A Rapid Pipeline for Pollen- and Anther-Specific Gene Discovery Based on Transcriptome Profiling Analysis of Maize Tissues
Abstract
:1. Introduction
2. Results
2.1. Maize Pollen Possesses a Specialized Transcriptome
2.2. Maize Anthers Express a Unique Transcriptome
2.3. MPS and MAS Are Predicted to Function in Similar Roles for the Molecular Regulation of Maize Reproduction
2.4. Promoters of Mature Anther- and Pollen-Specific Genes (MAPS) Are Enriched for Pollen-Specific and Hormone-Responsive cis-Elements
3. Discussion
3.1. MAPS Genes Are Expressed Specifically at the Late Stage of Anther Development
3.2. MAPS Gene Promoters Are Enriched with Pollen-Specific cis-Elements
4. Materitals and Methods
4.1. RT-qPCR to Validate the Tissue-Specific Expression Pattern of MAPS
4.2. Identification of MAS, MPS, and MAPS in Maize Genome Using RNA-seq Datasets
4.3. GO Term and KEGG Pathway Enrichment Analysis of MAS and MPS
4.4. MapMan Analysis of Functional Categories of MAPS Genes
4.5. cis-Elements Analysis of MAPS Genes
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Goldberg, R.B.; Beals, T.P.; Sanders, P.M. Anther development: Basic principles and practical applications. Plant Cell 1993, 5, 1217–1229. [Google Scholar] [PubMed] [Green Version]
- Varnier, A.-L.; Mazeyrat-Gourbeyre, F.; Sangwan, R.S.; Clément, C. Programmed cell death progressively models the development of anther sporophytic tissues from the tapetum and is triggered in pollen grains during maturation. J. Struct. Biol. 2005, 152, 118–128. [Google Scholar] [CrossRef]
- Li, N.; Zhang, D.S.; Liu, H.S.; Yin, C.S.; Li, X.X.; Liang, W.Q.; Yuan, Z.; Xu, B.; Chu, H.W.; Wang, J.; et al. The rice tapetum degeneration retar-dation gene is required for tapetum degradation and anther development. Plant Cell 2006, 18, 2999–3014. [Google Scholar] [CrossRef] [Green Version]
- Sanders, P.M.; Bui, A.Q.; Weterings, K.; McIntire, K.N.; Hsu, Y.-C.; Lee, P.Y.; Truong, M.T.; Beals, T.P.; Goldberg, R.B. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex. Plant Reprod. 1999, 11, 297–322. [Google Scholar] [CrossRef]
- Zhang, D.; Luo, X.; Zhu, L. Cytological analysis and genetic control of rice anther development. J. Genet. Genom. 2011, 38, 379–390. [Google Scholar] [CrossRef]
- An, X.; Dong, Z.; Tian, Y.; Xie, K.; Wu, S.; Zhu, T.; Zhang, D.; Zhou, Y.; Niu, C.; Ma, B.; et al. ZmMs30 Encoding a Novel GDSL Lipase Is Essential for Male Fertility and Valuable for Hybrid Breeding in Maize. Mol. Plant 2019, 12, 343–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, X.; Wu, S.; Li, Z.; Dong, Z.; An, X.; Ma, B.; Tian, Y.; Li, J. Maize Genic Male-Sterility Genes and Their Applications in Hybrid Breeding: Progress and Perspectives. Mol. Plant 2019, 12, 321–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deveshwar, P.; Bovill, W.D.; Sharma, R.; Able, J.A.; Kapoor, S. Analysis of anther transcrip-tomes to identify genes contributing to meiosis and male gametophyte development in rice. BMC Plant Biol. 2011, 11, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koltunow, A.M.; Truettner, J.; Cox, K.H.; Wallroth, M.; Goldberg, R.B. Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 1990, 2, 1201–1224. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Toriyama, K.; Ejiri, S.; Hinata, K. Molecular characterization of rice genes specif-ically expressed in the anther tapetum. Plant Mol. Biol. 1994, 26, 1737–1746. [Google Scholar] [CrossRef]
- Hihara, Y.; Hara, C.; Uchimiya, H. Isolation and characterization of two cDNA clones for mRNAs that are abundantly expressed in immature anthers of rice (Oryza sativa L.). Plant Mol. Biol. 1996, 30, 1181–1193. [Google Scholar] [CrossRef]
- Rubinelli, P.; Hu, Y.; Ma, H. Identification, sequence analysis and expression studies of novel anther-specific genes of Arabidopsis thaliana. Plant Mol. Biol. 1998, 37, 607–619. [Google Scholar] [CrossRef]
- Jeon, J.-S.; Chung, Y.-Y.; Lee, S.; Yi, G.-H.; Oh, B.-G.; An, G. Isolation and characterization of an anther-specific gene, RA8, from rice (Oryza sativa L.). Plant Mol. Biol. 1999, 39, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Amagai, M.; Ariizumi, T.; Endo, M.; Hatakeyama, K.; Kuwata, C.; Shibata, D.; Toriyama, K.; Watanabe, M. Identification of anther-specific genes in a cruciferous model plant, Arabidopsis thaliana, by using a combination of Arabidopsis macroarray and mRNA derived from Brassica oleracea. Sex. Plant Reprod. 2003, 15, 213–220. [Google Scholar] [CrossRef]
- Masuko, H.; Endo, M.; Saito, H.; Hakozaki, H.; Park, J.-I.; Kawagishi-Kobayashi, M.; Takada, Y.; Okabe, T.; Kamada, M.; Takahashi, H.; et al. Anther-specific genes, which expressed through microsporogenesis, are temporally and spatially regulated in model legume, Lotus japonicus. Genes Genet. Syst. 2006, 81, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Skibbe, D.S.; Fernandes, J.; Walbot, V. Male reproductive development: Gene expression profiling of maize anther and pollen ontogeny. Genome Biol. 2008, 9, R181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suwabe, K.; Suzuki, G.; Takahashi, H.; Shiono, K.; Endo, M.; Yano, K.; Fujita, M.; Masuko, H.; Saito, H.; Fujioka, T.; et al. Separated Transcriptomes of Male Gametophyte and Tapetum in Rice: Validity of a Laser Microdissection (LM) Microarray. Plant Cell Physiol. 2008, 49, 1407–1416. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Farmer, A.D.; Langley, R.J.; Mudge, J.; Crow, J.A.; May, G.D.; Huntley, J.; Smith, A.G.; Retzel, E.F. Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocytes. BMC Plant Biol. 2010, 10, 280. [Google Scholar] [CrossRef] [Green Version]
- Aya, K.; Suzuki, G.; Suwabe, K.; Hobo, T.; Takahashi, H.; Shiono, K.; Yano, K.; Tsutsumi, N.; Nakazono, M.; Nagamura, Y.; et al. Comprehensive network analysis of anther-expressed genes in rice by the combination of 33 laser microdissection and 143 spa-tiotemporal microarrays. PLoS ONE 2011, 6, e26162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klepikova, A.V.; Kasianov, A.S.; Gerasimov, E.S.; Logacheva, M.D.; Penin, A.A. A high resolu-tion map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profil-ing. Plant J. 2016, 88, 1058–1070. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, L.; Zhao, Y.; Wang, Z.; Liu, H.; Zhang, L.; Zhang, Y.; Fu, Y.; Wu, J.; Ge, Y.; et al. Comparative analysis and functional identification of tempera-ture-sensitive miRNA in Arabidopsis anthers. Biochem. Biophys. Res. Commun. 2020, 532, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.D.; Moon, S.; Nguyen, V.N.; Gho, Y.; Chandran, A.K.; Soh, M.S.; Song, J.T.; An, G.; Oh, S.A.; Park, S.K.; et al. Genome-wide identification and analysis of rice genes pref-erentially expressed in pollen at an early developmental stage. Plant Mol. Biol. 2016, 92, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Oo, M.M.; Kim, B.; Koh, H.J.; Oh, S.A.; Yi, G.; An, G.; Park, S.K.; Jung, K.H. Ge-nome-wide analyses of late pollen-preferred genes conserved in various rice cultivars and functional identification of a gene involved in the key processes of late pollen development. Rice 2018, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Oo, M.M.; Bae, H.K.; Nguyen, T.D.; Moon, S.; Oh, S.A.; Kim, J.H.; Soh, M.S.; Song, J.T.; Jung, K.H.; Park, S.K. Evaluation of rice promoters conferring pollen-specific expression in a heter-ologous system, Arabidopsis. Plant Reprod. 2014, 27, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yan, W.; Peng, X.; Chen, Z.; Xu, C.; Wu, J.; Deng, X.W.; Tang, X. Identification of late-stage pollen-specific promoters for construction of pollen-inactivation system in rice. J. Integr. Plant Biol. 2020, 62, 1246–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; He, L.; Liu, Y.; Mao, Y.; Wang, C.; Zhao, B.; Li, Y.; He, H.; Guo, S.; Zhang, L.; et al. A study of male fertility control in Medicago truncatula uncovers an evolutionarily conserved recruitment of two tapetal bHLH subfamilies in plant sexual reproduction. New Phytol. 2020, 228, 1115–1133. [Google Scholar] [CrossRef] [PubMed]
- Wilson, Z.A.; Morroll, S.M.; Dawson, J.; Swarup, R.; Tighe, P.J. The Arabidopsis MALE STE-RILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J. 2001, 28, 27–39. [Google Scholar] [CrossRef]
- Sorensen, A.-M.; Kröber, S.; Unte, U.S.; Huijser, P.; Dekker, K.; Saedler, H. The Arabidopsis ABORTED MICROSPORES(AMS) gene encodes a MYC class transcription factor. Plant J. 2003, 33, 413–423. [Google Scholar] [CrossRef]
- Ariizumi, T.; Hatakeyama, K.; Hinata, K.; Inatsugi, R.; Nishida, I.; Sato, S.; Kato, T.; Tabata, S.; Toriyama, K. Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility inArabidopsis thaliana. Plant J. 2004, 39, 170–181. [Google Scholar] [CrossRef]
- Yang, C.; Vizcay-Barrena, G.; Conner, K.; Wilson, Z.A. MALE STERILITY1 is required for ta-petal development and pollen wall biosynthesis. Plant Cell 2007, 19, 3530–3548. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Lee, J.-Y.; Hu, Q.; Nelson-Vasilchik, K.; Eitas, T.K.; Lickwar, C.; Kausch, A.P.; Chandlee, J.M.; Hodges, T.K. RTS, a rice anther-specific gene is required for male fertility and its promoter sequence directs tissue-specific gene expression in different plant species. Plant Mol. Biol. 2006, 62, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Endo, M.; Tsuchiya, T.; Saito, H.; Matsubara, H.; Hakozaki, H.; Masuko, H.; Kamada, M.; Higashitani, A.; Takahashi, H.; Fukuda, H.; et al. Identification and mo-lecular characterization of novel anther-specific genes in Oryza sativa L. by using cDNA mi-croarray. Genes Genet. Syst. 2004, 79, 213–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Kang, J.; Wu, J.; Zhu, Y.; Wang, X. Identification of tapetum-specific genes by com-paring global gene expression of four different male sterile lines in Brassica oleracea. Plant Mol. Biol. 2015, 87, 541–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, J.; Ni, F.; Wang, X.; Sun, M.; Cui, Y.; Wu, J.; Caplan, A.; Fu, D. The anther-specific CYP704B is potentially responsible for MSG26 male sterility in barley. Theor. Appl. Genet. 2019, 132, 2413–2423. [Google Scholar] [CrossRef] [PubMed]
- Akasaka, M.; Taniguchi, Y.; Oshima, M.; Abe, K.; Tabei, Y.; Tanaka, J. Development of trans-genic male-sterile rice by using anther-specific promoters identified by comprehensive screening of the gene expression profile database ‘RiceXPro’. Breed. Sci. 2018, 68, 420–431. [Google Scholar] [CrossRef]
- Wang, D.; Li, C.; Zhao, Q.; Zhao, L.; Wang, M.; Zhu, D.; Ao, G.; Yu, J. Zm401p10, encoded by an anther-specific gene with short open reading frames, is essential for tapetum degeneration and anther development in maize. Funct. Plant Biol. 2009, 36, 73–85. [Google Scholar] [CrossRef]
- Frankis, R.; Mascarenhas, J.P. Messenger RNA in the Ungerminated Pollen Grain: A Direct Demonstration of its Presence. Ann. Bot. 1980, 45, 595–599. [Google Scholar] [CrossRef]
- Tupý, J. Alterations in polyadenylated RNA during pollen maturation and germination. Biol. Plant 1982, 24, 331–340. [Google Scholar] [CrossRef]
- Becker, J.D.; Boavida, L.C.; Carneiro, J.; Haury, M.; Feijó, J.A. Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol. 2003, 133, 713–725. [Google Scholar] [CrossRef] [Green Version]
- Mascarenhas, J.P. Gene activity during pollen development. Annu. Rev. Plant Bio. 1990, 41, 317–338. [Google Scholar] [CrossRef]
- Willing, R.P.; Bashe, D.; Mascarenhas, J.P. An analysis of the quantity and diversity of mes-senger RNAs from pollen and shoots of Zea mays. Theor. Appl. Genet. 1988, 75, 751–753. [Google Scholar] [CrossRef]
- Haerizadeh, F.; Wong, C.E.; Bhalla, P.L.; Gresshoff, P.M.; Singh, M.B. Genomic expression profiling of mature soybean (Glycine max) pollen. BMC Plant Biol. 2009, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Van Tunen, A.J.; Mur, L.A.; Brouns, G.S.; Rienstra, J.D.; Koes, R.E.; Mol, J.N. Pollen- and an-ther-specific chi promoters from petunia: Tandem promoter regulation of the chiA gene. Plant Cell 1990, 2, 393–401. [Google Scholar] [PubMed] [Green Version]
- Albani, D.; Robert, L.S.; Donaldson, P.A.; Altosaar, I.; Arnison, P.G.; Fabijanski, S.F. Charac-terization of a pollen-specific gene family from Brassica napus which is activated during early microspore development. Plant Mol. Biol. 1990, 15, 605–622. [Google Scholar] [CrossRef]
- Twell, D.; Yamaguchi, J.; McCormick, S. Pollen-specific gene expression in transgenic plants: Coordinate regulation of two different tomato gene promoters during microsporogenesis. Development 1990, 109, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Weterings, K.; Schrauwen, J.; Wullems, G.; Twell, D. Functional dissection of the promoter of the pollen-specific gene NTP303 reveals a novel pollen-specific, and conserved cis-regulatory element. Plant J. 1995, 8, 55–63. [Google Scholar] [CrossRef]
- Hamilton, D.A.; Schwarz, Y.H.; Mascarenhas, J.P. A monocot pollen-specific promoter contains separable pollen-specific and quantitative elements. Plant Mol. Biol. 1998, 38, 663–669. [Google Scholar] [CrossRef]
- Honys, D.; Oh, S.A.; Renák, D.; Donders, M.; Solcová, B.; Johnson, J.A.; Boudová, R.; Twell, D. Identification of microspore-active promoters that allow targeted manipulation of gene ex-pression at early stages of microgametogenesis in Arabidopsis. BMC Plant Biol. 2006, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Bate, N.; Twell, D. Functional architecture of a late pollen promoter: Pollen-specific transcrip-tion is developmentally regulated by multiple stage-specific and co-dependent activator ele-ments. Plant Mol. Biol. 1998, 37, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Rogers, H.; Bate, N.; Combe, J.; Sullivan, J.; Sweetman, J.; Swan, C.; Lonsdale, D.; Twell, D. Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol. Biol. 2001, 45, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yuan, J.; Li, M. Characterization of putative cis-regulatory elements in genes preferen-tially expressed in Arabidopsis male meiocytes. Biomed. Res. Int. 2014, 2014, 708364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, J.; Qi, X.; Chen, X.; Li, N.; Yu, J. ZmDof30 Negatively Regulates the Promoter Activity of the Pollen-Specific Gene Zm908. Front. Plant Sci. 2017, 8, 685. [Google Scholar] [CrossRef] [Green Version]
- Zhan, X.-Y.; Wu, H.-M.; Cheung, A. Nuclear male sterility induced by pollen-specific expression of a ribonuclease. Sex. Plant Reprod. 1996, 9, 35–43. [Google Scholar] [CrossRef]
- Wu, Y.; Fox, T.W.; Trimnell, M.R.; Wang, L.; Xu, R.; Cigan, A.M.; Huffman, G.A.; Garnaat, C.W.; Hershey, H.P.; Albertsen, M.C. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol. J. 2015, 14, 1046–1054. [Google Scholar] [CrossRef] [Green Version]
- Honys, D.; Twell, D. Comparative Analysis of the Arabidopsis Pollen Transcriptome. Plant Physiol. 2003, 132, 640–652. [Google Scholar] [CrossRef] [Green Version]
- Pina, C.; Pinto, F.; Feijó, J.A.; Becker, J. Gene Family Analysis of the Arabidopsis Pollen Transcriptome Reveals Biological Implications for Cell Growth, Division Control, and Gene Expression Regulation. Plant Physiol. 2005, 138, 744–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hafidh, S.; Breznenová, K.; Růžička, P.; Feciková, J.; Capková, V.; Honys, D. Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis. BMC Plant Biol. 2012, 16, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokvaj, P.; Hafidh, S.; Honys, D. Transcriptome profiling of male gametophyte development in Nicotiana tabacum. Genom. Data 2015, 3, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Conze, L.L.; Berlin, S.; Le Bail, A.; Kost, B. Transcriptome profiling of tobacco (Nicotiana tabacum) pollen and pollen tubes. BMC Genom. 2017, 18, 581. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.-D.; Wei, F.-J.; Wu, C.-C.; Hsing, Y.-I.C.; Huang, A.H. Analyses of Advanced Rice Anther Transcriptomes Reveal Global Tapetum Secretory Functions and Potential Proteins for Lipid Exine Formation. Plant Physiol. 2009, 149, 694–707. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Wang, Z.; Liu, Y.; Li, W.; Wu, F.; Lin, X.; Meng, Z. Functional architecture of two ex-clusively late stage pollen-specific promoters in rice (Oryza sativa L.). Plant Mol. Biol. 2015, 88, 415–428. [Google Scholar] [CrossRef]
- Huang, M.-D.; Hsing, Y.-I.C.; Huang, A.H.C. Transcriptomes of the Anther Sporophyte: Availability and Uses. Plant Cell Physiol. 2011, 52, 1459–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.H.; Chen, H.; Sang, Y.L.; Wang, F.; Ma, J.P.; Gao, X.Q.; Zhang, X.S. Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in tran-script abundance of different dry stigmas. BMC Genom. 2012, 13, 294. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Egger, R.L.; Kelliher, T.; Morrow, D.; Fernandes, J.; Nan, G.L.; Walbot, V. Tran-scriptomes and proteomes define gene expression progression in pre-meiotic maize anthers. G3 Genes Genom. Genet. 2014, 4, 993–1010. [Google Scholar]
- Chettoor, A.M.; Phillips, A.R.; Coker, C.T.; Dilkes, B.; Evans, M.M.S. Maternal Gametophyte Effects on Seed Development in Maize. Genetics 2016, 204, 233–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, T.-L.; Huang, W.-J.; He, J.; Zhang, D.; Tang, W.-H. Stage-Specific Gene Profiling of Germinal Cells Helps Delineate the Mitosis/Meiosis Transition. Plant Physiol. 2018, 176, 1610–1626. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, P.; Lv, J.; Cheng, Y.; Cui, J.; Zhao, H.; Hu, S. Global Dynamic Transcriptome Programming of Rapeseed (Brassica napus L.) Anther at Different Development Stages. PLoS ONE 2016, 11, e0154039. [Google Scholar] [CrossRef] [Green Version]
- Feng, N.; Song, G.; Guan, J.; Chen, K.; Jia, M.; Huang, D.; Wu, J.; Zhang, L.; Kong, X.; Geng, S.; et al. Transcriptome Profiling of Wheat Inflorescence Development from Spikelet Initiation to Floral Patterning Identified Stage-Specific Regulatory Genes. Plant Physiol. 2017, 174, 1779–1794. [Google Scholar] [CrossRef]
- Walley, J.; Sartor, R.C.; Shen, Z.; Schmitz, R.J.; Wu, K.J.; Urich, M.A.; Nery, J.R.; Smith, L.G.; Schnable, J.C.; Ecker, J.R.; et al. Integration of omic networks in a developmental atlas of maize. Science 2016, 353, 814–818. [Google Scholar] [CrossRef] [Green Version]
- Stelpflug, S.C.; Sekhon, R.S.; Vaillancourt, B.; Hirsch, C.N.; Buell, C.R.; De Leon, N.; Kaeppler, S.M. An Expanded Maize Gene Expression Atlas based on RNA Sequencing and its Use to Explore Root Development. Plant Genome 2016, 9, 1–16. [Google Scholar] [CrossRef]
- Lindskog, C.; Linné, J.; Fagerberg, L.; Hallström, B.M.; Sundberg, C.J.; Lindholm, M.; Huss, M.; Kampf, C.; Choi, H.; Liem, D.A.; et al. The human cardiac and skeletal muscle proteomes defined by tran-scriptomics and antibody-based profiling. BMC Genom. 2015, 16, 475. [Google Scholar] [CrossRef] [PubMed]
- Schnable, P.S.; Ware, D.; Fulton, R.S.; Stein, J.C.; Wei, F.; Pasternak, S.; Liang, C.; Zhang, J.; Fulton, L.; Graves, T.A.; et al. The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science 2009, 326, 1112–1115. [Google Scholar] [CrossRef] [Green Version]
- Hoopes, G.M.; Hamilton, J.P.; Wood, J.; Esteban, E.; Pasha, A.; Vaillancourt, B.; Provart, N.J.; Buell, C.R. An updated gene atlas for maize reveals organ-specific and stress-induced genes. Plant J. 2018, 97, 1154–1167. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xu, J.; Devis, D.; Shi, J.; Ren, K.; Searle, I.; Zhang, D. Origin and functional prediction of pollen allergens in plants. Plant Physiol. 2016, 172, 341–357. [Google Scholar] [CrossRef] [Green Version]
- Usadel, B.; Poree, F.; Nagel, A.; Lohse, M.; Czedik-Eysenberg, A.; Stitt, M. A guide to using MapMan to visualize and compare Omics data in plants: A case study in the crop species, Maize. Plant Cell Environ. 2009, 32, 1211–1229. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van De Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Nussinov, R. Compilation of eukaryotic sequences around transcription initiation sites. J. Theor. Biol. 1986, 120, 479–487. [Google Scholar] [CrossRef]
- Twell, D.; Klein, T.M.; Fromm, M.E.; McCormick, S. Transient Expression of Chimeric Genes Delivered into Pollen by Microprojectile Bombardment. Plant Physiol. 1989, 91, 1270–1274. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, J.L.; Ploense, S.E.; Snustad, D.P.; Silflow, C.D. Preferential expression of an α-tubulin gene of Arabidopsis in pollen. Plant Cell 1992, 4, 557–571. [Google Scholar]
- Oldenhof, M.T.; De Groot, P.F.M.; Visser, J.H.; Schrauwen, J.A.M.; Wullems, G.J. Isolation and characterization of a microspore-specific gene from tobacco. Plant Mol. Biol. 1996, 31, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Rogers, H.J.; Harvey, A.; Lonsdale, D.M. Isolation and characterization of a tobacco gene with homology to pectate lyase which is specifically expressed during microsporogenesis. Plant Mol. Biol. 1992, 20, 493–502. [Google Scholar] [CrossRef]
- Allen, R.L.; Lonsdale, D.M. Molecular characterization of one of the maize polygalacturonase gene family members which are expressed during late pollen development. Plant J. 1993, 3, 261–271. [Google Scholar] [CrossRef]
- Turcich, M.P.; Hamilton, D.A.; Mascarenhas, J.P. Isolation and characterization of pollen-specific maize genes with sequence homology to ragweed allergens and pectate lyases. Plant Mol. Biol. 1993, 23, 1061–1065. [Google Scholar] [CrossRef]
- Rubinstein, A.L.; Broadwater, A.H.; Lowrey, K.B.; Bedinger, P.A. Pex1, a pollen-specific gene with an extensin-like domain. Proc. Natl. Acad. Sci. USA 1995, 92, 3086–3090. [Google Scholar] [CrossRef] [Green Version]
- Lopez, I.; Anthony, R.G.; Maciver, S.K.; Jiang, C.-J.; Khan, S.; Weeds, A.G.; Hussey, P.J. Pollen specific expression of maize genes encoding actin depolymerizing factor-like proteins. Proc. Natl. Acad. Sci. USA 1996, 93, 7415–7420. [Google Scholar] [CrossRef] [Green Version]
- Hanson, D.D.; Hamilton, D.A.; Travis, J.L.; Bashe, D.M.; Mascarenhas, J.P. Characterization of a pollen-specific cDNA clone from Zea mays and its expression. Plant Cell 1989, 1, 173–179. [Google Scholar]
- Wakeley, P.R.; Rogers, H.J.; Rozycka, M.; Greenland, A.J.; Hussey, P.J. A maize pectin meth-ylesterase-like gene, ZmC5, specifically expressed in pollen. Plant Mol. Biol. 1998, 37, 187–192. [Google Scholar] [CrossRef]
- Kelliher, T.; Starr, D.; Richbourg, L.; Chintamanani, S.; Delzer, B.; Nuccio, M.L.; Green, J.; Chen, Z.; McCuiston, J.; Wang, W.; et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nat. Cell Biol. 2017, 542, 105–109. [Google Scholar] [CrossRef]
- Gilles, L.M.; Khaled, A.; Laffaire, J.; Chaignon, S.; Gendrot, G.; Laplaige, J.; Bergès, H.; Beydon, G.; Bayle, V.; Barret, P.; et al. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J. 2017, 36, 707–717. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Fan, M.; Wang, G.; Zhang, C.; Shi, L.; Wei, Z.; Ma, W.; Chang, J.; Huang, S.; Lin, F. Isolation and characterization of a novel pollen-specific promoter in maize (Zea mays L.). Genome 2017, 60, 485–495. [Google Scholar] [CrossRef]
- Jiang, S.-Y.; Ramachandran, S. Functional Genomics of Rice Pollen and Seed Development by Genome-wide Transcript Profiling and Ds Insertion Mutagenesis. Int. J. Biol. Sci. 2011, 7, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Honys, D.; Twell, D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 2004, 5, R85. [Google Scholar] [CrossRef] [Green Version]
- Twell, D.; Yamaguchi, J.; Wing, R.A.; Ushiba, J.; McCormick, S. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer se-quences and shared regulatory elements. Genes Dev. 1991, 5, 496–507. [Google Scholar] [CrossRef] [Green Version]
- Eyal, Y.; Curie, C.; McCormick, S. Pollen specificity elements reside in 30 bp of the proximal promoters of two pollen-expressed genes. Plant Cell 1995, 7, 373–384. [Google Scholar]
- Hoffmann, R.D.; Olsen, L.I.; Husum, J.O.; Nicolet, J.S.; Thøfner, J.F.; Wätjen, A.P.; Ezike, C.V.; Palmgren, M. A cis -Regulatory Sequence Acts as a Repressor in the Arabidopsis thaliana Sporophyte but as an Activator in Pollen. Mol. Plant 2017, 10, 775–778. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Yu, J.; Zhu, D.; Zhao, Q.; Yan, M. The 5′ untranslated region of potato SBgLR gene contributes to pollen-specific expression. Planta 2017, 157, 1–403. [Google Scholar] [CrossRef]
- Lang, Z.; Zhou, P.; Yu, J.; Ao, G.; Zhao, Q. Functional characterization of the pollen-specific SBgLR promoter from potato (Solanum tuberosum L.). Planta 2007, 227, 387–396. [Google Scholar] [CrossRef]
- Hamilton, D.A.; Roy, M.; Rueda, J.; Sindhu, R.K.; Sanford, J.; Mascarenhas, J.P. Dissection of a pollen-specific promoter from maize by transient transformation assays. Plant Mol. Biol. 1992, 18, 211–218. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, C.; Lan, H.; Gao, S.; Liu, H.; Liu, J.; Cao, M.; Pan, G.; Rong, T.; Zhang, S. Validation of Potential Reference Genes for qPCR in Maize across Abiotic Stresses, Hormone Treatments, and Tissue Types. PLoS ONE 2014, 9, e95445. [Google Scholar] [CrossRef] [Green Version]
Tissues a | Number of EG b | Average Transcription of EG (FPKM) c | Average Transcription of Top 300 EG (FPKM) d | Average Transcription of Top 1000 EG (FPKM) e | Percentage of Top 300 EG in Transcriptome f | Percentage of Top 1000 EG in Transcriptome g |
---|---|---|---|---|---|---|
Mature Pollen | 9242 | 99.1 | 2305.0 | 839.7 | 75.5% | 91.7% |
Primary Root_5 Days | 24,799 | 37.9 | 1093.4 | 531.2 | 34.9% | 56.5% |
Secondary Root_7–8 Days | 24,728 | 37.3 | 1039.9 | 511.4 | 33.8% | 55.5% |
Vegetative Meristem_16–19 Days | 26,880 | 39.4 | 1153.3 | 542.8 | 32.7% | 51.3% |
7–8th Internode_28–30 Days | 25,148 | 37.7 | 1002.5 | 490.4 | 31.7% | 51.7% |
Mature Leaf 8_43 Days | 27,167 | 39.1 | 1408.5 | 598.0 | 39.8% | 56.3% |
Ear Primordium_6–8 mm | 27,659 | 33.4 | 868.7 | 400.7 | 28.2% | 43.4% |
Female Spikelets_silking | 25,281 | 42.5 | 1390.3 | 624.8 | 38.8% | 58.1% |
Unpollinated Silks | 24,825 | 47.5 | 1854.3 | 758.7 | 47.2% | 64.4% |
Embryo_20 DAP | 27,415 | 38.1 | 1199.9 | 534.9 | 34.4% | 51.2% |
Endosperm_12 DAP | 24,175 | 42.5 | 1455.4 | 626.2 | 42.5% | 61.0% |
Pericarp/Aleurone_27 DAP | 26,044 | 39.1 | 2000.9 | 704.3 | 59.0% | 69.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Li, Y.; Guo, Y.; Borrego, E.J.; Wei, Z.; Ren, H.; Ma, Z.; Yan, Y. A Rapid Pipeline for Pollen- and Anther-Specific Gene Discovery Based on Transcriptome Profiling Analysis of Maize Tissues. Int. J. Mol. Sci. 2021, 22, 6877. https://doi.org/10.3390/ijms22136877
Shi Y, Li Y, Guo Y, Borrego EJ, Wei Z, Ren H, Ma Z, Yan Y. A Rapid Pipeline for Pollen- and Anther-Specific Gene Discovery Based on Transcriptome Profiling Analysis of Maize Tissues. International Journal of Molecular Sciences. 2021; 22(13):6877. https://doi.org/10.3390/ijms22136877
Chicago/Turabian StyleShi, Yannan, Yao Li, Yongchao Guo, Eli James Borrego, Zhengyi Wei, Hong Ren, Zhengqiang Ma, and Yuanxin Yan. 2021. "A Rapid Pipeline for Pollen- and Anther-Specific Gene Discovery Based on Transcriptome Profiling Analysis of Maize Tissues" International Journal of Molecular Sciences 22, no. 13: 6877. https://doi.org/10.3390/ijms22136877
APA StyleShi, Y., Li, Y., Guo, Y., Borrego, E. J., Wei, Z., Ren, H., Ma, Z., & Yan, Y. (2021). A Rapid Pipeline for Pollen- and Anther-Specific Gene Discovery Based on Transcriptome Profiling Analysis of Maize Tissues. International Journal of Molecular Sciences, 22(13), 6877. https://doi.org/10.3390/ijms22136877