Next Article in Journal
The Importance of Lipidomic Approach for Mapping and Exploring the Molecular Networks Underlying Physical Exercise: A Systematic Review
Next Article in Special Issue
Mechanisms, Characteristics, and Treatment of Neuropathic Pain and Peripheral Neuropathy Associated with Dinutuximab in Neuroblastoma Patients
Previous Article in Journal
Outer Membrane Vesicles Derived from Klebsiella pneumoniae Are a Driving Force for Horizontal Gene Transfer
Previous Article in Special Issue
Modulation of Glutamate Transporter EAAT1 and Inward-Rectifier Potassium Channel Kir4.1 Expression in Cultured Spinal Cord Astrocytes by Platinum-Based Chemotherapeutics
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Preclinical and Clinical Evidence of Therapeutic Agents for Paclitaxel-Induced Peripheral Neuropathy

1
Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
2
Department of Pharmacy, Okayama University Hospital, Okayama 700-8558, Japan
3
Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyoto 610-0395, Japan
4
Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2021, 22(16), 8733; https://doi.org/10.3390/ijms22168733
Submission received: 5 July 2021 / Revised: 9 August 2021 / Accepted: 11 August 2021 / Published: 13 August 2021
(This article belongs to the Special Issue Mechanisms of Chemotherapy-Induced Peripheral Neuropathy)

Abstract

:
Paclitaxel is an essential drug in the chemotherapy of ovarian, non-small cell lung, breast, gastric, endometrial, and pancreatic cancers. However, it frequently causes peripheral neuropathy as a dose-limiting factor. Animal models of paclitaxel-induced peripheral neuropathy (PIPN) have been established. The mechanisms of PIPN development have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory PIPN effects. This review summarizes the basic and clinical evidence for therapeutic or prophylactic effects for PIPN. In pre-clinical research, many reports exist of neuropathy inhibitors that target oxidative stress, inflammatory response, ion channels, transient receptor potential (TRP) channels, cannabinoid receptors, and the monoamine nervous system. Alternatively, very few drugs have demonstrated PIPN efficacy in clinical trials. Thus, enhancing translational research to translate pre-clinical research into clinical research is important.

1. Introduction

Paclitaxel and albumin-bound paclitaxel are important drugs in the treatment of ovarian [1,2], non-small cell lung [3,4], breast [5,6,7], gastric [8,9], endometrial [10], and pancreatic [11] cancers. However, they cause peripheral neuropathy as an adverse event. In paclitaxel-induced peripheral neuropathy (PIPN), many patients develop sensory abnormalities (e.g., numbness, pain, and burning sensation in the hands and feet) [12]. PIPN is a dose-limiting factor that causes difficulty in continuing cancer chemotherapy [13]. However, no evidence-based prophylactic agents for PIPN were noted [14]. Since the late 1990s, many studies on the mechanism and therapeutic or prophylactic agents using PIPN animal models have been reported [15,16,17]. In addition, the mechanisms of PIPN development have been gradually clarified [18]. This study reviewed the preclinical and clinical evidence of therapeutic or prophylactic agents for PIPN.

2. Methods

2.1. Preclinical Evidence

All articles found in PubMed with the search term “paclitaxel neuropathy or paclitaxel neurotoxicity” were surveyed. The last search date was 30 April 2021. Clinical studies and reports that did not include information on therapeutic agents were excluded from the analysis. Articles referring to the effects of local rather than systemic administration and articles published before 2015 were also excluded. Information on the name and dosage of the drugs that showed statistically significant improvement, mechanism of action, and the animal species in which they were used were extracted in the surveyed papers.

2.2. Clinical Evidence

The articles found in PubMed with the search term “paclitaxel neuropathy or paclitaxel neurotoxicity” limited to “Randomized Controlled Trial” and “Meta-Analysis” were analyzed. The last search date was 30 April 2021. Reports other than trials about peripheral neuropathy were excluded. Moreover, information such as the investigational drug and its dosage, chemotherapy received by the patient, study design, number of patients, and results were collected.

3. Results

3.1. Therapeutic Agents in Preclinical Evidence

In PubMed, 2667 articles were found when using the search term “paclitaxel neuropathy or paclitaxel neurotoxicity”. Of these, 150 articles reported on drugs that inhibit PIPN in animal studies. The following is a summary of the drugs that had therapeutic PIPN effects in these basic studies (Table 1).

3.1.1. Antioxidants and Mitochondria-Protective Agents

Many previous preclinical reports support that oxidative stress and mitochondrial dysfunction play a role in PIPN [31,104,105,106]. Vitamin C, rotenone, tempol, and curcumin which are widely known for their antioxidant effects, have been reported to alleviate PIPN in rodents [20,21,27]. Among the approved drugs, duloxetine, lacosamide, pregabalin, and rosuvastatin have also been reported to reverse PIPN via their antioxidant effects [23,28,32]. Moreover, many agents, which have antioxidant effects, inhibit PIPN in preclinical studies [19,22,24,25,26,29,30,31,33,34].

3.1.2. Anti-Inflammatory Agents

Inflammatory cytokines (e.g., interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α)) and chemokines (e.g., chemokine (C-X-C motif) ligand (CXCL) family) were elevated in the peripheral sites, spinal cord, and of paclitaxel-treated animals, and many agents reduced the peripheral neuropathy symptoms via their anti-inflammatory effects [19,21,22,24,25,27,28,32,33,34,35,36,37,38,39,41,42,44,45,46,47,49,50,51,52,53,54,56]. Activations of astrocytes and microglia were also observed in the spinal dorsal horn after paclitaxel administrations, and many agents including minocycline attenuated PIPN via the inhibition of these spinal changes and prevented neurological damage [40,43,44,48].

3.1.3. Ion Channel Inhibitors and Activators

Some activators of potassium channels, especially Kv7, have been shown to suppress PIPN [57,58]. Focusing on calcium channels, T-type calcium channel blockers have been reported to alleviate PIPN symptoms [54,59].

3.1.4. Transient Receptor Potential (TRP) Modulators

Temperature-sensitive cation channels (e.g., transient receptor potential vanilloid 4 (TRPV4), transient receptor potential vanilloid 1 (TRPV1), and transient receptor potential ankyrin 1 (TRPA1)) have been reported to be involved in PIPN [61,107,108,109]. Many drugs have also been reported to improve PIPN by downregulating or inhibiting TRP channels [55,60,61,62,63,64].

3.1.5. Cannabinoid Receptor Agonists

Many studies have shown that cannabinoid receptor agonists and related substances can suppress PIPN symptoms [48,49,56,69,70,71]. In particular, some reports exist that selective CB2 agonists have an ability to suppress PIPN [48,56].

3.1.6. Modulators of Monoamine Nervous System

Monoamines, including noradrenaline and serotonin, play an important role in the descending pain inhibitory system [110]. Some drugs and agents (e.g., quetiapine, reboxetine, venlafaxine, and bee venom) also showed analgesic effects by modulating the monoamine nervous system in the PIPN animal models [73,74,75,76].

3.1.7. Others

In addition to the aforementioned, many other drugs have been identified to reduce PIPN via several therapeutic targets, such as glutamate nerve systems [65,66], phosphodiesterase (PDE) [67,68], opioid receptors [72], acetylcholine receptor [77,78,79,80], cAMP/protein kinase A (PKA) signal [40], protein kinase C (PKC) [62,81], mitogen-activated protein kinase (MAPK) [28,39,49,53,56,81,82,83], organic anion-transporting polypeptide 1b2 (OATP1B2) [84], mammalian target of rapamycin (mTOR) [51], and others [85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103], at the pre-clinical research level.

3.2. Therapeutic Agents in Clinical Evidence

In PubMed, 1175 articles were found when using the search term “paclitaxel neuropathy or paclitaxel neurotoxicity” limited to “Randomized Controlled Trial” and “Meta-Analysis”. After excluding reports other than about PIPN, the authors found 19 reports considered to be clinically important. A summarized list of the representative randomized controlled trials and meta-analyses on prophylactic and therapeutic agents for PIPN is shown below in Table 2.
Duloxetine was tested in a randomized, double-blind, placebo-controlled, crossover trial, for its ability to treat neuropathy in patients with taxane or platinum [115]. In this study, relative risks (RRs) (95% confidence interval (95% CI)) of experiencing 30% and 50% pain reduction were 1.96 (1.15–3.35) and 2.43 (1.11–5.30), respectively. However, in a subanalysis in taxane-treated patients, RRs (95% CI) of experiencing 30% and 50% pain reduction were 0.97 (0.41–2.32) and 1.22 (0.35–4.18), respectively (not significant). Duloxetine significantly improved numbness and pain compared with vitamin B12 in a randomized, open-label, crossover study of patients who received chemotherapy including other anticancer drugs, as well as paclitaxel [114].
Pregabalin significantly improved the grade and score of taxane-related neuropathy compared with duloxetine in a randomized, double-blind, controlled study [125]. Moreover, pregabalin did not improve treatment-related pain and neuropathy scores related to paclitaxel in a randomized, double-blind, placebo-controlled, multicenter study [126]. Gabapentin was reported to significantly reduce the incidence of grade ≥2 PIPN and changes in nerve conduction velocity (NCV) in a randomized, double-blind, placebo-controlled study [122].
Omega-3 fatty acids significantly improved the incidence of peripheral neuropathy associated with paclitaxel administration in a randomized, double-blind, placebo-controlled study [122]. In a meta-analysis that included not only paclitaxel-treated patients but also oxaliplatin-treated patients, the suppressive effects of omega-3 fatty acids on neuropathy were significant [121]. Vitamin E significantly improved the incidence and scores of neuropathies in both a randomized, controlled study of patients with paclitaxel [128] and patients with paclitaxel or cisplatin [129]. Amifostine significantly improved paresthesia and sensory motor impairment in a randomized controlled study of paclitaxel/carboplatin-treated patients [112]. However, it did not significantly improve neuropathy in a randomized controlled study of paclitaxel-treated patients [113]. Additionally, minocycline, N-acetylcysteine, and eicosapentenoic acid (EPA) have been reported to improve peripheral neuropathy associated with paclitaxel [119,120,123]. Moreover, glutamate, glutathione, poly ADP-ribose polymerase (PARP) inhibitors, and human leukemia inhibitory factor (LIF) did not show any significant effect on PIPN in randomized controlled trials or meta-analyses [117,118,124,127]. Long-term administration of acetyl-L-carnitine significantly worsened taxane-related peripheral neuropathy in a randomized, double-blind, placebo-controlled, multicenter study [111].
As described above, few drugs have shown clear therapeutic PIPN effects in clinical trials. Thus, according to the clinical practice guideline updated by the American Society of Clinical Oncology in 2020, no agents have yet to be recommended for preventing chemotherapy-induced peripheral neuropathy and only duloxetine may be used as a treatment for neuropathy [14].

4. Discussion

The PIPN mechanism has been recently elucidated in basic studies, and many drugs and agents targeting this mechanism have been explored and identified for PIPN therapy or prophylaxis [18]. In particular, many inhibitors of neuropathy targeting oxidative stress, inflammatory response, ion channels, TRP channels, cannabinoid receptor, and monoamine nervous system have been identified as candidates for inhibiting PIPN in animal research. In particular, more reports of inhibitors targeting peripheral and central inflammatory responses, TRP channels, and cannabinoid receptors were noted compared with pre-clinical research reports on oxaliplatin-induced peripheral neuropathy [130]. Targeting these may be useful in the search for PIPN-specific therapeutics.
Alternatively, very few drugs have shown the efficacy for PIPN in clinical trials. The American Society of Clinical Oncology’s clinical practice guideline states that only duloxetine can be used for the treatment of chemotherapy-induced peripheral neuropathy [14]. In a randomized double-blind placebo-controlled crossover study, duloxetine has been reported to improve neuropathic pain caused by taxanes and platinum [115]. However, a subanalysis of that study also showed a weak inhibitory effect of duloxetine on taxanes in neuropathic pain [115]. Thus, few evidence-based treatments for PIPN were noted.
Most clinical studies examined the preventive rather than curative effects on PIPN. Meanwhile, pre-clinical studies have explored many therapeutic targets for PIPN. Of these, agents on the therapeutic targets that inhibit pain or sensory abnormalities, such as K channel, Ca channel, TRP channels, glutamate, cannabinoid receptors, opioid receptors, and monoamine nervous system, may have curative effects on PIPN that has already developed. More information on the clinical studies of these agents will make it possible to approach PIPN from both a preventive and curative perspective.
While many drugs have been reported in pre-clinical research as having the potential to inhibit the PIPN, few drugs have developed sufficient evidence in clinical studies. The valley of death between basic studies and clinical applications is caused by many issues, including the difference between clinical symptoms and animal assessment methods, the cost and time of conducting clinical research, safety considerations in clinical application, and the lack of collaboration between basic and clinical researchers. Thus, promoting translational research, that is, to bridge pre-clinical research to clinical research is important.

Author Contributions

Conceptualization, T.K.; methodology, T.K., D.K., N.E., and T.S.; investigation, T.K., M.I., K.M. (Kohei Mori), K.M. (Keisuke Mine), and H.K.; writing—original draft preparation, T.K.; writing—review and editing, D.K., S.U., M.U., and N.E.; project administration, T.S.; funding acquisition, T.K. All authors have read and agreed to the published version of the manuscript.

Funding

This work was partly supported by JSPS KAKENHI (JP20K07198) and Fukuoka Public Health Promotion Organization Cancer Research Fund.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest

The authors declare that they have no conflict of interest to this work.

Abbreviations

95% CI95% confidence interval
Achacetylcholine
AMPKAMP-activated protein kinase
Apaf-1apoptosis protease-activating factor 1
ATF-3activating transcription factor 3
Bcl-2B-cell lymphoma 2
Bcl-xLB-cell lymphoma-extra large
BDNFbrain derived neurotrophic factor
CaMKIIαcalmodulin-dependent protein kinase IIα
CCL2C-C motif chemokine ligand 2
CCR2C-C motif chemokine receptor 2
CGRPcalcitonin gene-related peptide
CPNEcomposite peripheral nerve electrophysiology
CREBcAMP response element binding protein
CXCLC-X-C motif chemokine ligand
CXCRC-X-C motif chemokine receptor
CYP2JCytochrome P450 2J
DRGdorsal root ganglia
EAAT2excitatory amino acid transporter 2
EORTC QLQ-CIPN20European Organisation for Research and Treatment of Cancer: Quality of Life-Chemotherapy-Induced Peripheral Neuropathy 20
EPAeicosapentaenoic acid
Epacexchange protein directly activated by cAMP
EpOMEepoxyoctadecamonoenoic acids
ERendoplasmic reticulum
ERKextracellular signal-regulated kinase
FAAHfatty-acid amide hydrolase
FosBFBJ murine osteosarcoma viral oncogene homolog B
GAT-1gamma-aminobutyric acid (GABA) transporter 1
GFAPglial fibrillary acidic protein
GluR1glutamate ionotropic receptor AMPA type subunit 1
GSHglutathione
HDAC2histone deacetylase 2
HMGB1high mobility group box 1
HO-1heme oxygenase 1
i.p.intraperitoneal
i.v.intravenous
IENFintra-epidermal nerve fibres
IL-10interleukin-10
IL-1βinterleukin-1 beta
IL-6interleukin-6
IL-8interleukin-8
iNOSinducible nitric oxide synthase
IRF8interferon regulatory factor 8
JNKc-Jun N-terminal kinase
LIFleukaemia inhibitory factor
MAGLmonoacylglycerol lipase
MAPKmitogen-activated protein kinase
MCP-1monocyte chemotactic protein 1
MDAmalondialdehyde
MEKmitogen-activated protein kinase kinases
MPOmyeloperoxidase
mTNSmodified total neuropathy score
mTORmammalian target of rapamycin
NAAAN-acylethanolamine-hydrolyzing acid amidase
nAChRnicotinic acetylcholine receptor
NCI-CTCAENational Cancer Institute-Common Terminology Criteria for Adverse Events
NCVnerve conduction velocity
NF-κBnuclear factor kappa-B
NGFnerve growth factor
NMDAN-methyl-D-aspartate
NOX4nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4
NQO1NAD(P)H dehydrogenase [quinone] 1
NR2BN-methyl D-aspartate (NMDA) receptor subtype 2B
Nrf2nuclear factor-erythroid 2-related factor 2
NTX scoreneurotoxicity score
OATP1B2organic anion-transporting polypeptide 1b2
p.o.per os
p-Aktphospho-protein kinase B
PARPpoly ADP-ribose polymerase
p-CREBphospho-cAMP response element binding protein
PDEphosphodiesterase
p-FAKphspho-fokal adhesion kinase
PGC-1αperoxisome proliferatoractivated receptor γ coactivator-1
PI3Kphosphatidylinositol-3 kinase
PIPNpaclitaxel-induced peripheral neuropathy
p-JAK2phospho-janus kinase 2
PKAprotein kinase A
PKCprotein kinase C
p-NF-κBphospho-nuclear factor kappa-B
PNP scoreperipheral neuropathy score
PNQpatient neurotoxicity questionnaire
p-p38phospho-p38
PPAR-αperoxisome proliferator-activated receptor-α
p-STAT3phospho-signal transducer and activator of transcription 3
QOLquality of life
RAGEreceptor for advanced glycation endproducts
RRrelative risk
s.c.subcutaneous
SIRT1sirtuin-1
SNAPsensory nerve action potential
SNCVsensory nerve conduction velocity
SODsuperoxide dismutase
TLR4Toll-like receptor 4
TNF-αtumour necrosis factor-α
TRPtransient receptor potential
TRPA1transient receptor potential ankyrin 1
TRPV1transient receptor potential vanilloid 1
TRPV4transient receptor potential vanilloid 4
UCP2uncoupling protein 2
VGLUTvesicular glutamate transporter 3
YY1Yin-Yang 1

References

  1. Ozols, R.F.; Bundy, B.N.; Greer, B.E.; Fowler, J.M.; Clarke-Pearson, D.; Burger, R.A.; Mannel, R.S.; DeGeest, K.; Hartenbach, E.M.; Baergen, R. Phase III Trial of Carboplatin and Paclitaxel Compared with Cisplatin and Paclitaxel in Patients with Optimally Resected Stage III Ovarian Cancer: A Gynecologic Oncology Group Study. J. Clin. Oncol. 2003, 21, 3194–3200. [Google Scholar] [CrossRef]
  2. Du Bois, A.; Lück, H.-J.; Meier, W.; Adams, H.-P.; Möbus, V.; Costa, S.; Bauknecht, T.; Richter, B.; Warm, M.; Schröder, W.; et al. A Randomized Clinical Trial of Cisplatin/Paclitaxel Versus Carboplatin/Paclitaxel as First-Line Treatment of Ovarian Cancer. J. Natl. Cancer Inst. 2003, 95, 1320–1329. [Google Scholar] [CrossRef] [PubMed]
  3. Ohe, Y.; Ohashi, Y.; Kubota, K.; Tamura, T.; Nakagawa, K.; Negoro, S.; Nishiwaki, Y.; Saijo, N.; Ariyoshi, Y.; Fukuoka, M. Randomized phase III study of cisplatin plus irinotecan versus carboplatin plus paclitaxel, cisplatin plus gemcitabine, and cisplatin plus vinorelbine for advanced non-small-cell lung cancer: Four-Arm Cooperative Study in Japan. Ann. Oncol. 2006, 18, 317–323. [Google Scholar] [CrossRef] [PubMed]
  4. Socinski, M.A.; Bondarenko, I.; Karaseva, N.A.; Makhson, A.M.; Vynnychenko, I.; Okamoto, I.; Hon, J.K.; Hirsh, V.; Bhar, P.; Zhang, H.; et al. Weekly nab-Paclitaxel in Combination With Carboplatin Versus Solvent-Based Paclitaxel Plus Carboplatin as First-Line Therapy in Patients With Advanced Non–Small-Cell Lung Cancer: Final Results of a Phase III Trial. J. Clin. Oncol. 2012, 30, 2055–2062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  5. Sparano, J.A.; Wang, M.; Martino, S.; Jones, V.; Perez, E.A.; Saphner, T.; Wolff, A.; Sledge, G.W.; Wood, W.C.; Davidson, N.E. Weekly Paclitaxel in the Adjuvant Treatment of Breast Cancer. N. Engl. J. Med. 2008, 358, 1663–1671. [Google Scholar] [CrossRef]
  6. Seidman, A.D.; Berry, D.; Cirrincione, C.; Harris, L.; Muss, H.; Marcom, P.K.; Gipson, G.; Burstein, H.; Lake, D.; Shapiro, C.L.; et al. Randomized Phase III Trial of Weekly Compared with Every-3-Weeks Paclitaxel for Metastatic Breast Cancer, With Trastuzumab for all HER-2 Overexpressors and Random Assignment to Trastuzumab or Not in HER-2 Nonoverexpressors: Final Results of Cancer and Leukemia Group B Protocol. J. Clin. Oncol. 2008, 26, 1642–1649. [Google Scholar] [CrossRef] [Green Version]
  7. Gradishar, W.J.; Tjulandin, S.; Davidson, N.; Shaw, H.; Desai, N.; Bhar, P.; Hawkins, M.; O’Shaughnessy, J. Phase III Trial of Nanoparticle Albumin-Bound Paclitaxel Compared with Polyethylated Castor Oil–Based Paclitaxel in Women with Breast Cancer. J. Clin. Oncol. 2005, 23, 7794–7803. [Google Scholar] [CrossRef]
  8. Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.-C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.-Y.; et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef]
  9. Shitara, K.; Takashima, A.; Fujitani, K.; Koeda, K.; Hara, H.; Nakayama, N.; Hironaka, S.; Nishikawa, K.; Makari, Y.; Amagai, K.; et al. Nab-paclitaxel versus solvent-based paclitaxel in patients with previously treated advanced gastric cancer (ABSOLUTE): An open-label, randomised, non-inferiority, phase 3 trial. Lancet Gastroenterol. Hepatol. 2017, 2, 277–287. [Google Scholar] [CrossRef]
  10. Akram, T.; Maseelall, P.; Fanning, J. Carboplatin and paclitaxel for the treatment of advanced or recurrent endometrial cancer. Am. J. Obstet. Gynecol. 2005, 192, 1365–1367. [Google Scholar] [CrossRef] [PubMed]
  11. Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased Survival in Pancreatic Cancer with nab-Paclitaxel plus Gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef] [Green Version]
  12. Kuroi, K.; Shimozuma, K. Neurotoxicity of taxanes: Symptoms and quality of life assessment. Breast Cancer 2004, 11, 92–99. [Google Scholar] [CrossRef] [PubMed]
  13. Peltier, A.; Russell, J.W. Advances in Understanding Drug-Induced Neuropathies. Drug Saf. 2006, 29, 23–30. [Google Scholar] [CrossRef]
  14. Loprinzi, C.L.; Lacchetti, C.; Bleeker, J.; Cavaletti, G.; Chauhan, C.; Hertz, D.L.; Kelley, M.R.; Lavino, A.; Lustberg, M.B.; Paice, J.A.; et al. Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: ASCO Guideline Update. J. Clin. Oncol. 2020, 38, 3325–3348. [Google Scholar] [CrossRef] [PubMed]
  15. Cavaletti, G.; Tredici, G.; Braga, M.; Tazzari, S. Experimental Peripheral Neuropathy Induced in Adult Rats by Repeated Intraperitoneal Administration of Taxol. Exp. Neurol. 1995, 133, 64–72. [Google Scholar] [CrossRef]
  16. Mimura, Y.; Kato, H.; Eguchi, K.; Ogawa, T. Schedule dependency of paclitaxel-induced neuropathy in mice: A morphological study. NeuroToxicology 2000, 21, 513–520. [Google Scholar] [PubMed]
  17. Smith, S.B.; Crager, E.S.; Mogil, J.S. Paclitaxel-induced neuropathic hypersensitivity in mice: Responses in 10 inbred mouse strains. Life Sci. 2004, 74, 2593–2604. [Google Scholar] [CrossRef]
  18. Yamamoto, S.; Egashira, N. Drug Repositioning for the Prevention and Treatment of Chemotherapy-Induced Peripheral Neuropathy: A Mechanism- and Screening-Based Strategy. Front. Pharmacol. 2021, 11. [Google Scholar] [CrossRef]
  19. Kuyrukluyildiz, U.; Kupeli, I.; Bedir, Z.; Ozmen, O.; Onk, D.; Süleyman, B.; Mammadov, R.; Suleyman, H.; Kuyrukluyıldız, U. The Effect of Anakinra on Paclitaxel-Induced Peripheral Neuropathic Pain in Rats. Turk. J. Anesthesia Reanim. 2017, 44, 287–294. [Google Scholar] [CrossRef] [Green Version]
  20. Griffiths, L.; Flatters, S.J. Pharmacological Modulation of the Mitochondrial Electron Transport Chain in Paclitaxel-Induced Painful Peripheral Neuropathy. J. Pain 2015, 16, 981–994. [Google Scholar] [CrossRef] [Green Version]
  21. Yardım, A.; Kandemir, F.M.; Çomaklı, S.; Özdemir, S.; Caglayan, C.; Kucukler, S.; Çelik, H. Protective Effects of Curcumin Against Paclitaxel-Induced Spinal Cord and Sciatic Nerve Injuries in Rats. Neurochem. Res. 2021, 46, 379–395. [Google Scholar] [CrossRef]
  22. Balkrishna, A.; Sakat, S.S.; Karumuri, S.; Singh, H.; Tomer, M.; Kumar, A.; Sharma, N.; Nain, P.; Haldar, S.; Varshney, A. Herbal Decoction Divya-Peedantak-Kwath Alleviates Allodynia and Hyperalgesia in Mice Model of Chemotherapy-Induced Peripheral Neuropathy via Modulation in Cytokine Response. Front. Pharmacol. 2020, 11, 566490. [Google Scholar] [CrossRef] [PubMed]
  23. Lu, Y.; Zhang, P.; Zhang, Q.; Yang, C.; Qian, Y.; Suo, J.; Tao, X.; Zhu, J. Duloxetine Attenuates Paclitaxel-Induced Peripheral Nerve Injury by Inhibiting p53-Related Pathways. J. Pharmacol. Exp. Ther. 2020, 373, 453–462. [Google Scholar] [CrossRef]
  24. Wu, P.; Chen, Y. Evodiamine ameliorates paclitaxel-induced neuropathic pain by inhibiting inflammation and maintaining mitochondrial anti-oxidant functions. Hum. Cell 2019, 32, 251–259. [Google Scholar] [CrossRef]
  25. Sayeli, V.; Nadipelly, J.; Kadhirvelu, P.; Cheriyan, B.V.; Shanmugasundaram, J.; Subramanian, V. Effect of flavonol and its dimethoxy derivatives on paclitaxel-induced peripheral neuropathy in mice. J. Basic Clin. Physiol. Pharmacol. 2018, 29, 525–535. [Google Scholar] [CrossRef] [PubMed]
  26. Ishii, N.; Tsubouchi, H.; Miura, A.; Yanagi, S.; Ueno, H.; Shiomi, K.; Nakazato, M. Ghrelin alleviates paclitaxel-induced peripheral neuropathy by reducing oxidative stress and enhancing mitochondrial anti-oxidant functions in mice. Eur. J. Pharmacol. 2018, 819, 35–42. [Google Scholar] [CrossRef] [PubMed]
  27. Miao, H.; Xu, J.; Xu, D.; Ma, X.; Zhao, X.; Liu, L. Nociceptive Behavior Induced by Chemotherapeutic Paclitaxel and Beneficial Role of Antioxidative Pathways. Physiol. Res. 2018, 491–500. [Google Scholar] [CrossRef] [PubMed]
  28. Al-Massri, K.F.; Ahmed, L.A.; El-Abhar, H.S. Pregabalin and lacosamide ameliorate paclitaxel-induced peripheral neuropathy via inhibition of JAK/STAT signaling pathway and Notch-1 receptor. Neurochem. Int. 2018, 120, 164–171. [Google Scholar] [CrossRef]
  29. Galley, H.F.; McCormick, B.; Wilson, K.L.; Lowes, D.; Colvin, L.; Torsney, C. Melatonin limits paclitaxel-induced mitochondrial dysfunction in vitro and protects against paclitaxel-induced neuropathic pain in the rat. J. Pineal Res. 2017, 63, e12444. [Google Scholar] [CrossRef] [Green Version]
  30. Hamity, M.; White, S.R.; Walder, R.Y.; Schmidt, M.; Brenner, C.; Hammond, D.L. Nicotinamide riboside, a form of vitamin B3 and NAD+ precursor, relieves the nociceptive and aversive dimensions of paclitaxel-induced peripheral neuropathy in female rats. Pain 2017, 158, 962–972. [Google Scholar] [CrossRef]
  31. Shim, H.S.; Bae, C.; Wang, J.; Lee, K.-H.; Hankerd, K.M.; Kim, H.K.; Chung, J.M.; La, J.-H. Peripheral and central oxidative stress in chemotherapy-induced neuropathic pain. Mol. Pain 2019, 15. [Google Scholar] [CrossRef] [Green Version]
  32. Miranda, H.F.; Sierralta, F.; Aranda, N.; Poblete, P.; Castillo, R.L.; Noriega, V.; Prieto, J.C. Antinociception induced by rosuvastatin in murine neuropathic pain. Pharmacol. Rep. 2018, 70, 503–508. [Google Scholar] [CrossRef]
  33. Nadipelly, J.; Sayeli, V.; Kadhirvelu, P.; Shanmugasundaram, J.; Cheriyan, B.V.; Subramanian, V. Effect of certain trimethoxy flavones on paclitaxel - induced peripheral neuropathy in mice. Integr. Med. Res. 2018, 7, 159–167. [Google Scholar] [CrossRef] [PubMed]
  34. Shahraki, J.; Rezaee, R.; Kenar, S.M.; Nezhad, S.S.; Bagheri, G.; Jahantigh, H.; Tsarouhas, K.; Hashemzaei, M. Umbelliprenin relieves paclitaxel-induced neuropathy. J. Pharm. Pharmacol. 2020, 72, 1822–1829. [Google Scholar] [CrossRef] [PubMed]
  35. Ullah, R.; Ali, G.; Subhan, F.; Naveed, M.; Khan, A.; Khan, J.; Halim, S.A.; Ahmad, N.; Zakiullah; Al-Harrasi, A. Attenuation of nociceptive and paclitaxel-induced neuropathic pain by targeting inflammatory, CGRP and substance P signaling using 3-Hydroxyflavone. Neurochem. Int. 2021, 144, 104981. [Google Scholar] [CrossRef]
  36. Sekiguchi, F.; Domoto, R.; Nakashima, K.; Yamasoba, D.; Yamanishi, H.; Tsubota, M.; Wake, H.; Nishibori, M.; Kawabata, A. Paclitaxel-induced HMGB1 release from macrophages and its implication for peripheral neuropathy in mice: Evidence for a neuroimmune crosstalk. J. Neuropharmacol. 2018, 141, 201–213. [Google Scholar] [CrossRef] [PubMed]
  37. Rezaee, R.; Monemi, A.; SadeghiBonjar, M.A.; Hashemzaei, M. Berberine Alleviates Paclitaxel-Induced Neuropathy. J. Pharmacopuncture 2019, 22, 90–94. [Google Scholar] [CrossRef]
  38. Caillaud, M.; Patel, N.H.; White, A.; Wood, M.; Contreras, K.M.; Toma, W.; Alkhlaif, Y.; Roberts, J.L.; Tran, T.H.; Jackson, A.B.; et al. Targeting Peroxisome Proliferator-Activated Receptor-α (PPAR- α) to reduce paclitaxel-induced peripheral neuropathy. Brain Behav. Immun. 2021, 93, 172–185. [Google Scholar] [CrossRef]
  39. Meng, J.; Zhang, Q.; Yang, C.; Xiao, L.; Xue, Z.; Zhu, J. Duloxetine, a Balanced Serotonin-Norepinephrine Reuptake Inhibitor, Improves Painful Chemotherapy-Induced Peripheral Neuropathy by Inhibiting Activation of p38 MAPK and NF-κB. Front. Pharmacol. 2019, 10. [Google Scholar] [CrossRef]
  40. Singhmar, P.; Huo, X.; Li, Y.; Dougherty, P.M.; Mei, F.; Cheng, X.; Heijnen, C.J.; Kavelaars, A. Orally active Epac inhibitor reverses mechanical allodynia and loss of intraepidermal nerve fibers in a mouse model of chemotherapy-induced peripheral neuropathy. Pain 2018, 159, 884–893. [Google Scholar] [CrossRef]
  41. Al-Mazidi, S.; Alotaibi, M.; Nedjadi, T.; Chaudhary, A.; Alzoghaibi, M.; Djouhri, L. Blocking of cytokines signalling attenuates evoked and spontaneous neuropathic pain behaviours in the paclitaxel rat model of chemotherapy-induced neuropathy. Eur. J. Pain 2017, 22, 810–821. [Google Scholar] [CrossRef] [Green Version]
  42. Caillaud, M.; Patel, N.H.; Toma, W.; White, A.; Thompson, D.; Mann, J.; Tran, T.H.; Roberts, J.L.; Poklis, J.L.; Bigbee, J.W.; et al. A Fenofibrate Diet Prevents Paclitaxel-Induced Peripheral Neuropathy in Mice. Cancers 2020, 13, 69. [Google Scholar] [CrossRef] [PubMed]
  43. Meregalli, C.; Monza, L.; Chiorazzi, A.; Scali, C.; Guarnieri, C.; Fumagalli, G.; Alberti, P.; Pozzi, E.; Canta, A.; Ballarini, E.; et al. Human Intravenous Immunoglobulin Alleviates Neuropathic Symptoms in a Rat Model of Paclitaxel-Induced Peripheral Neurotoxicity. Int. J. Mol. Sci. 2021, 22, 1058. [Google Scholar] [CrossRef]
  44. Gui, Y.; Zhang, J.; Chen, L.; Duan, S.; Tang, J.; Xu, W.; Li, A. Icariin, a flavonoid with anti-cancer effects, alleviated paclitaxel-induced neuropathic pain in a SIRT1-dependent manner. Mol. Pain 2018, 14. [Google Scholar] [CrossRef]
  45. Huang, J.; Chen, D.; Yan, F.; Wu, S.; Kang, S.; Xing, W.; Zeng, W.; Xie, J. JTC-801 alleviates mechanical allodynia in paclitaxel-induced neuropathic pain through the PI3K/Akt pathway. Eur. J. Pharmacol. 2020, 883, 173306. [Google Scholar] [CrossRef] [PubMed]
  46. Kim, E.; Hwang, S.-H.; Kim, H.-K.; Abdi, S.; Kim, H.K. Losartan, an Angiotensin II Type 1 Receptor Antagonist, Alleviates Mechanical Hyperalgesia in a Rat Model of Chemotherapy-Induced Neuropathic Pain by Inhibiting Inflammatory Cytokines in the Dorsal Root Ganglia. Mol. Neurobiol. 2019, 56, 7408–7419. [Google Scholar] [CrossRef]
  47. Kalynovska, N.; Diallo, M.; Sotakova-Kasparova, D.; Palecek, J. Losartan attenuates neuroinflammation and neuropathic pain in paclitaxel-induced peripheral neuropathy. J. Cell. Mol. Med. 2020, 24, 7949–7958. [Google Scholar] [CrossRef]
  48. Wu, J.; Hocevar, M.; Bie, B.; Foss, J.F.; Naguib, M. Cannabinoid Type 2 Receptor System Modulates Paclitaxel-Induced Microglial Dysregulation and Central Sensitization in Rats. J. Pain 2019, 20, 501–514. [Google Scholar] [CrossRef] [PubMed]
  49. Curry, Z.; Wilkerson, J.L.; Bagdas, D.; Kyte, S.L.; Patel, N.; Donvito, G.; Mustafa, M.A.; Poklis, J.L.; Niphakis, M.J.; Hsu, K.-L.; et al. Monoacylglycerol Lipase Inhibitors Reverse Paclitaxel-Induced Nociceptive Behavior and Proinflammatory Markers in a Mouse Model of Chemotherapy-Induced Neuropathy. J. Pharmacol. Exp. Ther. 2018, 366, 169–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  50. Tsutsumi, K.; Kaname, T.; Shiraishi, H.; Kawashiri, T.; Egashira, N. Polaprezinc reduces paclitaxel-induced peripheral neuropathy in rats without affecting anti-tumor activity. J. Pharmacol. Sci. 2016, 131, 146–149. [Google Scholar] [CrossRef] [Green Version]
  51. Zhang, X.; Jiang, N.; Li, J.; Zhang, D.; Lv, X. Rapamycin alleviates proinflammatory cytokines and nociceptive behavior induced by chemotherapeutic paclitaxel. Neurol. Res. 2018, 41, 52–59. [Google Scholar] [CrossRef] [PubMed]
  52. Laura, B.; Elisabetta, B.; Adelchi, R.P.; Roberto, R.; Loredana, C.; Andrea, A.; Michele, D.; Castelli, V.; Antonio, G.; Marcello, A.; et al. CXCR1/2 pathways in paclitaxel-induced neuropathic pain. Oncotarget 2017, 8, 23188–23201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  53. Suo, J.; Wang, M.; Zhang, P.; Lu, Y.; Xu, R.; Zhang, L.; Qiu, S.; Zhang, Q.; Qian, Y.; Meng, J.; et al. Siwei Jianbu decoction improves painful paclitaxel-induced peripheral neuropathy in mouse model by modulating the NF-κB and MAPK signaling pathways. Regen. Med. Res. 2020, 8, 2. [Google Scholar] [CrossRef] [PubMed]
  54. Li, Y.; Tatsui, C.E.; Rhines, L.D.; North, R.Y.; Harrison, D.S.; Cassidy, R.; Johansson, C.A.; Kosturakis, A.K.; Edwards, D.D.; Zhang, H.; et al. Dorsal root ganglion neurons become hyperexcitable and increase expression of voltage-gated T-type calcium channels (Cav3.2) in paclitaxel-induced peripheral neuropathy. Pain 2016, 158, 417–429. [Google Scholar] [CrossRef] [PubMed]
  55. Rossato, M.F.; Rigo, F.K.; Oliveira, S.M.; Guerra, G.P.; Silva, C.R.; Cunha, T.M.; Gomez, M.V.; Ferreira, J.; Trevisan, G. Participation of transient receptor potential vanilloid 1 in paclitaxel-induced acute visceral and peripheral nociception in rodents. Eur. J. Pharmacol. 2018, 828, 42–51. [Google Scholar] [CrossRef]
  56. Segat, G.C.; Manjavachi, M.N.; Matias, D.O.; Passos, G.F.; Freitas, C.S.; da Costa, R.; Calixto, J.B. Antiallodynic effect of β-caryophyllene on paclitaxel-induced peripheral neuropathy in mice. J. Neuropharmacol. 2017, 125, 207–219. [Google Scholar] [CrossRef]
  57. Mannelli, L.D.C.; Lucarini, E.; Micheli, L.; Mosca, I.; Ambrosino, P.; Soldovieri, M.V.; Martelli, A.; Testai, L.; Taglialatela, M.; Calderone, V.; et al. Effects of natural and synthetic isothiocyanate-based H2S-releasers against chemotherapy-induced neuropathic pain: Role of Kv7 potassium channels. J. Neuropharmacol. 2017, 121, 49–59. [Google Scholar] [CrossRef] [Green Version]
  58. Li, L.; Li, J.; Zuo, Y.; Dang, D.; Frost, J.A.; Yang, Q. Activation of KCNQ Channels Prevents Paclitaxel-Induced Peripheral Neuropathy and Associated Neuropathic Pain. J. Pain 2018, 20, 528–539. [Google Scholar] [CrossRef]
  59. Sekiguchi, F.; Kawara, Y.; Tsubota, M.; Kawakami, E.; Ozaki, T.; Kawaishi, Y.; Tomita, S.; Kanaoka, D.; Yoshida, S.; Ohkubo, T.; et al. Therapeutic potential of RQ-00311651, a novel T-type Ca2+ channel blocker, in distinct rodent models for neuropathic and visceral pain. Pain 2016, 157, 1655–1665. [Google Scholar] [CrossRef]
  60. Kamata, Y.; Kambe, T.; Chiba, T.; Yamamoto, K.; Kawakami, K.; Abe, K.; Taguchi, K. Paclitaxel Induces Upregulation of Transient Receptor Potential Vanilloid 1 Expression in the Rat Spinal Cord. Int. J. Mol. Sci. 2020, 21, 4341. [Google Scholar] [CrossRef]
  61. Hara, T.; Chiba, T.; Abe, K.; Makabe, A.; Ikeno, S.; Kawakami, K.; Utsunomiya, I.; Hama, T.; Taguchi, K. Effect of paclitaxel on transient receptor potential vanilloid 1 in rat dorsal root ganglion. Pain 2013, 154, 882–889. [Google Scholar] [CrossRef]
  62. Costa, R.; Bicca, M.A.; Manjavachi, M.N.; Segat, G.C.; Dias, F.C.; Fernandes, E.S.; Calixto, J.B. Kinin Receptors Sensitize TRPV4 Channel and Induce Mechanical Hyperalgesia: Relevance to Paclitaxel-Induced Peripheral Neuropathy in Mice. Mol. Neurobiol. 2017, 55, 2150–2161. [Google Scholar] [CrossRef]
  63. Gao, W.; Zan, Y.; Wang, Z.-J.J.; Hu, X.-Y.; Huang, F. Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCε-dependent activation of TRPV. Acta Pharmacol. Sin. 2016, 37, 1166–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  64. Brum, E.D.S.; Becker, G.; Fialho, M.F.P.; Casoti, R.; Trevisan, G.; Oliveira, S.M. TRPA1 involvement in analgesia induced by Tabernaemontana catharinensis ethyl acetate fraction in mice. Phytomedicine 2018, 54, 248–258. [Google Scholar] [CrossRef]
  65. Xie, J.-D.; Chen, S.-R.; Chen, H.; Zeng, W.-A.; Pan, H.-L. Presynaptic N-Methyl-d-aspartate (NMDA) Receptor Activity Is Increased Through Protein Kinase C in Paclitaxel-induced Neuropathic Pain. J. Biol. Chem. 2016, 291, 19364–19373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  66. Wang, X.-M.; Gu, P.; Saligan, L.; Iadarola, M.; Wong, S.S.C.; Ti, L.K.; Cheung, C.W. Dysregulation of EAAT2 and VGLUT2 Spinal Glutamate Transports via Histone Deacetylase 2 (HDAC2) Contributes to Paclitaxel-induced Painful Neuropathy. Mol. Cancer Ther. 2020, 19, 2196–2209. [Google Scholar] [CrossRef]
  67. Koyanagi, M.; Imai, S.; Iwamitsu, Y.; Matsumoto, M.; Saigo, M.; Moriya, A.; Ogihara, T.; Nakazato, Y.; Yonezawa, A.; Nakagawa, S.; et al. Cilostazol is an effective causal therapy for preventing paclitaxel-induced peripheral neuropathy by suppression of Schwann cell dedifferentiation. J. Neuropharmacol. 2021, 188, 108514. [Google Scholar] [CrossRef] [PubMed]
  68. Chen, Y.-F.; Chen, L.-H.; Yeh, Y.-M.; Wu, P.-Y.; Chen, Y.-F.; Chang, L.-Y.; Chang, J.-Y.; Shen, M.-R. Minoxidil is a potential neuroprotective drug for paclitaxel-induced peripheral neuropathy. Sci. Rep. 2017, 7, 45366. [Google Scholar] [CrossRef] [PubMed]
  69. King, K.M.; Myers, A.M.; Soroka-Monzo, A.J.; Tuma, R.F.; Tallarida, R.J.; Walker, A.E.; Ward, S.J. Single and combined effects of Δ9 -tetrahydrocannabinol and cannabidiol in a mouse model of chemotherapy-induced neuropathic pain. Br. J. Pharmacol. 2017, 174, 2832–2841. [Google Scholar] [CrossRef] [Green Version]
  70. Foss, J.D.; Farkas, D.J.; Huynh, L.M.; Kinney, W.A.; Brenneman, D.E.; Ward, S.J. Behavioural and pharmacological effects of cannabidiol (CBD) and the cannabidiol analogue KLS-13019 in mouse models of pain and reinforcement. Br. J. Pharmacol. 2021. [Google Scholar] [CrossRef]
  71. Slivicki, R.A.; Xu, Z.; Mali, S.; Hohmann, A.G. Brain permeant and impermeant inhibitors of fatty-acid amide hydrolase suppress the development and maintenance of paclitaxel-induced neuropathic pain without producing tolerance or physical dependence in vivo and synergize with paclitaxel to reduce tumor cell line viability in vitro. Pharmacol. Res. 2019, 142, 267–282. [Google Scholar] [CrossRef] [PubMed]
  72. Pantouli, F.; Grim, T.W.; Schmid, C.L.; Acevedo-Canabal, A.; Kennedy, N.M.; Cameron, M.D.; Bannister, T.D.; Bohn, L.M. Comparison of morphine, oxycodone and the biased MOR agonist SR-17018 for tolerance and efficacy in mouse models of pain. J. Neuropharmacol. 2020, 185, 108439. [Google Scholar] [CrossRef]
  73. Choi, J.; Jeon, C.; Lee, J.H.; Jang, J.U.; Quan, F.S.; Lee, K.; Kim, W.; Kim, S.K. Suppressive Effects of Bee Venom Acupuncture on Paclitaxel-Induced Neuropathic Pain in Rats: Mediation by Spinal α2-Adrenergic Receptor. Toxins 2017, 9, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  74. Li, D.; Yoo, J.H.; Kim, S.K. Long-Lasting and Additive Analgesic Effects of Combined Treatment of Bee Venom Acupuncture and Venlafaxine on Paclitaxel-Induced Allodynia in Mice. Toxins 2020, 12, 620. [Google Scholar] [CrossRef]
  75. Abed, A.; Khoshnoud, M.J.; Taghian, M.; Aliasgharzadeh, M.; Mesdaghinia, A. Quetiapine reverse paclitaxel-induced neuropathic pain in mice: Role of Alpha2- adrenergic receptors. Iran J. Basic Med. Sci. 2017, 20, 1182–1188. [Google Scholar] [CrossRef]
  76. Costa-Pereira, J.T.; Ribeiro, J.; Martins, I.; Tavares, I. Role of Spinal Cord α2-Adrenoreceptors in Noradrenergic Inhibition of Nociceptive Transmission During Chemotherapy-Induced Peripheral Neuropathy. Front. Neurosci. 2020, 13, 1413. [Google Scholar] [CrossRef] [Green Version]
  77. Kyte, S.L.; Toma, W.; Bagdas, D.; Meade, J.A.; Schurman, L.D.; Lichtman, A.H.; Chen, Z.-J.; Del Fabbro, E.; Fang, X.; Bigbee, J.W.; et al. Nicotine Prevents and Reverses Paclitaxel-Induced Mechanical Allodynia in a Mouse Model of CIPN. J. Pharmacol. Exp. Ther. 2017, 364, 110–119. [Google Scholar] [CrossRef] [PubMed]
  78. Calcutt, N.A.; Smith, D.R.; Frizzi, K.; Sabbir, M.G.; Chowdhury, S.K.R.; Mixcoatl-Zecuatl, T.; Saleh, A.; Muttalib, N.; Van Der Ploeg, R.; Ochoa, J.; et al. Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy. J. Clin. Investig. 2017, 127, 608–622. [Google Scholar] [CrossRef] [Green Version]
  79. Toma, W.; Kyte, S.L.; Bagdas, D.; Jackson, A.; Meade, J.A.; Rahman, F.; Chen, Z.-J.; Del Fabbro, E.; Cantwell, L.; Kulkarni, A.; et al. The α7 nicotinic receptor silent agonist R-47 prevents and reverses paclitaxel-induced peripheral neuropathy in mice without tolerance or altering nicotine reward and withdrawal. Exp. Neurol. 2019, 320, 113010. [Google Scholar] [CrossRef] [PubMed]
  80. Huynh, P.; Giuvelis, D.; Christensen, S.; Tucker, K.L.; McIntosh, J.M. RgIA4 Accelerates Recovery from Paclitaxel-Induced Neuropathic Pain in Rats. Mar. Drugs 2019, 18, 12. [Google Scholar] [CrossRef] [Green Version]
  81. Tsubaki, M.; Takeda, T.; Matsumoto, M.; Kato, N.; Yasuhara, S.; Koumoto, Y.-I.; Imano, M.; Satou, T.; Nishida, S. Tamoxifen suppresses paclitaxel-, vincristine-, and bortezomib-induced neuropathy via inhibition of the protein kinase C/extracellular signal-regulated kinase pathway. Tumor Biol. 2018, 40. [Google Scholar] [CrossRef] [Green Version]
  82. Kato, N.; Tateishi, K.; Tsubaki, M.; Takeda, T.; Matsumoto, M.; Tsurushima, K.; Ishizaka, T.; Nishida, S. Gabapentin and Duloxetine Prevent Oxaliplatin- and Paclitaxel-Induced Peripheral Neuropathy by Inhibiting Extracellular Signal-Regulated Kinase 1/2 (ERK1/2) Phosphorylation in Spinal Cords of Mice. Pharmaceuticals 2020, 14, 30. [Google Scholar] [CrossRef]
  83. Tsubaki, M.; Takeda, T.; Matsumoto, M.; Kato, N.; Asano, R.T.; Imano, M.; Satou, T.; Nishida, S. Trametinib suppresses chemotherapy-induced cold and mechanical allodynia via inhibition of extracellular-regulated protein kinase 1/2 activation. Am. J. Cancer Res. 2018, 8, 1239–1248. [Google Scholar]
  84. Leblanc, A.F.; Sprowl, J.; Alberti, P.; Chiorazzi, A.; Arnold, W.D.; Gibson, A.A.; Hong, K.W.; Pioso, M.S.; Chen, M.; Huang, K.M.; et al. OATP1B2 deficiency protects against paclitaxel-induced neurotoxicity. J. Clin. Investig. 2018, 128, 816–825. [Google Scholar] [CrossRef]
  85. Toma, W.; Caillaud, M.; Patel, N.H.; Tran, T.H.; Donvito, G.; Roberts, J.; Bagdas, D.; Jackson, A.; Lichtman, A.; Gewirtz, D.A.; et al. N-acylethanolamine-hydrolysing acid amidase: A new potential target to treat paclitaxel-induced neuropathy. Eur. J. Pain 2021, 25, 1367–1380. [Google Scholar] [CrossRef] [PubMed]
  86. Andoh, T.; Kato, M.; Kitamura, R.; Mizoguchi, S.; Uta, D.; Toume, K.; Komatsu, K.; Kuraishi, Y. Prophylactic administration of an extract from Plantaginis Semen and its major component aucubin inhibits mechanical allodynia caused by paclitaxel in mice. J. Tradit. Complement. Med. 2016, 6, 305–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  87. Andoh, T.; Uta, D.; Kato, M.; Toume, K.; Komatsu, K.; Kuraishi, Y. Prophylactic Administration of Aucubin Inhibits Paclitaxel-Induced Mechanical Allodynia via the Inhibition of Endoplasmic Reticulum Stress in Peripheral Schwann Cells. Biol. Pharm. Bull. 2017, 40, 473–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  88. Ahn, S.H.; Chang, I.A.; Kim, K.-J.; Kim, C.-J.; Namgung, U.; Cho, C.-S. Bogijetong decoction and its active herbal components protect the peripheral nerve from damage caused by taxol or nerve crush. BMC Complement. Altern. Med. 2016, 16, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  89. Brusco, I.; Silva, C.R.; Trevisan, G.; Gewehr, C.D.C.V.; Rigo, F.K.; Tamiozzo, L.L.R.; Rossato, M.F.; Tonello, R.; Dalmolin, G.D.; Cabrini, D.D.A.; et al. Potentiation of Paclitaxel-Induced Pain Syndrome in Mice by Angiotensin I Converting Enzyme Inhibition and Involvement of Kinins. Mol. Neurobiol. 2016, 54, 7824–7837. [Google Scholar] [CrossRef]
  90. Vitet, L.; Patte-Mensah, C.; Boujedaini, N.; Mensah-Nyagan, A.-G.; Meyer, L. Beneficial effects of Gelsemium-based treatment against paclitaxel-induced painful symptoms. Neurol. Sci. 2018, 39, 2183–2196. [Google Scholar] [CrossRef]
  91. Yu, H.; Toume, K.; Kurokawa, Y.; Andoh, T.; Komatsu, K. Iridoids isolated from Viticis Fructus inhibit paclitaxel-induced mechanical allodynia in mice. J. Nat. Med. 2020, 75, 48–55. [Google Scholar] [CrossRef]
  92. Tenci, B.; Mannelli, L.D.C.; Maresca, M.; Micheli, L.; Pieraccini, G.; Mulinacci, N.; Ghelardini, C. Effects of a water extract of Lepidium meyenii root in different models of persistent pain in rats. Z. Nat. C 2017, 72, 449–457. [Google Scholar] [CrossRef]
  93. Inyang, K.E.; McDougal, T.A.; Ramirez, E.D.; Williams, M.; Laumet, G.; Kavelaars, A.; Heijnen, C.J.; Burton, M.; Dussor, G.; Price, T.J. Alleviation of paclitaxel-induced mechanical hypersensitivity and hyperalgesic priming with AMPK activators in male and female mice. Neurobiol. Pain 2019, 6, 100037. [Google Scholar] [CrossRef]
  94. Tanimura, Y.; Yoshida, M.; Ishiuchi, K.; Ohsawa, M.; Makino, T. Neoline is the active ingredient of processed aconite root against murine peripheral neuropathic pain model, and its pharmacokinetics in rats. J. Ethnopharmacol. 2019, 241, 111859. [Google Scholar] [CrossRef]
  95. Hamity, M.V.; White, S.R.; Blum, C.; Gibson-Corley, K.N.; Hammond, D. Nicotinamide riboside relieves paclitaxel-induced peripheral neuropathy and enhances suppression of tumor growth in tumor-bearing rats. Pain 2020, 161, 2364–2375. [Google Scholar] [CrossRef] [PubMed]
  96. Masocha, W.; Parvathy, S.S. Preventative and therapeutic effects of a GABA transporter 1 inhibitor administered systemically in a mouse model of paclitaxel-induced neuropathic pain. PeerJ 2016, 4, e2798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  97. Nishida, T.; Tsubota, M.; Kawaishi, Y.; Yamanishi, H.; Kamitani, N.; Sekiguchi, F.; Ishikura, H.; Liu, K.; Nishibori, M.; Kawabata, A. Involvement of high mobility group box 1 in the development and maintenance of chemotherapy-induced peripheral neuropathy in rats. Toxicology 2016, 365, 48–58. [Google Scholar] [CrossRef]
  98. Kamei, J.; Hayashi, S.; Sakai, A.; Nakanishi, Y.; Kai, M.; Ikegami, M.; Ikeda, H. Rikkunshito prevents paclitaxel-induced peripheral neuropathy through the suppression of the nuclear factor kappa B (NFκB) phosphorylation in spinal cord of mice. PLoS ONE 2017, 12, e0171819. [Google Scholar] [CrossRef] [PubMed]
  99. Rukh, L.; Ali, G.; Ullah, R.; Islam, N.U.; Shahid, M. Efficacy assessment of salicylidene salicylhydrazide in chemotherapy associated peripheral neuropathy. Eur. J. Pharmacol. 2020, 888, 173481. [Google Scholar] [CrossRef]
  100. Vaseghi, G.; Yegdaneh, A.; Saeedi, A.; Shahmiveh, T. The effect of Sargassum glaucescens from the Persian gulf on neuropathy pain induced by paclitaxel in mice. Adv. Biomed. Res. 2020, 9, 79. [Google Scholar] [CrossRef]
  101. Cuozzo, M.; Castelli, V.; Avagliano, C.; Cimini, A.; D’Angelo, M.; Cristiano, C.; Russo, R. Effects of Chronic Oral Probiotic Treatment in Paclitaxel-Induced Neuropathic Pain. Biomedicines 2021, 9, 346. [Google Scholar] [CrossRef]
  102. Adamek, P.; Heles, M.; Palecek, J. Mechanical allodynia and enhanced responses to capsaicin are mediated by PI3K in a paclitaxel model of peripheral neuropathy. J. Neuropharmacol. 2018, 146, 163–174. [Google Scholar] [CrossRef]
  103. Sisignano, M.; Angioni, C.; Park, C.-K.; Dos Santos, S.M.; Jordan, H.; Kuzikov, M.; Liu, D.; Zinn, S.; Hohman, S.W.; Schreiber, Y.; et al. Targeting CYP2J to reduce paclitaxel-induced peripheral neuropathic pain. Proc. Natl. Acad. Sci. USA 2016, 113, 12544–12549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  104. Duggett, N.A.; Griffiths, L.; McKenna, O.E.; de Santis, V.; Yongsanguanchai, N.; Mokori, E.B.; Flatters, S.J. Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy. Neuroscience 2016, 333, 13–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  105. Xiao, W.; Zheng, H.; Zheng, F.; Nuydens, R.; Meert, T.; Bennett, G. Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat. Neuroscience 2011, 199, 461–469. [Google Scholar] [CrossRef] [PubMed]
  106. Flatters, S.J.; Bennett, G.J. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: Evidence for mitochondrial dysfunction. Pain 2006, 122, 245–257. [Google Scholar] [CrossRef] [Green Version]
  107. Alessandri-Haber, N.; Dina, O.A.; Yeh, J.J.; Parada, C.A.; Reichling, D.B.; Levine, J.D.; Baden, T.; Hedwig, B. Transient Receptor Potential Vanilloid 4 Is Essential in Chemotherapy-Induced Neuropathic Pain in the Rat. J. Neurosci. 2004, 24, 4444–4452. [Google Scholar] [CrossRef]
  108. Chen, Y.; Yang, C.; Wang, Z. Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience 2011, 193, 440–451. [Google Scholar] [CrossRef]
  109. Boehmerle, W.; Huehnchen, P.; Lee, S.L.L.; Harms, C.; Endres, M. TRPV4 inhibition prevents paclitaxel-induced neurotoxicity in preclinical models. Exp. Neurol. 2018, 306, 64–75. [Google Scholar] [CrossRef] [PubMed]
  110. Yoshimura, M.; Furue, H. Mechanisms for the Anti-nociceptive Actions of the Descending Noradrenergic and Serotonergic Systems in the Spinal Cord. J. Pharmacol. Sci. 2006, 101, 107–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  111. Hershman, D.L.; Unger, J.M.; Crew, K.D.; Till, C.; Greenlee, H.; Minasian, L.M.; Moinpour, C.M.; Lew, D.L.; Fehrenbacher, L.; Wade, J.L.; et al. Two-Year Trends of Taxane-Induced Neuropathy in Women Enrolled in a Randomized Trial of Acetyl-L-Carnitine (SWOG S0715). J. Natl. Cancer Inst. 2018, 110, 669–676. [Google Scholar] [CrossRef] [PubMed]
  112. Kanat, O.; Evrensel, T.; Baran, I.; Coskun, H.; Zarifoglu, M.; Turan, O.F.; Kurt, E.; Demiray, M.; Gönüllü, G.; Manavoglu, O. Protective Effect of Amifostine Against Toxicity of Paclitaxel and Carboplatin in Non-small Cell Lung Cancer: A Single Center Randomized Study. Med. Oncol. 2003, 20, 237–246. [Google Scholar] [CrossRef]
  113. Gelmon, K.; Eisenhauer, E.; Bryce, C.; Tolcher, A.; Mayer, L.; Tomlinson, E.; Zee, B.; Blackstein, M.; Tomiak, E.; Yau, J.; et al. Randomized Phase II Study of High-Dose Paclitaxel with or Without Amifostine in Patients with Metastatic Breast Cancer. J. Clin. Oncol. 1999, 17, 3038–3047. [Google Scholar] [CrossRef] [PubMed]
  114. Hirayama, Y.; Ishitani, K.; Sato, Y.; Iyama, S.; Takada, K.; Murase, K.; Kuroda, H.; Nagamachi, Y.; Konuma, Y.; Fujimi, A.; et al. Effect of duloxetine in Japanese patients with chemotherapy-induced peripheral neuropathy: A pilot randomized trial. Int. J. Clin. Oncol. 2015, 20, 866–871. [Google Scholar] [CrossRef]
  115. Smith, E.M.L.; Pang, H.; Cirrincione, C.; Fleishman, S.; Paskett, E.D.; Ahles, T.; Bressler, L.R.; Fadul, C.E.; Knox, C.; Le-Lindqwister, N.; et al. Effect of Duloxetine on Pain, Function, and Quality of Life Among Patients with Chemotherapy-Induced Painful Peripheral Neuropathy. JAMA 2013, 309, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
  116. Aghili, M.; Zare, M.; Mousavi, N.; Ghalehtaki, R.; Sotoudeh, S.; Kalaghchi, B.; Akrami, S.; Esmati, E. Efficacy of gabapentin for the prevention of paclitaxel induced peripheral neuropathy: A randomized placebo controlled clinical trial. Breast J. 2019, 25, 226–231. [Google Scholar] [CrossRef]
  117. Loven, D.; Levavi, H.; Sabach, G.; Zart, R.; Andras, M.; Fishman, A.; Karmon, Y.; Levi, T.; Dabby, R.; Gadoth, N. Long-term glutamate supplementation failed to protect against peripheral neurotoxicity of paclitaxel. Eur. J. Cancer Care 2009, 18, 78–83. [Google Scholar] [CrossRef]
  118. Leal, A.; Qin, R.; Ms, P.J.A.; Haluska, P.; Behrens, R.J.; Tiber, C.H.; Watanaboonyakhet, P.; Weiss, M.; Adams, P.T.; Ms, T.J.D.; et al. North Central Cancer Treatment Group/Alliance trial N08CA-the use of glutathione for prevention of paclitaxel/carboplatin-induced peripheral neuropathy: A phase 3 randomized, double-blind, placebo-controlled study. Cancer 2014, 120, 1890–1897. [Google Scholar] [CrossRef] [Green Version]
  119. Pachman, D.R.; Dockter, T.; Zekan, P.J.; Fruth, B.; Ruddy, K.J.; Ta, L.E.; Lafky, J.M.; Dentchev, T.; Le-Lindqwister, N.A.; Sikov, W.M.; et al. A pilot study of minocycline for the prevention of paclitaxel-associated neuropathy: ACCRU study RU221408I. Support. Care Cancer 2017, 25, 3407–3416. [Google Scholar] [CrossRef]
  120. Khalefa, H.G.; Shawki, M.A.; Aboelhassan, R.; El Wakeel, L.M. Evaluation of the effect of N-acetylcysteine on the prevention and amelioration of paclitaxel-induced peripheral neuropathy in breast cancer patients: A randomized controlled study. Breast Cancer Res. Treat. 2020, 183, 117–125. [Google Scholar] [CrossRef]
  121. Zhang, A.C.; De Silva, M.E.H.; MacIsaac, R.J.; Roberts, L.; Kamel, J.; Craig, J.P.; Busija, L.; E Downie, L. Omega-3 polyunsaturated fatty acid oral supplements for improving peripheral nerve health: A systematic review and meta-analysis. Nutr. Rev. 2019, 78, 323–341. [Google Scholar] [CrossRef]
  122. Ghoreishi, Z.; Esfahani, A.; Djazayeri, A.; Djalali, M.; Golestan, B.; Ayromlou, H.; Hashemzade, S.; Jafarabadi, M.A.; Montazeri, V.; Keshavarz, S.A.; et al. Omega-3 fatty acids are protective against paclitaxel-induced peripheral neuropathy: A randomized double-blind placebo controlled trial. BMC Cancer 2012, 12, 355. [Google Scholar] [CrossRef] [Green Version]
  123. Sánchez-Lara, K.; Turcott, J.G.; Juárez-Hernández, E.; Nuñez-Valencia, C.; Villanueva, G.; Guevara, P.; De la Torre-Vallejo, M.; Mohar, A.; Arrieta, O. Effects of an oral nutritional supplement containing eicosapentaenoic acid on nutritional and clinical outcomes in patients with advanced non-small cell lung cancer: Randomised trial. Clin. Nutr. 2014, 33, 1017–1023. [Google Scholar] [CrossRef]
  124. Balko, R.; Hurley, R.; Jatoi, A. Poly (ADP-Ribose) Polymerase Inhibition for Chemotherapy-Induced Peripheral Neuropathy: A Meta-Analysis of Placebo-Controlled Trials. J. Palliat. Med. 2019, 22, 977–980. [Google Scholar] [CrossRef]
  125. Salehifar, E.; Janbabaei, G.; Hendouei, N.; Alipour, A.; Tabrizi, N.; Avan, R. Comparison of the Efficacy and Safety of Pregabalin and Duloxetine in Taxane-Induced Sensory Neuropathy: A Randomized Controlled Trial. Clin. Drug Investig. 2020, 40, 249–257. [Google Scholar] [CrossRef]
  126. Shinde, S.S.; Seisler, D.; Soori, G.; Atherton, P.J.; Pachman, D.R.; Lafky, J.; Ruddy, K.J.; Loprinzi, C.L. Can pregabalin prevent paclitaxel-associated neuropathy?—An ACCRU pilot trial. Support. Care Cancer 2015, 24, 547–553. [Google Scholar] [CrossRef] [PubMed]
  127. Davis, I.D.; Kiers, L.; MacGregor, L.; Quinn, M.; Arezzo, J.; Green, M.; Rosenthal, M.; Chia, M.; Michael, M.; Bartley, P.; et al. A Randomized, Double-Blinded, Placebo-Controlled Phase II Trial of Recombinant Human Leukemia Inhibitory Factor (rhuLIF, Emfilermin, AM424) to Prevent Chemotherapy-Induced Peripheral Neuropathy. Clin. Cancer Res. 2005, 11, 1890–1898. [Google Scholar] [CrossRef] [Green Version]
  128. Argyriou, A.A.; Chroni, E.; Koutras, A.; Iconomou, G.; Papapetropoulos, S.; Polychronopoulos, P.; Kalofonos, H. Preventing Paclitaxel-Induced Peripheral Neuropathy: A Phase II Trial of Vitamin E Supplementation. J. Pain Symptom Manag. 2006, 32, 237–244. [Google Scholar] [CrossRef] [PubMed]
  129. Argyriou, A.A.; Chroni, E.; Koutras, A.; Ellul, J.; Papapetropoulos, S.; Katsoulas, G.; Iconomou, G.; Kalofonos, H. Vitamin E for prophylaxis against chemotherapy-induced neuropathy: A randomized controlled trial. Neurology 2005, 64, 26–31. [Google Scholar] [CrossRef] [PubMed]
  130. Kawashiri, T.; Mine, K.; Kobayashi, D.; Inoue, M.; Ushio, S.; Uchida, M.; Egashira, N.; Shimazoe, T. Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int. J. Mol. Sci. 2021, 22, 1393. [Google Scholar] [CrossRef]
Table 1. The therapeutic agents for paclitaxel-induced peripheral neuropathy in preclinical experiments.
Table 1. The therapeutic agents for paclitaxel-induced peripheral neuropathy in preclinical experiments.
Therapeutic TargetsTherapeutic AgentsDoseAnimalsSymptoms that Showed ImprovementMechanismsReferences
Oxidative stress and mitochondrial disfunctionAnakinra, IL-1β antagonist50–100 mg/kg, i.p.RatsPain thresholdReductions of MDA, MPO and IL-1β and increase in GSH in paws[19]
Antimycin A0.2–0.6 mg/kg, i.p.RatsMechanical hypersensitivityInhibition of mitochondrial complex III[20]
Curcumin100–200 mg/kg, p.o.RatsHistological changes in spinal cord and sciatic nerveReduction of NF-κB, TNF-α, IL-6, iNOS and GFAP, p53, caspase-3, Apaf-1, LC3A, LC3B and beclin-1, and increase in Nrf2, HO-1, NQO1, Bcl-2, and Bcl-xL.[21]
Divya-Peedantak-Kwath, a herbal decoction69–615 mg/kg, p.o.MiceThermal hyperalgesia, mechanical allodynia and hyperalgesia, and axonal degenerationSuppression of oxidative stress and inflammation[22]
Duloxetine10–30 mg/kg, i.p.MiceMechanical hyperalgesia and thermal nociceptionInhibiting PARP and p53 activation and regulating Bcl-2 family to reverse oxidative stress and apoptosis[23]
Evodiamine5 mg/kgRatsMechanical hypersensitivity and thermal hypersensitivityDownregulation of inflammatory and chemoattractant cytokines (IL-1β, IL-6, TNF-α, and MCP-1), oxidative stress, and mitochondrial dysfunction in DRG.[24]
Flavonol25–200 mg/kg, s.c.MiceTactile allodynia, cold allodynia and thermal hyperalgesiaInhibitions of TNF-α, IL-1β and free radicals[25]
Ghrelin300 nmol/kg, i.p.MiceMechanical sensitivity, thermal sensitivity, DRG damage (ATF-3 positive cells), and density of IENFDecreases in plasma oxidative and nitrosative stress and increases in UCP2, SOD2, and PGC-1α[26]
GKT137831, a NOX4 inhibitor1 mg/kg, i.p.RatsMechanical sensitivity and thermal sensitivityDecreases of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) in the DRG[27]
Lacosamide30 mg/kg, p.o.RatsThermal hyperalgesia and cold allodyniaUpregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3[28]
Melatonin5–50 mg/kg, p.o.RatsMechanical sensitivityReduction of mitochondrial damage[29]
Nicotinamide riboside200 mg/kg, p.o.RatsTactile hypersensitivityN.A.[30]
Phenyl-N-tert-butylnitrone100 mg/kg, i.p.MiceMechanical hypersensitivityN.A.[31]
Pregabalin30 mg/kg, p.o.RatsThermal hyperalgesia and cold allodyniaUpregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3[28]
Rosuvastatin10 mg/kg, i.p.MiceThermal hyperalgesia, cold hyperalgesia, and mechanical allodyniaDownregulations of IL-1β, oxidative stress[32]
Rotenone1–5 mg/kg, i.p.RatsMechanical hypersensitivityInhibition of mitochondrial complex I[20]
Tempol, a mimetic of SOD20 mg/kg, i.p.RatsMechanical sensitivity and thermal sensitivityDecreases of proinflammatory cytokines such as IL-1β, IL-6 and TNF-α in the DRG[27]
Trimethoxy flavones25–200 mg/kg, s.c.MiceTactile allodynia, cold allodynia, and thermal hyperalgesiaInhibitions of TNF-α, IL-1β and free radicals[33]
Umbelliprenin, a prenylated coumarin12.5–25 mg/kg, i.p.MiceThermal hyperalgesiaDecrease in serum IL-6 levels and oxidative stress[34]
Vitamin C500 mg/kg, i.p.RatsMechanical sensitivity and thermal sensitivityDecreases of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) in the DRG[27]
Inflammatory3-Hydroxyflavone25–75 mg/kg, i.p.RatsTactile allodynia, cold allodynia, thermal hyperalgesia, and heat-hyperalgesiaSuppressions of TNF-α, IL-1β, IL-6, CGRP, and substance P in the spinal cord, and inhibition of the receptor of substance P[35]
AMD3100, a CXCR4 antagonist8 mg/kg, i.p.MiceMechanical allodyniaN.A.[36]
Anakinra, IL-1β antagonist50–100 mg/kg, i.p.RatsPain thresholdReductions of MDA, MPO and IL-1β and increase in GSH in paws[19]
Anti-HMGB1-neutralizing antibody1 mg/kg, i.p.MiceMechanical allodyniaN.A.[36]
Berberine5–20 mg/kg, i.p.MiceThermal hyperalgesiaN.A.[37]
Choline-fenofibrate6–24 mg/kg, i.p., 15–60 mg/kg, p.o.MiceMechanical hyperalgesia, cold hyperalgesia, and sensory nerve compound action potential amplitudeRegulation of PPAR-⍺ expression and decrease neuroinflammation in DRG[38]
Curcumin100–200 mg/kg, p.o.RatsHistological changes in the spinal cord and sciatic nerveReductions of NF-κB, TNF-α, IL-6, iNOS and GFAP, p53, caspase-3, Apaf-1, LC3A, LC3B and beclin-1, and increase in Nrf2, HO-1, NQO1, Bcl-2, and Bcl-xL.[21]
Divya-Peedantak-Kwath, a herbal decoction69–615 mg/kg, p.o.MiceThermal hyperalgesia, mechanical allodynia and hyperalgesia, and axonal degenerationSuppressions of oxidative stress and inflammation[22]
Duloxetine30 mg/kg/day, i.p.MiceMechanical hyperalgesia, thermal hyperalgesia, and loss of IENFDecreases in NF-κB, p-p38, IL-6, and TNF-α in DRG[39]
ESI-09, a Epac inhibitor20 mg/kg, p.o.MiceMechanical allodynia and number of IENFSuppression of spinal cord astrocyte activation[40]
Etanercept2 mg/kg, i.p.RatsMechanical hypersensitivity and cold hypersensitivityBlocking of TNF-α signaling[41]
Evodiamine5 mg/kgRatsMechanical hypersensitivity and thermal hypersensitivityDownregulation of inflammatory and chemoattractant cytokines (IL-1β, IL-6, TNF-α, and MCP-1), oxidative stress, and mitochondrial dysfunction in DRG.[24]
FenofibrateDiet with 0.2% or 0.4% fenofibrateMiceMechanical allodynia, cold allodynia, SNAP amplitude, and intra-epidermal nerve fibers densityRegulation of PPAR-α expression and reduction in neuroinflammation[42]
Fenofibrate100–150 mg/kg, i.p., 300–600 mg/kg, p.o.MiceMechanical hyperalgesia, cold hyperalgesia, and sensory nerve compound action potential amplitudeRegulation of PPAR-⍺ expression and decrease neuroinflammation in DRG[38]
Fenofibric acid6–24 mg/kg, i.p., 30–90 mg/kg, p.o.MiceMechanical hyperalgesia, cold hyperalgesia, and sensory nerve compound action potential amplitudeRegulation of PPAR-⍺ expression and decrease neuroinflammation in DRG[38]
Flavonol25–200 mg/kg, s.c.MiceTactile allodynia, cold allodynia, and thermal hyperalgesiaInhibitions of TNF-α, IL-1β and free radicals[25]
FPS-ZM1, a RAGE antagonist1 mg/kg, i.p.MiceMechanical allodyniaN.A.[36]
GKT137831, a NOX4 inhibitor1 mg/kg, i.p.RatsMechanical sensitivity and thermal sensitivityDecreases of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) in the DRG[27]
Human intravenous immunoglobulin1 g/kg, i.v.RatsMechanical allodynia, loss of IENF, and distal axonal degenerationSuppression of the axonopathy with macrophage infiltration[43]
Icariin100 mg/kg, p.o.RatsMechanical allodyniaDownregulations of TNF-α, IL-1β, IL-6 and astrocyte activation in spinal cord via SIRT1 activation[44]
IL-1 receptor antagonist3 mg/kg, i.p.RatsMechanical hypersensitivity and cold hypersensitivityN.A.[41]
JTC-8010.01–0.05 mg/kg, i.v.RatsMechanical allodyniaDecreases in PI3K, p-Akt, and inflammatory cytokines in the DRG[45]
Lacosamide30 mg/kg, p.o.RatsThermal hyperalgesia and cold allodyniaUpregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3[28]
Losartan20–100 mg/kg, i.p.RatsMechanical hyperalgesiaDecrease in inflammatory cytokines including IL-1β and TNF-α in the DRG[46]
Losartan100 mg/kg, p.o.RatsMechanical allodyniaAttenuations of neuroinflammatory changes and expression of pro-resolving markers (arginase 1 and IL-10) indicating a possible shift in macrophage polarization[47]
Low-molecular-weight heparin, a rage antagonist2.5 mg/kg. i.p.MiceMechanical allodyniaN.A.[36]
LPS-R, a TLR4 antagonist0.5 mg/kg, i.p.MiceMechanical allodyniaN.A.[36]
MDA7, a CB₂ agonist15 mg/kg, i.p.RatsMechanical allodyniaDownregulations of IRF8, P2X4, CaMKIIα, p-CREB, FosB, BDNF, GluR1 and NR2B, and increase in the expression of K+-Cl- cotransporter[48]
MJN110, a MAGL inhibitor4–40 mg/kg, i.p.MiceMechanical allodyniaDownregulations of MCP-1, CCL2 and p-p38 in DRG as well as MCP-1 in the spinal dorsal horn[49]
Polaprezinc3 mg/kg, p.o.RatsMechanical allodyniaSuppression of macrophage migration into DRG[50]
Pregabalin30 mg/kg, p.o.RatsThermal hyperalgesia and cold allodyniaUpregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3[28]
Rapamycin5 mg/kg, i.p.RatsMechanical hypersensitivity and thermal hypersensitivityDecreases of IL-1β, IL-6, TNF-α, substance P and CGRP in DRG.[51]
Reparixin8 mg/hr/kg using micro–osmotic pumpsRatsMechanical allodynia and cold allodyniaInhibition of IL-8/CXCR1/2 pathway and suppressions of p-FAK, p-JAK2/p-STAT3, and PI3K-p-cortactin activation[52]
Rosuvastatin10 mg/kg, i.p.MiceThermal hyperalgesia, cold hyperalgesia, and mechanical allodyniaDownregulations of IL-1β and oxidative stress[32]
S504393, a CCR2 antagonist5 mg/kg, i.p.RatsMechanical hypersensitivity and cold hypersensitivityN.A.[41]
Siwei Jianbu decoction5–10 g/kg, i.g.MiceMechanical hyperalgesia and thermal nociceptionInhibiting the JNK, ERK1/2 phosphorylation, NF-κB, TNF-α, IL-1β, and IL-6.[53]
TAK242, a TLR4 antagonist1–3 mg/kg, i.p.RatsMechanical hypersensitivityAntagonism of TLR4[54]
TAK242, a TLR4 antagonist3 mg/kg, i.p.MiceMechanical allodyniaN.A.[55]
Tempol, a mimetic of SOD20 mg/kg, i.p.RatsMechanical sensitivity and thermal sensitivityDecreases of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) in the DRG[27]
Thrombomodulin alfa1–3 mg/kg, i.p.MiceMechanical allodyniaN.A.[36]
Trimethoxy flavones25–200 mg/kg, s.c.MiceTactile allodynia, cold allodynia, and thermal hyperalgesiaInhibitions of TNF-α, IL-1β and free radicals[33]
Umbelliprenin, a prenylated coumarin12.5–25 mg/kg, i.p.MiceThermal hyperalgesiaDecreases in serum IL-6 levels and oxidative stress[34]
Vitamin C500 mg/kg, i.p.RatsMechanical sensitivity and thermal sensitivityDecreases of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) in the DRG[27]
β-caryophyllene, a CB2 agonist25 mg/kg, p.o.MiceMechanical allodyniaThrough CB2-activation in the CNS and posterior inhibition of p38 MAPK/NF-κB activation and cytokine release[56]
K channel3-Carboxyphenyl isothiocyanate1.33–13.31 µmol/kg, s.c.MiceCold hypersensitivityRelease H2S activating Kv7 channel[57]
Allyl isothiocyanate1.33–13.31 µmol/kg, s.c.MiceCold hypersensitivityRelease H2S activating Kv7 channel[57]
Phenyl isothiocyanate4.43–13.31 µmol/kg, s.c.MiceCold hypersensitivityRelease H2S activating Kv7 channel[57]
Retigabine10 mg/kg, i.p.RatsMechanical allodynia, IENF density, and morphological alteration of mitochondria in peripheral nerveSpecific KCNQ/Kv7 channel opener[58]
Sodium hydrosulfide hydrate13.31–38 µmol/kg, s.c.MiceCold hypersensitivityRelease H2S activating Kv7 channel[57]
Ca channelML218, a T-type calcium channel blocker1–10 mg/kg, i.p.RatsMechanical hypersensitivityInhibition of Cav3.2[54]
RQ-00311651, a T-type calcium channel blocker10–40 mg/kg, i.p.Mice and ratsMechanical hyperalgesiaBlock of Cav3.1/Cav3.2 T channels[59]
TRP channelAMG981030 mg/kg, p.o.RatsMechanical allodynia, hyperalgesia, and thermal hyperalgesiaTRPV1 antagonism[60]
Capsazepine30 mg/kg, s.c.RatsThermal hyperalgesiaTRPV1 antagonism[61]
HC-067047, a TRPV4 antagonist10 mg/kg, i.p.MiceMechanical hyperalgesiaTRPV4 antagonism[62]
Quercetin20–60 mg/kg, i.p.Rats and miceHeat hyperalgesia and mechanical allodyniaSuppression of PKCε and TRPV1 in the spinal cords and DRG[63]
Ruthenium red3 mg/kg, s.c.RatsThermal hyperalgesiaTRP antagonism[61]
SB-366791, a TRPV1 antagonist0.5 mg/kg, i.p.MiceVisceral nociception, mechanical hypersensitivity and heat hypersensitivityTRPA1 antagonism[55]
Tabernaemontana catharinensis ethyl acetate fraction100 mg/kg, p.o.MiceMechanical allodyniaTRPA1 antagonism[64]
GlutamateMemantine1–5 mg/kgRatsMechanical hypersensitivityAntagonism of NMDA receptor[65]
Valproate200 mg/kg, i.p.RatsMechanical allodyniaSuppressions HDAC2 upregulation, glutamate accumulation, and the corresponding changes in EAAT2/VGLUT/synaptophysin expression and HDAC2/YY1 interaction[66]
PDECilostazolDiet containing 0.3% cilostazolMiceMechanical hyperalgesia and Schwann cell dedifferentiation within the sciatic nerveDifferentiation of Schwann cells via a mechanism involving cAMP/Epac signaling[67]
Minoxidil25–50 mg/kg, i.p.MiceMechanical hyperalgesia, thermal sensitivity, and damages of sciatic nerveSuppression of neuroinflammation (macrophage and microglia) recruitments and remodeling of intracellular calcium homeostasis in DRG[68]
Cannabinoid receptorCannabidiol1–20 mg/kg, i.p.MiceMechanical sensitivityN.A.[69]
Cannabidiol2.5–25 mg/kg, i.p., p.o.MiceMechanical allodyniaN.A.[70]
JZL184, a MAGL inhibitor4–40 mg/kg, i.p.MiceMechanical allodyniaN.A.[49]
KLS-130192.5–25 mg/kg, i.p.MiceMechanical allodyniaN.A.[70]
MDA7, a CB₂ agonist15 mg/kg, i.p.RatsMechanical allodyniaDownregulations of IRF8, P2X4, CaMKIIα, p-CREB, FosB, BDNF, GluR1 and NR2B, and increase in the expression of K+-Cl- cotransporter[48]
MJN110, a MAGL inhibitor4–40 mg/kg, i.p.MiceMechanical allodyniaDownregulations of monocyte chemoattractant protein-1 (MCP-1 and CCL2) and p-p38 MAPK in dorsal root ganglia as well as MCP-1 in the spinal dorsal horn[49]
URB597, a centrally penetrant FAAH inhibitor1 mg/kg, i.p.MiceMechanical hypersensitivity and cold hypersensitivityInhibition of FAAH, the major enzyme catalyzing the degradation of anandamide, an endocannabinoid, and other fatty acid amides[71]
URB937, a peripherally restricted FAAH inhibitor1 mg/kg, i.p.MiceMechanical hypersensitivity and cold hypersensitivityInhibition of FAAH, the major enzyme catalyzing the degradation of anandamide, an endocannabinoid, and other fatty acid amides[71]
β-caryophyllene, a CB2 agonist25 mg/kg, p.o.MiceMechanical allodyniaCB2-activation in the CNS and posterior inhibition of p38 MAPK/NF-κB activation and cytokine release[56]
Δ9-THC2.5–20 mg/kg, i.p.MiceMechanical sensitivityN.A.[69]
Opioid receptorMorphine3–6 mg/kg, p.o.MiceMechanical allodyniaN.A.[72]
Oxycodone24 mg/kg/day, p.o.MiceMechanical allodyniaN.A.[72]
MonoaminesSR-170181–48 mg/kg/day, p.o.MiceMechanical allodyniaN.A.[72]
Bee venom acupuncture1 mg/kg, s.c.RatsMechanical hyperalgesiaVia spinal α₂-adrenergic receptor[73]
Bee venom acupuncture0.25–2.5 mg/kg, i.p.MiceCold allodynia and mechanical allodyniaVia the spinal noradrenergic and serotonergic mechanism[74]
Quetiapine10–15 mg/kg, p.o.MiceHeat hyperalgesia, mechanical allodynia, and cold allodyniaVia α2-adrenoceptors[75]
Reboxetine10 mg/kg, i.p.RatsMechanical allodynia and cold hyperalgesiaα2-AR mediated antinociception at the spinal cord[76]
Venlafaxine40–60 mg/kg, s.c.MiceCold allodynia and mechanical allodyniaVia the spinal noradrenergic and serotonergic mechanism[74]
Acetylcholine receptorNicotine0.6–0.9 mg/kg, i.p. or 24 mg/kg, s.c.MiceMechanical allodynia and density of IENFVia α7 nicotinic acetylcholine receptor[77]
Pirenzepine10 mg/kg, s.c.MiceMechanical sensitivity and thermal sensitivityMuscarinic ACh type 1 receptor (M1R) antagonism[78]
R-47, an α7 nAChR silent agonist5–10 mg/kg, i.p.MiceMechanical hypersensitivity, loss of IENF and morphological changes of microgliaN.A.[79]
α-Conotoxin RgIA480 μg/kg, s.c.RatsMechanical allodyniaN.A.[80]
cAMP/PKAESI-09, a Epac inhibitor20 mg/kg, p.o.MiceMechanical allodynia and number of IENFSuppression of spinal cord astrocyte activation[40]
PKCHOE140, a kinin B2 antagonist50 nmol/kg, i.p.MiceMechanical hyperalgesiainactivation of PKCε[62]
DALBK, a kinin B1 antagonist150 nmol/kg, i.p.MiceMechanical hyperalgesiainactivation of PKCε[62]
Tamoxifen30 mg/kg, p.o.MiceMechanical allodynia cold allodyniaInhibition of PKC/ERK pathway[81]
MAPKDuloxetine30 mg/kg/day, i.p.MiceMechanical hyperalgesia, thermal hyperalgesia, and loss of IENFDecreases in NF-κB, p-p38, IL-6, and TNF-α in DRG[39]
Duloxetine10–30 mg/kg, p.o.MiceMechanical allodynia and cold allodyniaInhibiting ERK1/2 phosphorylation in spinal cord[82]
Gabapentin30–100 mg/kg, p.o.MiceMechanical allodynia and cold allodyniaInhibiting ERK1/2 phosphorylation in spinal cord[82]
Lacosamide30 mg/kg, p.o.RatsThermal hyperalgesia and cold allodyniaUpregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3[28]
MJN110, a MAGL inhibitor4–40 mg/kg, i.p.MiceMechanical allodyniaDownregulations of MCP-1, CCL2 and p-p38 in DRG as well as MCP-1 in the spinal dorsal horn[49]
PD032590130 mg/kg, p.o.MiceMechanical allodynia and cold allodyniaInhibiting ERK1/2 phosphorylation in spinal cord[82]
Pregabalin30 mg/kg, p.o.RatsThermal hyperalgesia and cold allodyniaUpregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3[28]
Siwei Jianbu decoction5–10 g/kg, p.o.MiceMechanical hyperalgesia and thermal nociceptionInhibiting the JNK, ERK1/2 phosphorylation, NF-κB, TNF-α, IL-1β, and IL-6[53]
Tamoxifen30 mg/kg, p.o.MiceMechanical allodynia cold allodyniaInhibition of PKC/ERK pathway[81]
Trametinib0.5 mg/kgMiceMechanical and cold allodyniaInhibition of the MEK/ERK pathway[83]
β-caryophyllene, a CB2 agonist25 mg/kg, p.o.MiceMechanical allodyniaThrough CB2-activation in the CNS and posterior inhibition of p38 MAPK/NF-κB activation and cytokine release[56]
OATP1B2Nilotinib100 mg/kg, p.o.MiceMechanical allodyniaInhibition of paclitaxel intake to neuron via OATP1B2 inhibition[84]
mTORRapamaycin5 mg/kg, i.p.RatsMechanical hypersensitivity and thermal hypersensitivityDecreases of IL-1β, IL-6, TNF-α, substance P and CGRP in DRG.[51]
OthersAM9053, a NAAA inhibitor1–10 mg/kg, i.p.MiceMechanical allodyniaN.A.[85]
Aucubin15–50 mg/kg, i.p.MiceMechanical allodyniaN.A.[86]
Aucubin50 mg/kg, i.p.MiceMechanical allodyniaInhibition of ER stress in peripheral Schwann cells[87]
Bogijetong decoction, a herbal drug formulation400 mg/kg, p.o.RatsHeat sensitivityImprovement of morphological abnormalities in the sciatic nerve axons and DRG tissue[88]
DALBK, a kinin B1 antagonist150 nmol/kg, i.p.MiceMechanical allodyniaAntagonism of kinin B1 receptor[89]
FR173657, a kinin B2 antagonist100 nmol/kg, i.p.MiceMechanical allodyniaAntagonism of kinin B2 receptor[89]
Gelsemium sempervirens1 mL, i.p.RatsMechanical allodynia, mechanical hyperalgesia, cold allodynia, and density of IENFN.A.[90]
HOE140, a kinin B2 antagonist100 nmol/kg, i.p.MiceMechanical allodyniaAntagonism of kinin B2 receptor[89]
Iridoids isolated from Viticis Fructus15 mg/kgMiceMechanical allodyniaN.A.[91]
Lepidium meyenii0.5–10 mg/kg, p.o.RatsCold hypersensitivityN.A.[92]
Metformin200 mg/kg, i.p.MiceMechanical hypersensitivityActivation of AMPK[93]
Narciclasine1 mg/kg, p.o.MiceMechanical hypersensitivityActivation of AMPK[93]
Neoline10 mg/kg/day, s.c.MiceMechanical hyperalgesiaN.A.[94]
Nicotinamide riboside200 mg/kg, p.o.RatsMechanical hyperalgesia and cold hyperalgesiaN.A.[95]
NO-711, a GAT-1 inhibitor3 mg/kg, i.p.MiceThermal hyperalgesia and cold allodyniaInhibition of GAT-1[96]
Processed aconite root1 g/kg/day, s.c.MiceMechanical hyperalgesiaN.A.[94]
Recombinant human soluble thrombomodulin3–10 mg/kg, i.p.RatsMechanical hyperalgesiaInactivation of HMGB1[97]
Rikkunshito0.3–1 mg/kg, p.o.MiceMechanical hyperalgesiaSuppression of p-NF-κB in spinal cord[98]
Salicylidene salicylhydrazide50–75 mg/kg, i.p.MiceMechanical allodynia and cold allodyniaN.A.[99]
Sargassum glaucescens from the Persian Gulf100–200 mg/kg, i.p.MiceCold allodyniaN.A.[100]
SLAB51, a probiotic formulation1.5 g (200 billion of bacteria) in 10 mL of drinking waterMiceMechanical allodynia and hyperalgesiaIncreases in the expression of opioid and cannabinoid receptors in spinal cord, reduction in nerve fiber damage in the paws and modulation of the serum proinflammatory cytokines concentration[101]
SSR240612, a kinin B1 antagonist150 nmol/kg, i.p.MiceMechanical allodyniaAntagonism of kinin B1 receptor[89]
Staurosporine0.1 mg/kg, i.p.MiceMechanical allodyniaInhibitory of PI3K signaling pathway[102]
Telmisartan5–10 mg/kg, i.p.MiceMechanical hyperalgesia and thermal hyperalgesiaInhibition of CYP2J isoforms and reductions of EpOME in DRGs and plasma[103]
Terfenadine1–2 mg/kgMiceMechanical hyperalgesiaInhibition of CYP2J isoforms[103]
Wortmannin0.6 mg/kg, i.p.MiceMechanical allodyniaInhibitory of PI3K signaling pathway[102]
Abbreviations: Ach, acetylcholine; AMPK, AMP-activated protein kinase; Apaf-1, apoptosis protease-activating factor 1; ATF-3, activating transcription factor 3; Bcl-2, B-cell lymphoma 2; Bcl-xL, B-cell lymphoma-extra-large; BDNF, brain derived neurotrophic factor; CaMKIIα, calmodulin-dependent protein kinase IIα; CCL2, C-C motif chemokine ligand 2; CCR2, C-C motif chemokine receptor 2; CGRP, calcitonin gene-related peptide; CREB, cAMP response element binding protein; CXCR, C-X-C motif chemokine receptor; CYP2J, Cytochrome P450 2J; DRG, dorsal root ganglia; EAAT2, excitatory amino acid transporter 2; Epac, exchange protein directly activated by cAMP; EpOME, epoxyoctadecamonoenoic acids; ER, endoplasmic reticulum; ERK, extracellular signal-regulated kinase; FAAH, fatty-acid amide hydrolase; FosB, FBJ murine osteosarcoma viral oncogene homolog B; GAT-1, gamma-aminobutyric acid (GABA) transporter 1; GFAP, glial fibrillary acidic protein; GluR1, glutamate ionotropic receptor AMPA type subunit 1; GSH, glutathione; HDAC2, histone deacetylase 2; HMGB1, high mobility group box 1; HO-1, heme oxygenase 1; i.p., intraperitoneal; i.v., intravenous; IENF, intra-epidermal nerve fibers; IL-10, interleukin-10; IL-1β, interleukin-1 beta; IL-6, interleukin-6; IL-8, interleukin-8; iNOS, inducible nitric oxide synthase; IRF8, interferon regulatory factor 8; JNK, c-Jun N-terminal kinase; MAGL, monoacylglycerol lipase; MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemotactic protein 1; MDA, malondialdehyde; MEK, mitogen-activated protein kinase kinases; MPO, myeloperoxidase; NAAA, N-acylethanolamine-hydrolyzing acid amidase; nAChR, nicotinic acetylcholine receptor; NF-κB, nuclear factor kappa-B; NGF, nerve growth factor; NMDA, N-methyl-D-aspartate; NOX4, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4; NQO1, NAD(P)H dehydrogenase [quinone] 1; NR2B, N-methyl D-aspartate (NMDA) receptor subtype 2B; Nrf2, nuclear factor-erythroid 2-related factor 2; OATP1B2, organic anion-transporting polypeptide 1b2; p.o., per os; p-Akt, phospho-protein kinase B; PARP, poly ADP-ribose polymerase; p-CREB, phospho-cAMP response element binding protein; p-FAK, phospho-fokal adhesion kinase; PGC-1α, peroxisome proliferatoractivated receptor γ coactivator-1; PI3K, phosphatidylinositol-3 kinase; p-JAK2, phospho-janus kinase 2; PKC, protein kinase C; p-NF-κB, phospho-nuclear factor kappa-B; p-p38, phospho-p38; PPAR-α, peroxisome proliferator-activated receptor-α; p-STAT3, phospho-signal transducer and activator of transcription 3; RAGE, receptor for advanced glycation endproducts; s.c., subcutaneous; SIRT1, sirtuin-1; SNAP, sensory nerve action potential; SNCV, sensory nerve conduction velocity; SOD, superoxide dismutase; TLR4, Toll-like receptor 4; TNF-α, tumor necrosis factor-α; TRP, transient receptor potential; TRPA1, transient receptor potential ankyrin 1; TRPV1, transient receptor potential vanilloid 1; TRPV4, transient receptor potential vanilloid 4; UCP2, uncoupling protein 2; VGLUT, vesicular glutamate transporter 3; YY1, Yin-Yang 1.
Table 2. The therapeutic drugs for paclitaxel-induced peripheral neuropathy in clinical experiments.
Table 2. The therapeutic drugs for paclitaxel-induced peripheral neuropathy in clinical experiments.
Investigational DrugDose
(Preventive or Curative)
ChemotherapyStudy DesignPatient NumberSummaryReferences
Acetyl-L-carnitine3000 mg daily, p.o.
(preventive)
TaxanesRandomized, double-blind, placebo-controlled, multicenter study409Significant reduction in NTX scores (worsening of peripheral neuropathy) >2 years[111]
Amifostine910 mg/m2, i.v., before the paclitaxel administration
(preventive)
Carboplatin/paclitaxelRandomized, controlled study38Significant improvements in paresthesia and sensory motor impairment.[112]
910 mg/m2, i.v., before the paclitaxel administration
(preventive)
PaclitaxelRandomized, controlled study37No significant difference in any of the measures of neurotoxicity.[113]
Duloxetine40 mg daily, p.o. (20 mg/day for the first week)
(curative)
Oxaliplatin, paclitaxel, vincristine, or bortezomibRandomized, open-label, crossover study (vs vitamin B12)34Significant improvements in numbness and pain[114]
60 mg/day, p.o.,
(30 mg/day for the first week)
(curative)
Taxane or platinumRandomized, double-blind, placebo-controlled, crossover study231In all patients, RRs (95% CI) of experiencing 30% and 50% pain reduction were 1.96 (1.15–3.35) and 2.43 (1.11–5.30), respectively
In taxane-treated patients, RRs (95% CI) of experiencing 30% and 50% pain reduction were 0.97 (0.41–2.32) and 1.22 (0.35–4.18), respectively (not significant)
[115]
Gabapentin900 mg daily, p.o.,
(preventive)
PaclitaxelRandomized, double-blind, placebo-controlled study40Significant improvements in the incidence of grades 2–3 neuropathy and NCV changes[116]
Glutamate1500 mg daily, p.o.,
(preventive)
PaclitaxelRandomized, double-blind, placebo-controlled study43No significant difference in the frequency of signs or symptoms between the two groups[117]
Glutathione1.5 g/m2, i.v., immediately before chemotherapy
(preventive)
Carboplatin/
paclitaxel
Randomized, double-blind, placebo-controlled study185No significant differences in acute pain score and EORTC QLQ-CIPN20 scores compared to the placebo group[118]
Minocycline200 mg daily, p.o.,
(preventive)
PaclitaxelRandomized, double-blind, placebo-controlled, multicenter study47Significant improvements in acute pain score
No significant differences in sensory neuropathy score of the EORTC QLQ-CIPN20 compared to the placebo group
[119]
N-acetyl cysteine1200 mg daily or twice daily, p.o.,
(preventive)
PaclitaxelRandomized, controlled, open label study75Significant improvements in incidence of grades 2–3 neuropathy, mTNS, and QOL scores
Significant increase in serum NGF and decrease in serum MDA
[120]
Omega-3 fatty acid1920 mg daily, p.o.,
(preventive)
Paclitaxel or oxaliplatinMeta-analysis116
(two trials)
Significant improvements in the incidence of peripheral neuropathy and SNAP amplitudes[121]
1920 mg daily, p.o.,
(preventive)
PaclitaxelRandomized, double-blind, placebo-controlled study57Significant improvements in neuropathy incidence[122]
Oral nutritional supplement containing EPAp.o.,
(preventive)
Paclitaxel or cisplatin/carboplatinRandomized, controlled study92Significant improvement in neuropathy[123]
PARP inhibitors (olaparib or veliparib)N.A.PaclitaxelMeta-analysis843
(five trials)
Did not reduce the risk of chemotherapy-induced peripheral neuropathy[124]
Pregabalin150 mg daily, p.o.,
(curative)
Paclitaxel or docetaxelRandomized, double-blind, controlled study (vs duloxetine group)82Improvements in NCI-CTCAE grade and PNQ scores were more significant with pregabalin in comparison to duloxetine[125]
150 mg daily, p.o.,
(preventive)
PaclitaxelRandomized, double-blind, placebo-controlled, multicenter study46No significant differences in acute pain score and EORTC QLQ-CIPN20 scores compared to the placebo group[126]
Recombinant human LIF2 or 4 µg/kg, s.c.,
(preventive)
Carboplatin/
paclitaxel
Randomized, double-blind, placebo-controlled study117No significant difference in CPNE or any of the individual neurologic testing variables[127]
Vitamin E600 mg daily, p.o.,
(preventive)
PaclitaxelRandomized, controlled study32Significant improvements in the incidence of neuropathy and PNP scores[128]
600 mg daily, p.o.,
(preventive)
Cisplatin or paclitaxelRandomized, controlled study31Significant improvements in incidence and neuropathy scores[129]
Abbreviations: 95% CI, 95% confidence interval; CPNE, composite peripheral nerve electrophysiology; EORTC QLQ-CIPN20, European Organisation for Research and Treatment of Cancer, Quality of Life-Chemotherapy-Induced Peripheral Neuropathy 20; EPA, eicosapentaenoic acid; LIF, leukemia inhibitory factor; MDA, malondialdehyde; mTNS, modified total neuropathy score; NCI-CTCAE, National Cancer Institute-Common Terminology Criteria for Adverse Events; NCV, nerve conduction velocity; NGF, nerve growth factor; NTX score, neurotoxicity score; PARP, poly ADP-ribose polymerase; PNP score, peripheral neuropathy score; PNQ, patient neurotoxicity questionnaire; QOL, quality of life; RR, relative risk; SNAP, sensory nerve action potential.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Kawashiri, T.; Inoue, M.; Mori, K.; Kobayashi, D.; Mine, K.; Ushio, S.; Kudamatsu, H.; Uchida, M.; Egashira, N.; Shimazoe, T. Preclinical and Clinical Evidence of Therapeutic Agents for Paclitaxel-Induced Peripheral Neuropathy. Int. J. Mol. Sci. 2021, 22, 8733. https://doi.org/10.3390/ijms22168733

AMA Style

Kawashiri T, Inoue M, Mori K, Kobayashi D, Mine K, Ushio S, Kudamatsu H, Uchida M, Egashira N, Shimazoe T. Preclinical and Clinical Evidence of Therapeutic Agents for Paclitaxel-Induced Peripheral Neuropathy. International Journal of Molecular Sciences. 2021; 22(16):8733. https://doi.org/10.3390/ijms22168733

Chicago/Turabian Style

Kawashiri, Takehiro, Mizuki Inoue, Kohei Mori, Daisuke Kobayashi, Keisuke Mine, Soichiro Ushio, Hibiki Kudamatsu, Mayako Uchida, Nobuaki Egashira, and Takao Shimazoe. 2021. "Preclinical and Clinical Evidence of Therapeutic Agents for Paclitaxel-Induced Peripheral Neuropathy" International Journal of Molecular Sciences 22, no. 16: 8733. https://doi.org/10.3390/ijms22168733

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop