Signaling Enzymes and Ion Channels Being Modulated by the Actin Cytoskeleton at the Plasma Membrane
Abstract
:1. Introduction
2. Modulation of the Ca2+ Signal Transduction by the Actin Cytoskeleton in the Cells of Immune Response
2.1. T-Lymphocytes
2.2. Mast Cells
2.3. Platelets
3. Modulation of Cytokine or Trophic Factor Signaling Pathways by the Cortical Actin Cytoskeleton
4. Actin-Binding-Proteins in Controlling Enzyme Activity
5. Modulation of the Ion Channels Activity by the Actin Cytoskeleton
6. F-Actin Depolymerization Is Often Sufficient to Trigger Cell Signaling
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CD3 | Cluster of differentiation 3 |
PLC | Phospholipase C |
PIP2 | Phosphatidylinositol 4,5-bisphosphate |
RBL-2H3 | Rat Basophilic Leukemia 2H3 |
αIIbβ3 | Platelet-specific integrin receptor |
DAG | Diacylglycerol |
EGF | Epidermal growth factor |
M-CSF | Macrophage colony stimulated factor |
HME | Human mammary epithelial |
AFAP | Actin-filament associated protein |
CFTR | Human cystic fibrosis transmembrane conductance regulator |
PKA | Protein kinase A |
CYT-D | Cytochalasin D |
LAT-A | Latrunculin A |
cAMP | adenosine 3’,5’-cyclic monophosphate |
References
- Luo, L. Actin Cytoskeleton Regulation in Neuronal Morphogenesis and Structural Plasticity. Ann. Rev. Cell Dev. Biol. 2002, 18, 601–635. [Google Scholar] [CrossRef] [Green Version]
- Pollard, T.D.; Borisy, G.G. Cellular Motility Driven by Assembly and Disassembly of Actin Filaments. Cell 2003, 112, 453–465. [Google Scholar] [CrossRef] [Green Version]
- Salbreux, G.; Charras, G.; Paluch, E. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 2012, 22, 536–545. [Google Scholar] [CrossRef]
- Schaks, M.; Giannone, G.; Rottner, K. Actin dynamics in cell migration. Essays Biochem. 2019, 63, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.G. The Structure of Resting and Activated Platelets. In Platelets, 4th ed.; Michelson, A.D., Ed.; Academic Press BV: Cambridge, MA, USA, 2019; pp. 47–77. [Google Scholar]
- Forscher, P.; Smith, S.J. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J. Cell Biol. 1988, 107, 1505–1516. [Google Scholar] [CrossRef] [Green Version]
- May, R.; Machesky, L. Phagocytosis and the actin cytoskeleton. J. Cell Sci. 2001, 114, 1061–1077. [Google Scholar] [CrossRef]
- Santella, L.; Limatola, N.; Chun, J.T. Cellular and molecular aspects of oocyte maturation and fertilization: A perspective from the actin cytoskeleton. Zool. Lett. 2020, 6, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Remedios, C.G.; Chhabra, D.; Kekic, M.; Dedova, I.V.; Tsubakihara, M.; Berry, D.A.; Nosworthy, N.J. Actin Binding Proteins: Regulation of Cytoskeletal Microfilaments. Physiol. Rev. 2003, 83, 433–473. [Google Scholar] [CrossRef] [PubMed]
- Saarikangas, J.; Zhao, H.; Lappalainen, P. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinosi-tides. Physiol. Rev. 2010, 90, 259–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollard, T.D. Actin and Actin-Binding Proteins. Cold Spring Harb. Perspect. Biol. 2016, 8, a018226. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.L.; Janmey, P.A. Phosphoinositide Regulation of the Actin Cytoskeleton. Annu. Rev. Physiol. 2003, 65, 761–789. [Google Scholar] [CrossRef]
- Di Paolo, G.; De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 2006, 443, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Senju, Y.; Kalimeri, M.; Koskela, E.V.; Somerharju, P.; Zhao, H.; Vattulainen, I.; Lappalainen, P. Mechanistic principles underlying regulation of the actin cytoskeleton by phosphoinositides. Proc. Natl. Acad. Sci. USA 2017, 114, E8977–E8986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janmey, P.A. The Cytoskeleton and Cell Signaling: Component Localization and Mechanical Coupling. Physiol. Rev. 1998, 78, 763–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santella, L.; Chun, J.T. Actin, more than just a housekeeping protein at the scene of fertilization. Sci. China Life Sci. 2011, 54, 733–743. [Google Scholar] [CrossRef] [Green Version]
- Maltese, W.A. Posttranslational modification of proteins by isoprenoids in mammalian cells. FASEB J. 1990, 4, 3319–3328. [Google Scholar] [CrossRef]
- Cadwallader, K.A.; Paterson, H.; Macdonald, S.G.; Hancock, J.F. N-terminally myristoylated RAS proteins require palmitoylation or a polybasic domain for plasma membrane localization. Mol. Cell. Biol. 1994, 14, 4722–4730. [Google Scholar] [CrossRef] [Green Version]
- Resh, M.D. Fatty acylation of proteins: New insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta (BBA) Bioenerg. 1999, 1451, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Fukui, Y.; O’Brien, M.C.; Hanafusa, H. Deletions in the SH2 domain of p60v-src prevent association with the detergent-insoluble cellular matrix. Mol. Cell. Biol. 1991, 11, 1207–1213. [Google Scholar] [CrossRef] [Green Version]
- Grondin, P.; Plantavid, M.; Sultan, C.; Breton, M.; Mauco, G.; Chap, H. Interaction of pp60c-src, phospholipase C, inositol-lipid, and diacyglycerol kinases with the cytoskeletons of thrombin-stimulated platelets. J. Biol. Chem. 1991, 266, 15705–15709. [Google Scholar] [CrossRef]
- Helmke, S.; Pfenninger, K.H. Growth cone enrichment and cytoskeletal association of non-receptor tyrosine kinases. Cell Motil. Cytoskelet. 1995, 30, 194–207. [Google Scholar] [CrossRef]
- Rosado, J. A Role for the Actin Cytoskeleton in the Initiation and Maintenance of Store-Mediated Calcium Entry in Human Platelets. Trends Cardiovasc. Med. 2000, 10, 327–332. [Google Scholar] [CrossRef]
- Dalghi, M.G.; Fernández, M.M.; Ferreira-Gomes, M.; Mangialavori, I.C.; Malchiodi, E.L.; Strehler, E.E.; Rossi, J.P.F.C. Plasma Membrane Calcium ATPase Activity Is Regulated by Actin Oligomers through Direct Interaction. J. Biol. Chem. 2013, 288, 23380–23393. [Google Scholar] [CrossRef] [Green Version]
- Mazzochi, C.; Benos, D.J.; Smith, P.R. Interaction of epithelial ion channels with the actin-based cytoskeleton. Am. J. Physiol. Physiol. 2006, 291, F1113–F1122. [Google Scholar] [CrossRef] [Green Version]
- Dalghi, M.G.; Ferreira-Gomes, M.; Rossi, J.P. Regulation of the Plasma Membrane Calcium ATPases by the actin cytoskeleton. Biochem. Biophys. Res. Commun. 2018, 506, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.E.; Koleske, A.J. Functional interactions of ion channels with the actin cytoskeleton: Does coupling to dynamic actin regulate NMDA receptors? J. Physiol. 2021, 599, 431–441. [Google Scholar] [CrossRef]
- Morachevskaya, E.A.; Sudarikova, A.V. Actin dynamics as critical ion channel regulator: ENaC and Piezo in focus. Am. J. Physiol. Physiol. 2021, 320, C696–C702. [Google Scholar] [CrossRef]
- Spira, M.E.; Oren, R.; Dormann, A.; Ilouz, N.; Lev, S. Calcium, protease activation, and cytoskeleton remodeling underlie growth cone formation and neuronal regeneration. Cell. Mol. Neurobiol. 2001, 21, 591–604. [Google Scholar] [CrossRef]
- Furuyashiki, T.; Arakawa, Y.; Takemoto-Kimura, S.; Bito, H.; Narumiya, S. Multiple spatiotemporal modes of actin reorganization by NMDA receptors and voltage-gated Ca2+ channels. Proc. Natl. Acad. Sci. USA 2002, 99, 14458–14463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hepler, P.K. The Cytoskeleton and Its Regulation by Calcium and Protons. Plant Physiol. 2016, 170, 3–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izadi, M.; Hou, W.; Qualmann, B.; Kessels, M.M. Direct effects of Ca2+/calmodulin on actin filament formation. Biochem. Biophys. Res. Commun. 2018, 506, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Lange, K. Microvillar Ca++ signaling: A new view of an old problem. J. Cell. Physiol. 1999, 180, 19–34. [Google Scholar] [CrossRef]
- Chun, J.T.; Santella, L. Roles of the actin-binding proteins in intracellular Ca2+ signalling. Acta Physiol. 2009, 195, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Vasilev, F.; Chun, J.T.; Gragnaniello, G.; Garante, E.; Santella, L. Effects of Ionomycin on Egg Activation and Early Development in Starfish. PLoS ONE 2012, 7, e39231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, M.; Sunagawa, M.; Kosugi, T.; Sperelakis, N. Actin filament disruption inhibits L-type Ca2+ channel current in cultured vascular smooth muscle cells. Am. J. Physiol. Physiol. 2000, 279, C480–C487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supłat, D.; Targos, B.; Sabała, P.; Barańska, J.; Pomorski, P. Differentiation of answer of glioma C6 cells to SERCA pump inhibitors by actin disorganization. Biochem. Biophys. Res. Commun. 2004, 323, 870–875. [Google Scholar] [CrossRef]
- Vasilev, F.; Limatola, N.; Park, D.-R.; Kim, U.-H.; Santella, L.; Chun, J.T. Disassembly of Subplasmalemmal Actin Filaments Induces Cytosolic Ca2+ Increases in Astropecten aranciacus Eggs. Cell. Physiol. Biochem. 2018, 48, 2011–2034. [Google Scholar] [CrossRef]
- Nusco, G.A.; Chun, J.T.; Ercolano, E.; Lim, D.; Gragnaniello, G.; Kyozuka, K.; Santella, L. Modulation of calcium signalling by the actin-binding protein cofilin. Biochem. Biophys. Res. Commun. 2006, 348, 109–114. [Google Scholar] [CrossRef]
- Kyozuka, K.; Chun, J.T.; Puppo, A.; Gragnaniello, G.; Garante, E.; Santella, L. Actin cytoskeleton modulates calcium signaling during maturation of starfish oocytes. Dev. Biol. 2008, 320, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Kyozuka, K.; Chun, J.T.; Puppo, A.; Gragnaniello, G.; Garante, E.; Santella, L. Guanine Nucleotides in the Meiotic Maturation of Starfish Oocytes: Regulation of the Actin Cytoskeleton and of Ca2+ Signaling. PLoS ONE 2009, 4, e6296. [Google Scholar] [CrossRef]
- Chun, J.T.; Limatola, N.; Vasilev, F.; Santella, L. Early events of fertilization in sea urchin eggs are sensitive to actin-binding organic molecules. Biochem. Biophys. Res. Commun. 2014, 450, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Limatola, N.; Chun, J.T.; Kyozuka, K.; Santella, L. Novel Ca2+ increases in the maturing oocytes of starfish during the germinal vesicle breakdown. Cell Calcium 2015, 58, 500–510. [Google Scholar] [CrossRef]
- Santella, L.; Limatola, N.; Vasilev, F.; Chun, J.T. Maturation and fertilization of echinoderm eggs: Role of actin cytoskeleton dynamics. Biochem. Biophys. Res. Commun. 2018, 506, 361–371. [Google Scholar] [CrossRef]
- Abraham, R.T.; Weiss, A. Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat. Rev. Immunol. 2004, 4, 301–308. [Google Scholar] [CrossRef]
- Arrieumerlou, C.; Randriamampita, C.; Bismuth, G.; Trautmann, A. Rac Is Involved in Early TCR Signaling. J. Immunol. 2000, 165, 3182–3189. [Google Scholar] [CrossRef] [Green Version]
- Wolf, I.M.A.; Guse, A.H. Ca2+ Microdomains in T-Lymphocytes. Front. Oncol. 2017, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Trebak, M.; Kinet, J.-P. Calcium signalling in T cells. Nat. Rev. Immunol. 2019, 19, 154–169. [Google Scholar] [CrossRef]
- Friedmann, K.S.; Bozem, M.; Hoth, M. Calcium signal dynamics in T lymphocytes: Comparing in vivo and in vitro measurements. Semin. Cell Dev. Biol. 2019, 94, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Thauland, T.J.; Hu, K.H.; Bruce, M.A.; Butte, M.J. Cytoskeletal adaptivity regulates T cell receptor signaling. Sci. Signal. 2017, 10, eaah3737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ang, W.G.; Church, A.M.; Kulis, M.; Choi, H.W.; Burks, A.W.; Abraham, S.N. Mast cell desensitization inhibits calcium flux and aberrantly remodels actin. J. Clin. Investig. 2016, 126, 4103–4118. [Google Scholar] [CrossRef] [Green Version]
- Olivera, A.; Beaven, M.A.; Metcalfe, D.D. Mast cells signal their importance in health and disease. J. Allergy Clin. Immunol. 2018, 142, 381–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oka, T.; Sato, K.; Hori, M.; Ozaki, H.; Karaki, H. FcεRI cross-linking-induced actin assembly mediates calcium signalling in RBL-2H3 mast cells. Br. J. Pharmacol. 2002, 136, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Frigeri, L.; Apgar, J.R. The role of actin microfilaments in the down-regulationdownregulation of the degranulation re-sponse in RBL-2H3 mast cells. J. Immunol. 1999, 162, 2243–2250. [Google Scholar] [PubMed]
- Teshima, R.; Ikebuchi, H.; Nakanishi, M.; Sawada, J. Stimulatory effect of pervanadate on calcium signals and histamine secretion of RBL-2H3 cells. Biochem. J. 1994, 302, 867–874. [Google Scholar] [CrossRef] [Green Version]
- Sheshachalam, A.; Baier, A.; Eitzen, G. The effect of Rho drugs on mast cell activation and degranulation. J. Leukoc. Biol. 2017, 102, 71–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dráberová, L.; Amoui, M.; Dráber, P. Thy-1-mediated activation of rat mast cells: The role of Thy-1 membrane microdomains. Immunology 1996, 87, 141–148. [Google Scholar] [PubMed]
- Tolarová, H.; Dráberová, L.; Heneberg, P.; Dráber, P. Involvement of filamentous actin in setting the threshold for degranulation in mast cells. Eur. J. Immunol. 2004, 34, 1627–1636. [Google Scholar] [CrossRef] [PubMed]
- Pivniouk, V.I.; Snapper, S.B.; Kettner, A.; Alenius, H.; Laouini, D.; Falet, H.; Hartwig, J.; Alt, F.W.; Geha, R.S. Impaired signaling via the high-affinity IgE receptor in Wiskott-Aldrich syndrome protein-deficient mast cells. Int. Immunol. 2003, 15, 1431–1440. [Google Scholar] [CrossRef] [Green Version]
- Yoon, E.; Beom, S.; Cheong, H.; Kim, S.; Oak, M.; Cho, D.; Kim, K.-M. Differential regulation of phospholipase Cγ subtypes through FcεRI, high affinity IgE receptor. Biochem. Biophys. Res. Commun. 2004, 325, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Wakefield, D.L.; Holowka, D.; Baird, B. The FcεRI signaling cascade and integrin trafficking converge at patterned ligand surfaces. Mol. Biol. Cell 2017, 28, 3383–3396. [Google Scholar] [CrossRef] [Green Version]
- Holowka, D.; Sheets, E.D.; Baird, B. Interactions between FceRI and lipid raft components are regulated by the actin cytoskeleton. J. Cell Sci. 2000, 6, 1009–1019. [Google Scholar] [CrossRef]
- Shelby, S.A.; Veatch, S.L.; Holowka, D.A.; Baird, B.A. Functional nanoscale coupling of Lyn kinase with IgE-FcεRI is restricted by the actin cytoskeleton in early antigen-stimulated signaling. Mol. Biol. Cell 2016, 27, 3645–3658. [Google Scholar] [CrossRef] [PubMed]
- Frelinger, A.; Michelson, A.D.; Gremmel, T. Platelet Physiology. Semin. Thromb. Hemost. 2016, 42, 191–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estevez, B.; Du, X. New Concepts and Mechanisms of Platelet Activation Signaling. Physiology 2017, 32, 162–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharf, R.E. Platelet Signaling in Primary Haemostasis and Arterial Thrombus Formation: Part 2. Hämostaseologie 2018, 38, 211–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obergfell, A.; Eto, K.; Mócsai, A.; Buensuceso, C.; Moores, S.L.; Brugge, J.S.; Lowell, C.A.; Shattil, S.J. Coordinate interactions of Csk, Src, and Syk kinases with αIIbβ3 initiate integrin signaling to the cytoskeleton. J. Cell Biol. 2002, 157, 265–275. [Google Scholar] [CrossRef]
- Phillips, D.R.; Prasad, K.S.; Manganello, J.; Bao, M.; Nannizzi-Alaimo, L. Integrin tyrosine phosphorylation in platelet signaling. Curr. Opin. Cell Biol. 2001, 13, 546–554. [Google Scholar] [CrossRef]
- Huang, J.; Li, X.; Shi, X.; Zhu, M.; Wang, J.; Huang, S.; Huang, X.; Wang, H.; Li, L.; Deng, H.; et al. Platelet integrin αIIbβ3: Signal transduction, regulation, and its therapeutic targeting. J. Hematol. Oncol. 2019, 12, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Goldschmidt-Clermont, P.J.; Machesky, L.; Baldassare, J.J.; Pollard, T.D. The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science 1990, 247, 1575–1578. [Google Scholar] [CrossRef]
- Hinchliffe, K.A.; Irvine, R.F.; Divecha, N. Aggregation-dependent, integrin-mediated increases in cytoskeletally associated PtdInsP2 (4,5) levels in human platelets are controlled by translocation of PtdIns 4-P 5-kinase C to the cytoskeleton. EMBO J. 1996, 15, 6516–6524. [Google Scholar] [CrossRef]
- Munday, A.D.; Norris, F.A.; Caldwell, K.K.; Brown, S.; Majerus, P.W.; Mitchell, C.A. The inositol polyphosphate 4-phosphatase forms a complex with phosphatidylinositol 3-kinase in human platelet cytosol. Proc. Natl. Acad. Sci. USA 1999, 96, 3640–3645. [Google Scholar] [CrossRef] [Green Version]
- Banno, Y.; Nakashima, S.; Ohzawa, M.; Nozawa, Y. Differential Translocation of Phospholipase C Isozymes to Integrin-mediated Cytoskeletal Complexes in Thrombin-stimulated Human Platelets. J. Biol. Chem. 1996, 271, 14989–14994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, L.; Wang, Y.; Draznin, J.; Eslin, D.; Bennett, J.S.; Poncz, M.; Wu, D.; Abrams, C.S. The relative role of PLCβ and PI3Kγ in platelet activation. Blood 2005, 106, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Khan, G.M.; Ghosh, A.; Variya, B.; Santharam, M.A.; Kandhi, R.; Ramanathan, S.; Ilangumaran, S. Hepatocyte growth control by SOCS1 and SOCS3. Cytokine 2019, 121, 154733. [Google Scholar] [CrossRef]
- Nojiri, S.; Hoek, J. Suppression of Epidermal Growth Factor–Induced Phospholipase C Activation Associated with Actin Rearrangement in Rat Hepatocytes in Primary Culture. Hepatology 2000, 32, 947–957. [Google Scholar] [CrossRef]
- Dearden-Badet, M.-T.; Mouchiroud, G. Re-distribution of phospholipase C gamma 2 in macrophage precursors is mediated by the actin cytoskeleton under the control of the Src kinases. Cell. Signal. 2005, 17, 1560–1571. [Google Scholar] [CrossRef] [PubMed]
- Goodman, C.S. Mechanisms and Molecules that Control Growth Cone Guidance. Ann. Rev. Neurosci. 1996, 19, 341–377. [Google Scholar] [CrossRef]
- Etamariz, E.; Varela-Echavarría, A. The discovery of the growth cone and its influence on the study of axon guidance. Front. Neuroanat. 2015, 9, 51. [Google Scholar] [CrossRef] [Green Version]
- Bellon, A.; Mann, F. Keeping up with advances in axon guidance. Curr. Opin. Neurobiol. 2018, 53, 183–191. [Google Scholar] [CrossRef]
- Di Giaimo, R.; Penna, E.; Pizzella, A.; Cirillo, R.; Perrone-Capano, C.; Crispino, M. Cross Talk at the Cytoskeleton–Plasma Membrane Interface: Impact on Neuronal Morphology and Functions. Int. J. Mol. Sci. 2020, 21, 9133. [Google Scholar] [CrossRef]
- Suter, D.; Forscher, P. Transmission of growth cone traction force through apCAM–cytoskeletal linkages is regulated by Src family tyrosine kinase activity. J. Cell Biol. 2001, 155, 427–438. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; He, Y.; Brown, S.; Zbornik, E.; Mlodzianoski, M.; Ma, D.; Huang, F.; Mattoo, S.; Suter, D.M. A single tyrosine phosphorylation site in cortactin is important for filopodia formation in neuronal growth cones. Mol. Biol. Cell 2019, 30, 1817–1833. [Google Scholar] [CrossRef]
- Thomas, D.; Patterson, S.D.; Bradshaw, R.A. Src Homologous and Collagen (Shc) Protein Binds to F-actin and Translocates to the Cytoskeleton upon Nerve Growth Factor Stimulation in PC12 Cells. J. Biol. Chem. 1995, 270, 28924–28931. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Decourt, B.; Zabidi, M.A.; Wuethrich, L.T.; Kim, W.H.; Zhou, Z.; MacIsaac, K.; Suter, D.M. Microtubule-mediated Src Tyrosine Kinase Trafficking in Neuronal Growth Cones. Mol. Biol. Cell 2008, 19, 4611–4627. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Ren, Y.; Wu, B.; Decourt, B.; Lee, A.C.; Taylor, A.; Suter, D.M. Src and cortactin promote lamellipodia protrusion and filopodia formation and stability in growth cones. Mol. Biol. Cell 2015, 26, 3229–3244. [Google Scholar] [CrossRef] [PubMed]
- Lassing, I.; Lindberg, U. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 1985, 314, 472–474. [Google Scholar] [CrossRef] [PubMed]
- Davey, R.J.; Moens, P.D. Profilin: Many facets of a small protein. Biophys. Rev. 2020, 12, 827–849. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt-Clermont, P.J.; Kim, J.W.; Machesky, L.M.; Rhee, S.G.; Pollard, T.D. Regulation of Phospholipase C-γ1 by profilin and tyrosine phosphorylation. Science 1991, 251, 1231–1233. [Google Scholar] [CrossRef]
- Panebra, A.; Ma, S.-X.; Zhai, L.-W.; Wang, X.-T.; Rhee, S.G.; Khurana, S. Regulation of phospholipase C-γ1 by the actin-regulatory protein villin. Am. J. Physiol. Cell Physiol. 2001, 281, C1046–C1058. [Google Scholar] [CrossRef] [Green Version]
- Khurana, S.; Arpin, M.; Patterson, R.; Donowitz, M. Ileal Microvillar Protein Villin Is Tyrosine-phosphorylated and Associates with PLC-γ1. Role of cytoskeletal rearrangement in the carbachol-induced inhibiton of ileal NaCl absorption. J. Biol. Chem. 1997, 272, 30115–30121. [Google Scholar] [CrossRef] [Green Version]
- Ferrary, E.; Cohen-Tannoudji, M.; Pehau-Arnaudet, G.; Lapillonne, A.; Athman, R.; Ruiz, T.; Boulouha, L.; El Marjou, F.; Doye, A.; Fontaine, J.-J.; et al. In Vivo, Villin Is Required for Ca2+-Dependent F-Actin Disruption in Intestinal Brush Borders. J. Cell Biol. 1999, 146, 819–830. [Google Scholar] [CrossRef] [Green Version]
- Watt, S.A.; Kular, G.; Fleming, I.N.; Downes, C.P.; Lucocq, J.M. Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C delta1. Biochem. J. 2002, 363, 657–666. [Google Scholar] [CrossRef]
- Chun, J.T.; Puppo, A.; Vasilev, F.; Gragnaniello, G.; Garante, E.; Santella, L. The Biphasic Increase of PIP2 in the Fertilized Eggs of Starfish: New Roles in Actin Polymerization and Ca2+ Signaling. PLoS ONE 2010, 5, e14100. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Takahashi, K. Actin filament assembly and actin-myosin contractility are necessary for anchorage- and EGF-dependent activation of phospholipase C? J. Cell. Physiol. 2001, 189, 64–71. [Google Scholar] [CrossRef]
- Fukami, K.; Furuhashi, K.; Inagaki, M.; Endo, T.; Hatano, S.; Takenawa, T. Requirement of phosphatidylinositol 4,5-bisphosphate for α-actinin function. Nature 1992, 359, 150–152. [Google Scholar] [CrossRef] [PubMed]
- Lodyga, M.; Bai, X.-H.; Mourgeon, E.; Han, B.; Keshavjee, S.; Liu, M. Molecular cloning of actin filament-associated protein: A putative adaptor in stretch-induced Src activation. Am. J. Physiol. Cell. Mol. Physiol. 2002, 283, L265–L274. [Google Scholar] [CrossRef] [Green Version]
- Calaghan, S.; Le Guennec, J.-Y.; White, E. Cytoskeletal modulation of electrical and mechanical activity in cardiac myocytes. Prog. Biophys. Mol. Biol. 2004, 84, 29–59. [Google Scholar] [CrossRef]
- Prat, A.G.; Xiao, Y.F.; Ausiello, D.A.; Cantiello, H.F. cAMP-independent regulation of CFTR by the actin cytoskeleton. Am. J. Physiol. Physiol. 1995, 268, C1552–C1561. [Google Scholar] [CrossRef] [PubMed]
- Lazarides, E.; Lindberg, U. Actin Is the Naturally Occurring Inhibitor of Deoxyribonuclease I. Proc. Natl. Acad. Sci. USA 1974, 71, 4742–4746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanger, J.M.; Dabiri, G.; Mittal, B.; Kowalski, M.A.; Haddad, J.G. Disruption of microfilament organization in living nonmuscle cells by microinjection of plasma vitamin D-binding protein or DNase I. Proc. Natl. Acad. Sci. USA 1990, 87, 5474–5478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantiello, H.F.; Stow, J.; Prat, A.G.; Ausiello, D.A. Actin filaments regulate epithelial Na+ channel activity. Am. J. Physiol. Cell Physiol. 1991, 261, C882–C888. [Google Scholar] [CrossRef] [PubMed]
- Schubert, T.; Akopian, A. Actin filaments regulate voltage-gated ion channels in salamander retinal ganglion cells. Neuroscience 2004, 125, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Houssen, W.E.; Jaspars, M.; Wease, K.N.; Scott, R.H. Acute actions of marine toxin latrunculin A on the electrophysiological properties of cultured dorsal root ganglion neurones. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2006, 142, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Vanagas, L.; De La Fuente, M.C.; Dalghi, M.; Ferreira-Gomes, M.; Rossi, R.C.; Strehler, E.E.; Mangialavori, I.C.; Rossi, J.P.F.C. Differential Effects of G- and F-Actin on the Plasma Membrane Calcium Pump Activity. Cell Biophys. 2013, 66, 187–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Mattson, M.P.; Furukawa, K. Endoplasmic reticulum calcium release is modulated by actin polymerization. J. Neurochem. 2002, 82, 945–952. [Google Scholar] [CrossRef] [Green Version]
- von Blume, J.; Alleaume, A.-M.; Cantero-Recasens, G.; Curwin, A.; Carreras-Sureda, A.; Zimmermann, T.; van Galen, J.; Wakana, Y.; Valverde, M.A.; Malhotra, V. ADF/Cofilin Regulates Secretory Cargo Sorting at the TGN via the Ca2+ ATPase SPCA1. Dev. Cell 2011, 20, 652–662. [Google Scholar] [CrossRef] [Green Version]
- Harwood, N.E.; Batista, F.D. Early Events in B Cell Activation. Ann. Rev. Immunol. 2010, 28, 185–210. [Google Scholar] [CrossRef]
- Mattila, P.; Batista, F.D.; Treanor, B. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling. J. Cell Biol. 2016, 212, 267–280. [Google Scholar] [CrossRef]
- Baeker, T.R.; Simons, E.R.; Rothstein, T.L. Cytochalasin induces an increase in cytosolic free calcium in murine B lym-phocytes. J. Immunol. 1987, 138, 2691–2697. [Google Scholar]
- Van Haelst, C.; Rothstein, T.L. Cytochalasin stimulates phosphoinositide metabolism in murine B lymphocytes. J. Immunol. 1988, 140, 1256–1258. [Google Scholar]
- Mattila, P.; Feest, C.; Depoil, D.; Treanor, B.; Montaner, B.; Otipoby, K.L.; Carter, R.; Justement, L.; Bruckbauer, A.; Batista, F.D. The Actin and Tetraspanin Networks Organize Receptor Nanoclusters to Regulate B Cell Receptor-Mediated Signaling. Immunity 2013, 38, 461–474. [Google Scholar] [CrossRef] [Green Version]
- Rey-Suarez, I.; Wheatley, B.A.; Koo, P.; Bhanja, A.; Shu, Z.; Mochrie, S.; Song, W.; Shroff, H.; Upadhyaya, A. WASP family proteins regulate the mobility of the B cell receptor during signaling activation. Nat. Commun. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Lim, D.; Lange, K.; Santella, L. Activation of oocytes by latrunculin A. FASEB J. 2002, 16, 1050–1056. [Google Scholar] [CrossRef]
- Puppo, A.; Chun, J.T.; Gragnaniello, G.; Garante, E.; Santella, L. Alteration of the Cortical Actin Cytoskeleton Deregulates Ca2+ Signaling, Monospermic Fertilization, and Sperm Entry. PLoS ONE 2008, 3, e3588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, K.; Gartzke, J. F-actin-based Ca signaling—a critical comparison with the current concept of Ca signaling. J. Cell. Physiol. 2006, 209, 270–287. [Google Scholar] [CrossRef]
- Berridge, M.J. Inositol trisphosphate and calcium signalling. Nature 1993, 361, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.G. Regulation of Phosphoinositide-Specific Phospholipase C. Ann. Rev. Biochem. 2001, 70, 281–312. [Google Scholar] [CrossRef]
- Parsons, S.J.; Parsons, J.T. Src family kinases, key regulators of signal transduction. Oncogene 2004, 23, 7906–7909. [Google Scholar] [CrossRef] [Green Version]
- Mikoshiba, K. IP3receptor/Ca2+ channel: From discovery to new signaling concepts. J. Neurochem. 2007, 102, 1426–1446. [Google Scholar] [CrossRef]
- Lehotzky, A.; Telegdi, M.; Liliom, K.; Ovádi, J. Interaction of phosphofructokinase with tubulin and microtubules. Quantitative evaluation of the mutual effects. J. Biol. Chem. 1993, 268, 10888–10894. [Google Scholar] [CrossRef]
- Reszka, A.A.; Seger, R.; Diltz, C.D.; Krebs, E.G.; Fischer, E.H. Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc. Natl. Acad. Sci. USA 1995, 92, 8881–8885. [Google Scholar] [CrossRef] [Green Version]
- Volker, K.; Reinitz, C.A.; Knull, H.R. Glycolytic enzymes and assembly of microtubule networks. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1995, 112, 503–514. [Google Scholar] [CrossRef]
Cell Type | Actin Modifier | Effect | Reference |
---|---|---|---|
Jurkat cell (T-lymphocyte) | Active Rac mutant | Reduces PLC-γ1 activity and Ca2+ responses to anti-CD3. | [46] |
Latrunculin-A | Reduces Ca2+ responses to anti-CD3. | ||
RBL-2H3 (mast cell) | Cytochalasin-D | Enhances InsP3 production and Ca2+ response via FcεRI pathway. | [53] |
Latrunculin-A | Increases PLC activity, FcεRI phosphorylation, and degranulation. | [54,62] | |
Platelets | Cytochalasin-D | Reduces PLCβ3 translocation to the actin cytoskeleton; inhibits platelets aggregation. | [73] |
Hepatocytes | Cytochalasin-D | Increases colocalization of PLC-γ1 with the actin cytoskeleton; restores InsP3 production and Ca2+ response to EGF. | [76] |
Human mammary epithelial cell | Cytochalasin-D | Decreases α-actinin’s binding to PIP2; inhibits PIP2 hydrolysis after EGF receptor activation. | [95] |
Rat fetal lung cells | Mechanical force | Stimulates Src activity and its translocation to the actin cytoskeleton. | [97] |
Mouse mammary adenocarcinoma cells (transfected) | Cytochalasin-D | Enhances human CFTR activity conducting Cl- (10 min), abolishes CFTR activity (>6 h); | [99] |
DNase I | Inhibits actin-induced CFTR activity. | [99] | |
Filamin | Inhibits actin-induced CFTR activity. | ||
Xenopus laevis A6 cells | Cytochalasin-D | Stimulates Na+ channel activity. | [102] |
Salamander retinal ganglion cells | Cytochalasin-D, Latrunculin-A | Reduces L-type Ca2+ channel activity; Inhibits voltage-gated K+ channel activities. | [103] |
Rat dorsal root ganglion | Latrunculin-A | Inhibits K+ current; increases frequency of action potential. | [104] |
B lymphocytes | Cytochalasin-A,B,D,E | Induces Ca2+ influx and release from internal stores. | [110] |
Cytochalasin-D | Increases the intracellular InsP3 level. | [111] | |
Starfish egg (Astropecten aranciacus) | Latrunculin-A | Increases PLC-γ activity, InsP3 production, and intracellular Ca2+. | [38] |
Latrunculin-A, Cytochalasin-B, Mycalolide-B | Triggers intracellular Ca2+ releases and influx. | [38] | |
Sea urchin egg (Paracentrotus lividus) | Latrunculin-A | Increases InsP3 production. | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilev, F.; Ezhova, Y.; Chun, J.T. Signaling Enzymes and Ion Channels Being Modulated by the Actin Cytoskeleton at the Plasma Membrane. Int. J. Mol. Sci. 2021, 22, 10366. https://doi.org/10.3390/ijms221910366
Vasilev F, Ezhova Y, Chun JT. Signaling Enzymes and Ion Channels Being Modulated by the Actin Cytoskeleton at the Plasma Membrane. International Journal of Molecular Sciences. 2021; 22(19):10366. https://doi.org/10.3390/ijms221910366
Chicago/Turabian StyleVasilev, Filip, Yulia Ezhova, and Jong Tai Chun. 2021. "Signaling Enzymes and Ion Channels Being Modulated by the Actin Cytoskeleton at the Plasma Membrane" International Journal of Molecular Sciences 22, no. 19: 10366. https://doi.org/10.3390/ijms221910366
APA StyleVasilev, F., Ezhova, Y., & Chun, J. T. (2021). Signaling Enzymes and Ion Channels Being Modulated by the Actin Cytoskeleton at the Plasma Membrane. International Journal of Molecular Sciences, 22(19), 10366. https://doi.org/10.3390/ijms221910366