y.; Kalehua, A.N. Traumatic brain injury in the rat using the fluid-percussion model. Curr. Protoc. Neurosci. 2004, 28, 9.2.1–9.2.11. [Google Scholar] [CrossRef]
- Zacny, J.P.; Conley, K.; Galinkin, J. Comparing the subjective, psychomotor and physiological effects of intravenous buprenorphine and morphine in healthy volunteers. J. Pharmacol. Exp. Ther. 1997, 282, 1187–1197. [Google Scholar]
- Tóth, M.; Doorduin, J.; Häggkvist, J.; Varrone, A.; Amini, N.; Halldin, C.; Gulyás, B. Positron emission tomography studies with [11 C] PBR28 in the healthy rodent brain: Validating SUV as an outcome measure of neuroinflammation. PLoS ONE 2015, 10, e0125917. [Google Scholar] [CrossRef] [Green Version]
- Ryzhikov, N.N.; Seneca, N.; Krasikova, R.N.; Gomzina, N.A.; Shchukin, E.; Fedorova, O.S.; Vassiliev, D.A.; Gulyás, B.; Hall, H.; Savic, I.; et al. Preparation of highly specific radioactivity [18F] flumazenil and its evaluation in cynomolgus monkey by positron emission tomography. Nucl. Med. Biol. 2005, 32, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Nagy, K.; Tóth, M.; Major, P.; Patay, G.; Egri, G.; Häggkvist, J.; Varrone, A.; Farde, L.; Halldin, C.; Gulyás, B. Performance evaluation of the small-animal nanoScan PET/MRI system. J. Nucl. Med. 2013, 54, 1825–1832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiffer, W.K.; Mirrione, M.M.; Biegon, A.; Alexoff, D.L.; Patel, V.; Dewey, S.L. Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J. Neurosci. Methods 2006, 155, 272–284. [Google Scholar] [CrossRef]
- Li, S.; Cai, Z.; Zhang, W.; Holden, D.; Lin, S.-F.; Finnema, S.J.; Shirali, A.; Ropchan, J.; Carre, S.; Mercier, J. Synthesis and in vivo evaluation of [18 F] UCB-J for PET imaging of synaptic vesicle glycoprotein 2A (SV2A). Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1952–1965. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu, C.C.; Tresse, C.; Zheng, M.; Gouasmat, A.; Carroll, V.M.; Mistico, L.; Alagille, D.; Sandiego, C.M.; Papin, C.; Marek, K. Development and in vivo preclinical imaging of fluorine-18-labeled synaptic vesicle protein 2A (SV2A) PET tracers. Mol. Imaging Biol. 2019, 21, 509–518. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, K.K.; Padmanabhan, P.; Yang, C.-T.; Wang, Z.; Palanivel, M.; Ng, K.C.; Lu, J.; Carlstedt-Duke, J.; Halldin, C.; Gulyás, B. An In Vivo Study of a Rat Fluid-Percussion-Induced Traumatic Brain Injury Model with [11C]PBR28 and [18F]flumazenil PET Imaging. Int. J. Mol. Sci. 2021, 22, 951. https://doi.org/10.3390/ijms22020951
Ghosh KK, Padmanabhan P, Yang C-T, Wang Z, Palanivel M, Ng KC, Lu J, Carlstedt-Duke J, Halldin C, Gulyás B. An In Vivo Study of a Rat Fluid-Percussion-Induced Traumatic Brain Injury Model with [11C]PBR28 and [18F]flumazenil PET Imaging. International Journal of Molecular Sciences. 2021; 22(2):951. https://doi.org/10.3390/ijms22020951
Chicago/Turabian StyleGhosh, Krishna Kanta, Parasuraman Padmanabhan, Chang-Tong Yang, Zhimin Wang, Mathangi Palanivel, Kian Chye Ng, Jia Lu, Jan Carlstedt-Duke, Christer Halldin, and Balázs Gulyás. 2021. "An In Vivo Study of a Rat Fluid-Percussion-Induced Traumatic Brain Injury Model with [11C]PBR28 and [18F]flumazenil PET Imaging" International Journal of Molecular Sciences 22, no. 2: 951. https://doi.org/10.3390/ijms22020951
APA StyleGhosh, K. K., Padmanabhan, P., Yang, C. -T., Wang, Z., Palanivel, M., Ng, K. C., Lu, J., Carlstedt-Duke, J., Halldin, C., & Gulyás, B. (2021). An In Vivo Study of a Rat Fluid-Percussion-Induced Traumatic Brain Injury Model with [11C]PBR28 and [18F]flumazenil PET Imaging. International Journal of Molecular Sciences, 22(2), 951. https://doi.org/10.3390/ijms22020951