Proteomic Analysis of Synovial Fibroblasts and Articular Chondrocytes Co-Cultures Reveals Valuable VIP-Modulated Inflammatory and Degradative Proteins in Osteoarthritis
Abstract
:1. Introduction
2. Results
2.1. SF-AC Co-Cultures Secretome Profiling
2.2. Modulation of SF-AC Co-Cultures Secretome by VIP
2.3. VIP-Modulated Inflammatory Proteins
2.4. VIP-Modulated Complement System Proteins
2.5. VIP-Modulated ECM Degradation Proteins
3. Discussion
4. Materials and Methods
4.1. Subjects and Samples Procurement
4.2. Cell Cultures
4.3. Chondrocyte and Synovial Fibroblasts Stable Isotope Labeling by Amino Acids in Cell Cultures (SILAC)
4.4. Co-Cultures and Treatments
4.5. Collection and Preparation of Conditioned Media, One-Dimensional Gel Electrophoresis and In-Gel Digestion of Proteins
4.6. NanoLC-MALDI-TOF/TOF Analysis
4.7. Proteomics Data Analysis
4.8. ELISA and Multiplex Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Articular chondrocytes |
ADAMTS | A disintegrin and metalloproteinase with thrombospondin motifs |
C1q | Complement C1q subcomponent |
C1r | Complement C1r subcomponent |
C1s | Complement C1s subcomponent |
C3 | Complement C3 |
CF | Complement factor |
CHI3L1 | Chitinase-3-like protein 1 |
CTSB | Cathepsin B |
DCN | Decorin |
ECM | Extracellular cellular matrix |
Fn | Fibronectin |
Fn-fs | Fibronectin fragments |
GPCRs | G protein-coupled receptors |
MMP | Matrix metalloproteinase |
OA | Osteoarthritis |
PTX3 | Pentraxin-related protein 3 |
QSOX1 | Sulfhydryl oxidase 1 |
RA | Rheumatoid arthritis |
SF | Synovial fibroblasts |
SILAC | Stable isotope labeling with amino acids |
uPA | Urokinase-type plasminogen activator |
VIP | Vasoactive intestinal peptide |
References
- Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012, 64, 1697–1707. [Google Scholar] [CrossRef] [Green Version]
- Abramoff, B.; Caldera, F.E. Osteoarthritis: Pathology, Diagnosis, and Treatment Options. Med. Clin. N. Am. 2020, 104, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Belluzzi, E.; Olivotto, E.; Toso, G.; Cigolotti, A.; Pozzuoli, A.; Biz, C.; Trisolino, G.; Ruggieri, P.; Grigolo, B.; Ramonda, R.; et al. Conditioned media from human osteoarthritic synovium induces inflammation in a synoviocyte cell line. Connect. Tissue Res. 2018, 60, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Raman, S.; FitzGerald, U.; Murphy, J.M. Interplay of Inflammatory Mediators with Epigenetics and Cartilage Modifi-cations in Osteoarthritis. Front Bioeng. Biotechnol. 2018, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Bijlsma, J.W.; Berenbaum, F.; Lafeber, F.P. Osteoarthritis: An update with relevance for clinical practice. Lancet 2011, 377, 2115–2126. [Google Scholar] [CrossRef]
- Monfort, J. Artrosis: Fisiopatología, Diagnóstico y Tratamiento; Médica Panamericana: Madrid, Spain, 2010. [Google Scholar]
- Pérez-García, S.; Gutiérrez-Cañas, I.; Seoane, I.V.; Fernández, J.; Mellado, M.; Leceta, J.; Tío, L.; Romero, R.V.; Juarranz, Y.; Gomariz, R.P. Healthy and Osteoarthritic Synovial Fibroblasts Produce a Disintegrin and Metalloproteinase with Thrombospondin Motifs 4, 5, 7, and 12. Am. J. Pathol. 2016, 186, 2449–2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-García, S.; Carrión, M.; Jimeno, R.; Ortiz, A.M.; González-Álvaro, I.; Fernández, J.; Gomariz, R.P.; Juarranz, Y. Urokinase Plasminogen Activator System in Synovial Fibroblasts from Osteoarthritis Patients: Modulation by Inflammatory Mediators and Neuropeptides. J. Mol. Neurosci. 2013, 52, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Perez-Garcia, S.; Carrion, M.; Villanueva-Romero, R.; Hermida-Gomez, T.; Fernandez-Moreno, M.; Mellado, M.; Blanco, F.J.; Juarranz, Y.; Gomariz, R.P. Wnt and RUNX2 mediate cartilage breakdown by osteoarthritis synovial fibro-blast-derived ADAMTS-7 and -12. J. Cell Mol. Med. 2019, 23, 3974–3983. [Google Scholar] [CrossRef]
- Lefevre, S.; Meier, F.; Neumann, E.; Muller-Ladner, U. Role of Synovial Fibroblasts in Rheumatoid Arthritis. Curr. Pharm. Des. 2014, 21, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Frantz, C.; Stewart, K.M.; Weaver, V.M. The extracellular matrix at a glance. J. Cell Sci. 2010, 123 Pt 24, 4195–4200. [Google Scholar] [CrossRef] [Green Version]
- Theocharis, A.D.; Manou, D.; Karamanos, N.K. The extracellular matrix as a multitasking player in disease. FEBS J. 2019, 286, 2830–2869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, P.; Takai, K.; Weaver, V.M.; Werb, Z. Extracellular Matrix Degradation and Remodeling in Development and Disease. Cold Spring Harb. Perspect. Biol. 2011, 3, a005058. [Google Scholar] [CrossRef]
- Geurts, J.; Jurić, D.; Müller, M.; Schären, S.; Netzer, C. Novel Ex Vivo Human Osteochondral Explant Model of Knee and Spine Osteoarthritis Enables Assessment of Inflammatory and Drug Treatment Responses. Int. J. Mol. Sci. 2018, 19, 1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Z.; Sun, H.; Bunpetch, V.; Koh, Y.; Wen, Y.; Wu, D.; Ouyang, H. The regulation of cartilage extracellular matrix homeostasis in joint cartilage degeneration and regeneration. Biomaterials 2021, 268, 120555. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T. Cartilage destruction by matrix degradation products. Mod. Rheumatol. 2006, 16, 197–205. [Google Scholar] [CrossRef]
- Kapoor, M.; Martel-Pelletier, J.; Lajeunesse, D.; Pelletier, J.-P.; Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 2010, 7, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Perez-Garcia, S.; Carrion, M.; Gutierrez-Canas, I.; Villanueva-Romero, R.; Castro, D.; Martinez, C.; Gonzalez-Alvaro, I.; Blanco, F.J.; Juarranz, Y.; Gomariz, R.P. Profile of Matrix-Remodeling Proteinases in Osteoarthritis: Impact of Fibron-ectin. Cells 2019, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Grässel, S.; Muschter, D. Do Neuroendocrine Peptides and Their Receptors Qualify as Novel Therapeutic Targets in Osteoarthritis? Int. J. Mol. Sci. 2018, 19, 367. [Google Scholar] [CrossRef] [Green Version]
- Gomariz, R.P.; Juarranz, Y.; Carrión, M.; Pérez-García, S.; Romero, R.V.; González-Álvaro, I.; Gutiérrez-Cañas, I.; Lamana, A.; Martínez, C. An Overview of VPAC Receptors in Rheumatoid Arthritis: Biological Role and Clinical Significance. Front. Endocrinol. 2019, 10, 729. [Google Scholar] [CrossRef]
- Martínez, C.; Juarranz, Y.; Gutiérrez-Cañas, I.; Carrión, M.; Pérez-García, S.; Villanueva-Romero, R.; Castro, D.; Lamana, A.; Mellado, M.; González-Álvaro, I.; et al. A Clinical Approach for the Use of VIP Axis in Inflammatory and Autoimmune Diseases. Int. J. Mol. Sci. 2019, 21, 65. [Google Scholar] [CrossRef] [Green Version]
- Juarranz, Y.; Gutiérrez-Cañas, I.; Santiago, B.; Carrión, M.; Pablos, J.L.; Gomariz, R.P. Differential expression of vaso-active intestinal peptide and its functional receptors in human osteoarthritic and rheumatoid synovial fibroblasts. Arthritis Rheum 2008, 58, 1086–1095. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Wang, H.; Li, Y.-S.; Luo, W. Role of vasoactive intestinal peptide in osteoarthritis. J. Biomed. Sci. 2016, 23, 63. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Gao, S.G.; Chen, X.G.; Xu, X.C.; Xu, M.; Luo, W.; Tu, M.; Zhang, F.J.; Zeng, C.; Lei, G.H. Expression of synovial fluid and articular cartilage VIP in human osteoarthritic knee: A new indicator of disease severity? Clin. Biochem. 2012, 45, 1607–1612. [Google Scholar] [CrossRef] [PubMed]
- Calamia, V.; Lourido, L.; Fernández-Puente, P.; Mateos, J.; Rocha, B.; Montell, E.; Vergés, J.; Ruiz-Romero, C.; Blanco, F.J. Secretome analysis of chondroitin sulfate-treated chondrocytes reveals anti-angiogenic, anti-inflammatory and anti-catabolic properties. Arthritis Res. Ther. 2012, 14, R202. [Google Scholar] [CrossRef] [Green Version]
- Li, X.J.; Xu, M.; Zhao, X.Q.; Zhao, J.N.; Chen, F.F.; Yu, W.; Gao, D.Y.; Luo, B. Proteomic analysis of synovial fibro-blast-like synoviocytes from rheumatoid arthritis. Clini. Exp. Rheumatol. 2013, 31, 552–558. [Google Scholar]
- Sanchez, C.; Mazzucchelli, G.; Lambert, C.; Comblain, F.; Depauw, E.; Henrotin, Y. Comparison of secretome from osteoblasts derived from sclerotic versus non-sclerotic subchondral bone in OA: A pilot study. PLoS ONE 2018, 13, e0194591. [Google Scholar] [CrossRef]
- Klocke, R.; Levasseur, K.; Kitas, G.D.; Smith, J.P.; Hirsch, G. Cartilage turnover and intra-articular corticosteroid injec-tions in knee osteoarthritis. Rheumatol. Int. 2018, 38, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Johansen, J.S.; Pedersen, A.N.; Schroll, M.; Jørgensen, T.; Pedersen, B.K.; Bruunsgaard, H. High serum YKL-40 level in a cohort of octogenarians is associated with increased risk of all-cause mortality. Clin. Exp. Immunol. 2007, 151, 260–266. [Google Scholar] [CrossRef]
- Recklies, A.D.; White, C.; Ling, H. The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinase- and protein kinase B-mediated signalling pathways. Biochem. J. 2002, 365, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Kzhyshkowska, J.; Gratchev, A.; Goerdt, S. Human Chitinases and Chitinase-Like Proteins as Indicators for Inflammation and Cancer. Biomark. Insights 2007, 2, 128–146. [Google Scholar] [CrossRef]
- Mylin, A.K.; Abildgaard, N.; Johansen, J.S.; Heickendorff, L.; Kreiner, S.; Waage, A.; Turesson, I.; Gimsing, P.; Nordic Myeloma Study Group. Serum YKL-40: A new independent prognostic marker for skeletal complications in patients with multiple myeloma. Leuk. Lymphoma 2015, 56, 2650–2659. [Google Scholar] [CrossRef]
- Lee, C.G.; Da Silva, C.A.; Cruz, C.S.D.; Ahangari, F.; Ma, B.; Kang, M.-J.; He, C.-H.; Takyar, S.; Elias, J.A. Role of Chitin and Chitinase/Chitinase-Like Proteins in Inflammation, Tissue Remodeling, and Injury. Annu. Rev. Physiol. 2011, 73, 479–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotz, M.J.; Martelpelletier, J.; Christiansen, C.F.; Brandi, M.L.; Bruyere, O.; Chapurlat, R.; Collette, J.; Cooper, C.L.; Giacovelli, G.; Kanis, J.A.; et al. Republished: Value of biomarkers in osteoarthritis: Current status and perspectives. Postgrad. Med. J. 2014, 90, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Väänänen, T.; Vuolteenaho, K.; Kautiainen, H.; Nieminen, R.; Mottonen, T.; Hannonen, P.; Korpela, M.; Kauppi, M.J.; Laiho, K.; Kaipiainen-Seppänen, O.; et al. Glycoprotein YKL-40: A potential biomarker of disease activity in rheumatoid arthritis during intensive treatment with csDMARDs and infliximab. Evidence from the randomised controlled NEO-RACo trial. PLoS ONE 2017, 12, e0183294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafeber, F.; van Spil, W. Osteoarthritis year 2013 in review: Biomarkers; reflecting before moving forward, one step at a time. Osteoarthr. Cartil. 2013, 21, 1452–1464. [Google Scholar] [CrossRef] [Green Version]
- Živanović, S.; Rackov, L.P.; Vojvodic, D.; Vučetić, D. Human cartilage glycoprotein 39—Biomarker of joint damage in knee osteoarthritis. Int. Orthop. 2009, 33, 1165–1170. [Google Scholar] [CrossRef] [Green Version]
- Goldring, M.B.; Marcu, K.B. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res. Ther. 2009, 11, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otero, M.; Goldring, M.B. Cells of the synovium in rheumatoid arthritis. Chondrocytes. Arthritis Res. Ther. 2007, 9, 220. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Zhang, L.; Liu, Z.; Feng, J.-S.; Wang, H.-J.; Chu, J.-G.; Song, Y.-Z.; Xie, L.; Ding, L.-B. Increased Synovial Fluid YKL-40 Levels are Linked with Symptomatic Severity in Knee Osteoarthritis Patients. Clin. Lab. 2015, 61, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Conrozier, T.; Carlier, M.-C.; Mathieu, P.; Colson, F.; Debard, A.L.; Richard, S.; Favret, H.; Bienvenu, J.; Vignon, E. Serum levels of YKL-40 and C reactive protein in patients with hip osteoarthritis and healthy subjects: A cross sectional study. Ann. Rheum. Dis. 2000, 59, 828–831. [Google Scholar] [CrossRef] [Green Version]
- Väänänen, T.; Koskinen, A.; Paukkeri, E.-L.; Hämäläinen, M.; Moilanen, T.; Moilanen, E.; Vuolteenaho, K. YKL-40 as a Novel Factor Associated with Inflammation and Catabolic Mechanisms in Osteoarthritic Joints. Mediat. Inflamm. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Salomon, J.; Matusiak, L.; Nowicka-Suszko, D.; Szepietowski, J.C. Chitinase-3-Like Protein 1 (YKL-40) Is a New Bi-omarker of Inflammation in Psoriasis. Mediat. Inflamm. 2017, 2017, 9538451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salomon, J.; Matusiak, Ł.; Nowicka-Suszko, D.; Szepietowski, J.C. Chitinase-3-like protein 1 (YKL-40) is a biomarker of severity of joint involvement in psoriatic arthritis. Adv. Dermatol. Allergol. 2018, 35, 485–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Khan, R.; Gupta, N.; Zaheer, M.; Abbas, M.; Khan, S. Acute phase reactant, Pentraxin 3, as a novel marker for the diagnosis of rheumatoid arthritis. Clin. Chim. Acta 2018, 480, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Scimeca, M.; Salustri, A.; Bonanno, E.; Nardozi, D.; Rao, C.; Piccirilli, E.; Feola, M.; Tancredi, V.; Rinaldi, A.; Iolascon, G.; et al. Impairment of PTX3 expression in osteoblasts: A key element for osteoporosis. Cell Death Dis. 2017, 8, e3125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satomura, K.; Torigoshi, T.; Koga, T.; Maeda, Y.; Izumi, Y.; Jiuchi, Y.; Miyashita, T.; Yamasaki, S.; Kawakami, A.; Aiba, Y.; et al. Serum amyloid A (SAA) induces pentraxin 3 (PTX3) production in rheumatoid synoviocytes. Mod. Rheumatol. 2013, 23, 28–35. [Google Scholar] [CrossRef]
- Luchetti, M.M.; Piccinini, G.; Mantovani, A.; Peri, G.; Matteucci, C.; Pomponio, G.; Fratini, M.; Fraticelli, P.; Sambo, P.; di Loreto, C.; et al. Expression and production of the long pentraxin PTX3 in rheumatoid arthritis (RA). Clin. Exp. Immunol. 2000, 119, 196–202. [Google Scholar] [CrossRef]
- Di Rosa, M.; Szychlinska, M.A.; Tibullo, D.; Malaguarnera, L.; Musumeci, G. Expression of CHI3L1 and CHIT1 in os-teoarthritic rat cartilage model. A morphological study. Eur. J. Histochem. 2014, 58, 2423. [Google Scholar] [CrossRef] [Green Version]
- Gomariz, R.P.; Martinez, C.; Abad, C.; Leceta, J.; Delgado, M. Immunology of VIP: A review and therapeutical per-spectives. Curr. Pharm. Des. 2001, 7, 89–111. [Google Scholar] [CrossRef]
- Gomariz, R.P.; Juarranz, Y.; Abad, C.; Arranz, A.; Leceta, J.; Martinez, C. VIP-PACAP System in Immunity: New Insights for Multitarget Therapy. Ann. N. Y. Acad. Sci. 2006, 1070, 51–74. [Google Scholar] [CrossRef] [PubMed]
- Delgado, M.; Ganea, D. Vasoactive intestinal peptide: A neuropeptide with pleiotropic immune functions. Amino Acids 2013, 45, 25–39. [Google Scholar] [CrossRef]
- Galindo-Izquierdo, M.; Alvarez, J.L.P. Complement as a Therapeutic Target in Systemic Autoimmune Diseases. Cells 2021, 10, 148. [Google Scholar] [CrossRef]
- Silawal, S.; Triebel, J.; Bertsch, T.; Schulze-Tanzil, G. Osteoarthritis and the Complement Cascade. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2018, 11, 1179544117751430. [Google Scholar] [CrossRef] [Green Version]
- Happonen, K.E.; Saxne, T.; Aspberg, A.; Morgelin, M.; Heinegard, D.; Blom, A.M. Regulation of complement by cartilage oligomeric matrix protein allows for a novel molecular diagnostic principle in rheumatoid arthritis. Arthritis Rheum. 2010, 62, 3574–3583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Happonen, K.E.; Saxne, T.; Geborek, P.; Andersson, M.; Bengtsson, A.A.; Hesselstrand, R.; Heinegård, D.; Blom, A.M. Serum COMP-C3b complexes in rheumatic diseases and relation to anti-TNF-α treatment. Arthritis Res. Ther. 2012, 14, R15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melin Furst, C.; Morgelin, M.; Vadstrup, K.; Heinegard, D.; Aspberg, A.; Blom, A.M. The C-type lectin of the aggrecan G3 domain activates complement. PLoS ONE 2013, 8, e61407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjöberg, A.P.; Manderson, G.A.; Mörgelin, M.; Day, A.J.; Heinegård, D.; Blom, A.M. Short leucine-rich glycoproteins of the extracellular matrix display diverse patterns of complement interaction and activation. Mol. Immunol. 2009, 46, 830–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barilla, M.-L.; Carsons, S.E. Fibronectin fragments and their role in inflammatory arthritis. Semin. Arthritis Rheum. 2000, 29, 252–265. [Google Scholar] [CrossRef]
- Carsons, S.E.; Schwartzman, S.; Diamond, H.S.; Berkowitz, E. Interaction between fibronectin and C1q in rheumatoid synovial fluid and normal plasma. Clin. Exp. Immunol. 1988, 72, 37–42. [Google Scholar]
- Assirelli, E.; Pulsatelli, L.; Dolzani, P.; Mariani, E.; Lisignoli, G.; Addimanda, O.; Meliconi, R. Complement Expression and Activation in Osteoarthritis Joint Compartments. Front. Immunol. 2020, 11, 535010. [Google Scholar] [CrossRef]
- Gulati, P.; Lemercier, C.; Lappin, D.; Whaley, K.; Gue, D. Expression of the components and regulatory proteins of the classical pathway of complement in normal and diseased synovium. Rheumatol. Int. 1994, 14, 13–19. [Google Scholar] [CrossRef]
- Guc, D.; Gulati, P.; Lemercier, C.; Lappin, D.; Birnie, G.D.; Whaley, K. Expression of the components and regulatory proteins of the alternative complement pathway and the membrane attack complex in normal and diseased synovium. Rheumatol. Int. 1993, 13, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Bradley, K.; North, J.; Saunders, D.; Schwaeble, W.; Jeziorska, M.; Woolley, D.E.; Whaley, K. Synthesis of classical pathway complement components by chondrocytes. Immunology 1996, 88, 648–656. [Google Scholar] [PubMed]
- Lubbers, R.; van Schaarenburg, R.A.; Kwekkeboom, J.C.; Levarht, N.E.; Bakker, A.M.; Mahdad, R.; Monteagudo, S.; Cherifi, C.; Lories, R.J.; Toes, R.E.; et al. Complement component C1q is produced by isolated articular chondrocytes. Osteoarthr. Cartil. 2020, 28, 675–684. [Google Scholar] [CrossRef]
- Vicenti, G.; Bizzoca, D.; Carrozzo, M.; Solarino, G.; Moretti, B. Multi-omics analysis of synovial fluid: A promising ap-proach in the study of osteoarthritis. J. Biol. Regul. Homeost. Agents 2018, 32 (Suppl. S1), 9–13. [Google Scholar]
- Struglics, A.; Okroj, M.; Sward, P.; Frobell, R.; Saxne, T.; Lohmander, L.S.; Blom, A.M. The complement system is activated in synovial fluid from subjects with knee injury and from patients with osteoarthritis. Arthritis Res. Ther. 2016, 18, 223. [Google Scholar] [CrossRef] [Green Version]
- Rossi, V.; Bally, I.; Lacroix, M.; Arlaud, G.J.; Thielens, N.M. Classical Complement Pathway Components C1r and C1s: Purification from Human Serum and in Recombinant Form and Functional Characterization. Adv. Struct. Saf. Stud. 2013, 1100, 43–60. [Google Scholar] [CrossRef]
- Liao, W.; Li, Z.; Li, T.; Zhang, Q.; Zhang, H.; Wang, X. Proteomic analysis of synovial fluid in osteoarthritis using SWATH-mass spectrometry. Mol. Med. Rep. 2017, 17, 2827–2836. [Google Scholar] [CrossRef]
- Laurell, A.-B.; Mårtensson, U.; Sjöholm, A. Trimer and tetramer complexes containing C1 esterase inhibitor, C1r and C1s, in serum and synovial fluid of patients with rheumatic disease. J. Immunol. Methods 1990, 129, 55–61. [Google Scholar] [CrossRef]
- Sjöholm, A.G.; Berglund, K.; Johnson, U.; Laurell, A.-B.; Sturfelt, G. C1 Activation, with C1q in Excess of Functional C1 in Synovial Fluid from Patients with Rheumatoid Arthritis. Int. Arch. Allergy Immunol. 1986, 79, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Hengartner, N.-E.; Fiedler, J.; Schrezenmeier, H.; Huber-Lang, M.; Brenner, R.E. Crucial Role of IL1beta and C3a in the In Vitro-Response of Multipotent Mesenchymal Stromal Cells to Inflammatory Mediators of Polytrauma. PLoS ONE 2015, 10, e0116772. [Google Scholar] [CrossRef] [Green Version]
- Ourradi, K.; Xu, Y.; De Seny, M.; Kirwan, J.; Blom, A.; Sharif, M. Development and validation of novel biomarker assays for osteoarthritis. PLoS ONE 2017, 12, e0181334. [Google Scholar] [CrossRef] [Green Version]
- de Seny, D.; Sharif, M.; Fillet, M.; Cobraiville, G.; Meuwis, M.A.; Maree, R.; Hauzeur, J.P.; Wehenkel, L.; Louis, E.; Merville, M.P.; et al. Discovery and biochemical characterisation of four novel biomarkers for osteoarthritis. Ann. Rheum. Dis. 2011, 70, 1144–1152. [Google Scholar] [CrossRef] [Green Version]
- Corigliano, A.; Preianò, M.; Terracciano, R.; Savino, R.; De Gori, M.; Galasso, O.; Gasparini, G. C3f is a potential tool for the staging of osteoarthritis. J. Boil. Regul. Homeost. Agents 2017, 31, 29–35. [Google Scholar]
- Cobraiville, G.; Fillet, M.; Sharif, M.; Ourradi, K.; Nys, G.; Malaise, M.G.; de Seny, D. Validation of a new method by nano-liquid chromatography on chip tandem mass spectrometry for combined quantitation of C3f and the V65 vitron-ectin fragment as biomarkers of diagnosis and severity of osteoarthritis. Talanta 2017, 169, 170–180. [Google Scholar] [CrossRef]
- Cheng, T.H.; Yoon, S.H.; Lee, P.; Dimaculangan, D.; Vikram Maheshwari, A.; Zhang, M. Knee synovial fluid com-plement C3-beta chain levels correlate with clinical symptoms of knee osteoarthritis. Int. J. Rheum. Dis. 2020, 23, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Thordardottir, S.; Vikingsdottir, T.; Bjarnadottir, H.; Jonsson, H., Jr.; Gudbjornsson, B. Activation of Complement Fol-lowing Total Hip Replacement. Scand. J. Immunol. 2016, 83, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Abbink, J.J.; Kamp, A.M.; Nuijens, J.H.; Erenberg, A.J.; Swaak, A.J.; Hack, C.E. Relative contribution of contact and complement activation to inflammatory reactions in arthritic joints. Ann. Rheum. Dis. 1992, 51, 1123–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gronau, T.; Kruger, K.; Prein, C.; Aszodi, A.; Gronau, I.; Iozzo, R.V.; Mooren, F.C.; Clausen-Schaumann, H.; Bertrand, J.; Pap, T.; et al. Forced exercise-induced osteoarthritis is attenuated in mice lacking the small leucine-rich proteoglycan decorin. Ann. Rheum. Dis. 2017, 76, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Guilak, F.; Nims, R.J.; Dicks, A.; Wu, C.-L.; Meulenbelt, I. Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol. 2018, 71–72, 40–50. [Google Scholar] [CrossRef]
- Cillero-Pastor, B.; Eijkel, G.B.; Kiss, A.; Blanco, F.J.; Heeren, R.M.A. Matrix-assisted laser desorption ionization-imaging mass spectrometry: A new methodology to study human osteoarthritic cartilage. Arthritis Rheum. 2013, 65, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Wiberg, C.; Klatt, A.R.; Wagener, R.; Paulsson, M.; Bateman, J.F.; Heinegård, D.; Mörgelin, M. Complexes of Matrilin-1 and Biglycan or Decorin Connect Collagen VI Microfibrils to Both Collagen II and Aggrecan. J. Biol. Chem. 2003, 278, 37698–37704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redini, F. Structure and regulation of articular cartilage proteoglycan expression. Pathol. Biol. 2001, 49, 364–375. [Google Scholar] [CrossRef]
- Knudson, C.B.; Knudson, W. Cartilage proteoglycans. Semin. Cell Dev. Biol. 2001, 12, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Zaia, J.; Liu, B.; Boynton, R.; Barry, F. Structural analysis of cartilage proteoglycans and glycoproteins using ma-trix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Biochem. 2000, 277, 94–103. [Google Scholar] [CrossRef]
- Tesche, F.; Miosge, N. New aspects of the pathogenesis of osteoarthritis: The role of fibroblast-like chondrocytes in late stages of the disease. Histol. Histopathol. 2005, 20, 329–337. [Google Scholar]
- Barreto, G.; Soininen, A.; Ylinen, P.; Sandelin, J.; Konttinen, Y.T.; Nordström, D.C.; Eklund, K.K. Soluble biglycan: A potential mediator of cartilage degradation in osteoarthritis. Arthritis Res. 2015, 17, 379. [Google Scholar] [CrossRef] [Green Version]
- Bock, H.; Michaeli, P.; Bode, C.; Schultz, W.; Kresse, H.; Herken, R.; Miosge, N. The small proteoglycans decorin and biglycan in human articular cartilage of late-stage osteoarthritis. Osteoarthr. Cartil. 2001, 9, 654–663. [Google Scholar] [CrossRef] [Green Version]
- Melrose, J.; Fuller, E.S.; Roughley, P.J.; Smith, M.M.; Kerr, B.; Hughes, C.E.; Caterson, B.; Little, C.B. Fragmentation of decorin, biglycan, lumican and keratocan is elevated in degenerate human meniscus, knee and hip articular cartilages compared with age-matched macroscopically normal and control tissues. Arthritis Res. Ther. 2008, 10, R79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, A.A.; Smith, M.M.; Smith, S.M.; Cake, M.A.; Ghosh, P.; Read, R.A.; Melrose, J.; Sonnabend, D.H.; Roughley, P.J.; Little, C.B. Regional assessment of articular cartilage gene expression and small proteoglycan metabolism in an animal model of osteoarthritis. Arthritis Res. 2005, 7, R852–R861. [Google Scholar] [CrossRef] [Green Version]
- Arranz, A.; Gutiérrez-Cañas, I.; Carrión, M.; Juarranz, Y.; Pablos, J.L.; Martínez, C.; Gomariz, R.P. VIP reverses the expression profiling of TLR4-stimulated signaling pathway in rheumatoid arthritis synovial fibroblasts. Mol. Immunol. 2008, 45, 3065–3073. [Google Scholar] [CrossRef] [PubMed]
- Polgár, A.; Falus, A.; Koó, E.; Ujfalussy, I.; Seszták, M.; Szuts, I.; Konrád, K.; Hodinka, L.; Bene, E.; Mészáros, G.; et al. Elevated levels of synovial fluid antibodies reactive with the small proteoglycans biglycan and decorin in patients with rheumatoid arthritis or other joint diseases. Rheumatology 2003, 42, 522–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anders, H.J.; Schaefer, L. Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflam-masomes also drive regeneration and fibrosis. J. Am. Soc. Nephrol. 2014, 25, 1387–1400. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Muneta, T.; Morito, T.; Mochizuki, T.; Sekiya, I. Autologous synovial fluid enhances migration of mesenchymal stem cells from synovium of osteoarthritis patients in tissue culture system. J. Orthop. Res. 2008, 26, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Rengel, Y.; Ospelt, C.; Gay, S. Proteinases in the joint: Clinical relevance of proteinases in joint destruction. Arthritis Res. Ther. 2007, 9, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troeberg, L.; Nagase, H. Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2012, 1824, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Martel-Pelletier, J.; Welsch, D.J.; Pelletier, J.-P. Metalloproteases and inhibitors in arthritic diseases. Best Pr. Res. Clin. Rheumatol. 2001, 15, 805–829. [Google Scholar] [CrossRef]
- Ruettger, A.; Schueler, S.; Mollenhauer, J.A.; Wiederanders, B. Cathepsins B, K, and L are regulated by a defined collagen type II peptide via activation of classical protein kinase C and p38 MAP kinase in articular chondrocytes. J. Biol. Chem. 2008, 283, 1043–1051. [Google Scholar] [CrossRef] [Green Version]
- Požgan, U.; Caglič, D.; Rozman, B.; Nagase, H.; Turk, V.; Turk, B. Expression and activity profiling of selected cysteine cathepsins and matrix metalloproteinases in synovial fluids from patients with rheumatoid arthritis and osteoarthritis. Biol. Chem. 2010, 391, 571–579. [Google Scholar] [CrossRef]
- Clutterbuck, A.L.; Asplin, K.E.; Harris, P.; Allaway, D.; Mobasheri, A. Targeting matrix metalloproteinases in inflammatory conditions. Curr. Drug Targets 2009, 10, 1245–1254. [Google Scholar] [CrossRef]
- Lang, A.; Hörler, D.; Baici, A. The relative importance of cysteine peptidases in osteoarthritis. J. Rheumatol. 2000, 27, 1970–1979. [Google Scholar]
- Roughley, P.J. The degradation of cartilage proteoglycans by tissue proteinases. Proteoglycan heterogeneity and the pathway of proteolytic degradation. Biochem. J. 1977, 167, 639–646. [Google Scholar] [CrossRef] [Green Version]
- Maciewicz, R.A.; Wotton, S.F.; Etherington, D.J.; Duance, V.C. Susceptibility of the cartilage collagens types II, IX and XI to degradation by the cysteine proteinases, cathepsins B and L. FEBS Lett. 1990, 269, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Kostoulas, G.; Lang, A.; Nagase, H.; Baici, A. Stimulation of angiogenesis through cathepsin B inactivation of the tissue inhibitors of matrix metalloproteinases. FEBS Lett. 1999, 455, 286–290. [Google Scholar] [CrossRef] [Green Version]
- Baici, A.; Lang, A.; Zwicky, R.; Müntener, K. Cathepsin B in Osteoarthritis: Uncontrolled Proteolysis in the Wrong Place. Semin. Arthritis Rheum. 2004, 34, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Zwicky, R.; Baici, A. Cytoskeletal architecture and cathepsin B trafficking in human articular chondrocytes. Histochem. Cell Biol. 2000, 114, 363–372. [Google Scholar] [CrossRef]
- Batshon, G.; Elayyan, J.; Qiq, O.; Reich, E.; Ben-Aderet, L.; Kandel, L.; Haze, A.; Steinmeyer, J.; Lefebvre, V.; Zhang, H.; et al. Serum NT/CT SIRT1 ratio reflects early osteoarthritis and chondrosenescence. Ann. Rheum. Dis. 2020, 79, 1370–1380. [Google Scholar] [CrossRef] [PubMed]
- Mishiro, T.; Nakano, S.; Takahara, S.; Miki, M.; Nakamura, Y.; Yasuoka, S.; Nikawa, T.; Yasui, N. Relationship between cathepsin B and thrombin in rheumatoid arthritis. J. Rheumatol. 2004, 31, 1265–1273. [Google Scholar]
- Hashimoto, Y.; Kakegawa, H.; Narita, Y.; Hachiya, Y.; Hayakawa, T.; Kos, J.; Turk, V.; Katunuma, N. Significance of Cathepsin B Accumulation in Synovial Fluid of Rheumatoid Arthritis. Biochem. Biophys. Res. Commun. 2001, 283, 334–339. [Google Scholar] [CrossRef]
- Ikeda, Y.; Ikata, T.; Mishiro, T.; Nakano, S.; Ikebe, M.; Yasuoka, S. Cathepsins B and L in synovial fluids from patients with rheumatoid arthritis and the effect of cathepsin B on the activation of pro-urokinase. J. Med. Investig. 2000, 47, 61–75. [Google Scholar]
- Keyszer, G.; Redlich, A.; Haupl, T.; Zacher, J.; Sparmann, M.; Engethum, U.; Gay, S.; Burmester, G.R. Differential expression of cathepsins B and L compared with matrix metalloproteinases and their respective inhibitors in rheumatoid arthritis and osteoarthritis: A parallel investigation by semiquantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry. Arthritis Rheum. 1998, 41, 1378–1387. [Google Scholar] [PubMed]
- Solau-Gervais, E.; Zerimech, F.; Lemaire, R.; Fontaine, C.; Huet, G.; Flipo, R.M. Cysteine and serine proteases of synovial tissue in rheumatoid arthritis and osteoarthritis. Scand. J. Rheumatol. 2007, 36, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.; Petrow, P.K.; Gaumann, A.; Keyszer, G.M.; Eysel, P.; Eckardt, A.; Bräuer, R.; Kriegsmann, J. Cathepsin B and its endogenous inhibitor cystatin C in rheumatoid arthritis synovium. J. Rheumatol. 2000, 27, 859–865. [Google Scholar]
- Bayliss, M.T.; Ali, S.Y. Studies on cathepsin B in human articular cartilage. Biochem. J. 1978, 171, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Martel-Pelletier, J.; Cloutier, J.M. Cathepsin B and cysteine protease inhibitors in human osteoarthritis. J. Orthop. Res. 1990, 8, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Baici, A.; Horler, D.; Lang, A.; Merlin, C.; Kissling, R. Cathepsin B in osteoarthritis: Zonal variation of enzyme activity in human femoral head cartilage. Ann. Rheum. Dis. 1995, 54, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Baici, A.; Lang, A.; Horler, D.; Kissling, R.; Merlin, C. Cathepsin B in osteoarthritis: Cytochemical and histochemical analysis of human femoral head cartilage. Ann. Rheum. Dis. 1995, 54, 289–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Aderet, L.; Merquiol, E.; Fahham, D.; Kumar, A.; Reich, E.; Ben-Nun, Y.; Kandel, L.; Haze, A.; Liebergall, M.; Kosinska, M.K.; et al. Detecting cathepsin activity in human osteoar-thritis via activity-based probes. Arthritis Res. Ther. 2015, 17, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berardi, S.; Lang, A.; Kostoulas, G.; Vilei, E.M.; Baici, A. Alternative messenger RNA splicing and enzyme forms of cathepsin B in human osteoarthritic cartilage and cultured chondrocytes. Arthritis Rheum. 2001, 44, 1819–1831. [Google Scholar] [CrossRef]
- Zwicky, R.; Muntener, K.; Csucs, G.; Goldring, M.B.; Baici, A. Exploring the Role of 5′ Alternative Splicing and of the 3′-Untranslated Region of Cathepsin B mRNA. Biol. Chem. 2003, 384, 1007–1018. [Google Scholar] [CrossRef]
- Murphy, G.; Knauper, V.; Atkinson, S.; Butler, G.; English, W.; Hutton, M.; Stracke, J.; Clark, I. Matrix metalloproteinases in arthritic disease. Arthritis Res. 2002, 4 (Suppl. S3), S39–S49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, G.; Lee, M.H. What are the roles of metalloproteinases in cartilage and bone damage? Ann. Rheum. Dis. 2005, 64 (Suppl. S4), iv44–iv47. [Google Scholar] [CrossRef] [PubMed]
- Murphy, G.; Nagase, H. Progress in matrix metalloproteinase research. Mol. Asp. Med. 2008, 29, 290–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kevorkian, L.; Young, D.A.; Darrah, C.; Donell, S.T.; Shepstone, L.; Porter, S.; Brockbank, S.M.; Edwards, D.R.; Parker, A.E.; Clark, I.M. Expression profiling of metalloproteinases and their inhibitors in cartilage. Arthritis Rheum. 2004, 50, 131–141. [Google Scholar] [CrossRef]
- Lipari, L.; Gerbino, A. Expression of Gelatinases (MMP-2, MMP-9) in Human Articular Cartilage. Int. J. Immunopathol. Pharmacol. 2013, 26, 817–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duerr, S.; Stremme, S.; Soeder, S.; Bau, B.; Aigner, T. MMP-2/gelatinase A is a gene product of human adult articular chondrocytes and is increased in osteoarthritic cartilage. Clin. Exp. Rheumatol. 2004, 22, 603–608. [Google Scholar] [PubMed]
- Hulejova, H.; Baresova, V.; Klezl, Z.; Polanska, M.; Adam, M.; Senolt, L. Increased level of cytokines and matrix metal-loproteinases in osteoarthritic subchondral bone. Cytokine 2007, 38, 151–156. [Google Scholar] [CrossRef]
- Zeng, G.; Chen, A.; Li, W.; Song, J.; Gao, C. High MMP-1, MMP-2, and MMP-9 protein levels in osteoarthritis. Genet. Mol. Res. 2015, 14, 14811–14822. [Google Scholar] [CrossRef]
- Alunno, A.; Falcinelli, E.; Luccioli, F.; Petito, E.; Bartoloni, E.; Momi, S.; Mirabelli, G.; Mancini, G.B.; Gerli, R.; Gresele, P. Platelets Contribute to the Accumulation of Matrix Metalloproteinase Type 2 in Synovial Fluid in Osteoarthritis. Thromb. Haemost. 2017, 117, 2116–2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, S.B.; Setton, L.A.; Bell, R.D.; Easley, M.E.; Huebner, J.L.; Stabler, T.; Kraus, V.B.; Leimer, E.M.; Olson, S.A.; Nettles, D.L. Inflammatory Cytokines and Matrix Metalloproteinases in the Synovial Fluid After Intra-articular Ankle Fracture. Foot Ankle Int. 2015, 36, 1264–1271. [Google Scholar] [CrossRef]
- Sandya, S.; Achan, M.A.; Sudhakaran, P.R. Multiple matrix metalloproteinases in type II collagen induced arthritis. Indian J. Clin. Biochem. 2009, 24, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, K.; Takatsuka, S.; Hatada, E.; Nakamura, H.; Tanaka, A.; Ueki, K.; Nakagawa, K.; Okada, Y.; Yamamoto, E.; Fukuda, R. Expression of matrix metalloproteinases and aggrecanase in the synovial fluids of patients with symptomatic temporomandibular disorders. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2006, 102, 22–27. [Google Scholar] [CrossRef]
- Yang, C.-C.; Lin, C.-Y.; Wang, H.-S.; Lyu, S.-R. Matrix Metalloproteases and Tissue Inhibitors of Metalloproteinases in Medial Plica and Pannus-like Tissue Contribute to Knee Osteoarthritis Progression. PLoS ONE 2013, 8, e79662. [Google Scholar] [CrossRef] [Green Version]
- Xue, M.; McKelvey, K.; Shen, K.; Minhas, N.; March, L.; Park, S.-Y.; Jackson, C. Endogenous MMP-9 and not MMP-2 promotes rheumatoid synovial fibroblast survival, inflammation and cartilage degradation. Rheumatology 2014, 53, 2270–2279. [Google Scholar] [CrossRef] [Green Version]
- Hot, A.; Zrioual, S.; Lenief, V.; Miossec, P. IL-17 and tumour necrosis factor α combination induces a HIF-1α-dependent invasive phenotype in synoviocytes. Ann. Rheum. Dis. 2012, 71, 1393–1401. [Google Scholar] [CrossRef]
- Wang, C.; Chi, Q.; Xu, C.; Xu, K.; Zhang, Y.; Liu, Y.; Yang, L.; Sung, K.L. Expression of LOXs and MMP-1, 2, 3 by ACL Fibroblasts and Synoviocytes Impact of Coculture and TNF-α. J. Knee Surg. 2019, 32, 352–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasadam, I.; Crawford, R.; Xiao, Y. Aggravation of ADAMTS and matrix metalloproteinase production and role of ERK1/2 pathway in the interaction of osteoarthritic subchondral bone osteoblasts and articular cartilage chondrocytes—Possible pathogenic role in osteoarthritis. J. Rheumatol. 2012, 39, 621–634. [Google Scholar] [CrossRef]
- Zheng, L.; Chen, W.; Xian, G.; Pan, B.; Ye, Y.; Gu, M.; Ma, Y.; Zhang, Z.; Sheng, P. Identification of abnormally methylated-differentially expressed genes and pathways in osteoarthritis: A comprehensive bioinformatic study. Clin. Rheumatol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, Y.; Wang, C.; Wan, S.; Yao, Z.; Zhang, Y.; Liu, J.; Zhang, C. Identification of Diagnostic Biomarkers of Osteoarthritis Based on Multi-Chip Integrated Analysis and Machine Learning. DNA Cell Biol. 2020, 39, 2245–2256. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.-Y.; Yang, M.; Guo, J.; Zhang, C.; Lin, L.-L.; Liu, Y.; Wei, R.-X. Identification of the Biomarkers and Pathological Process of Osteoarthritis: Weighted Gene Co-expression Network Analysis. Front. Physiol. 2019, 10, 275. [Google Scholar] [CrossRef] [PubMed]
- Werner, N.C.; Stoker, A.M.; Bozynski, C.C.; Keeney, J.A.; Cook, J.L. Characterizing correlations among disease severity measures in osteochondral tissues from osteoarthritic knees. J. Orthop. Res. 2021, 39, 1103–1112. [Google Scholar] [CrossRef]
- Thorson, C.; Galicia, K.; Burleson, A.; Bouchard, O.; Hoppensteadt, D.; Fareed, J.; Hopkinson, W. Matrix Metalloproteinases and Their Inhibitors and Proteoglycan 4 in Patients Undergoing Total Joint Arthroplasty. Clin. Appl. Thromb. Hemost. 2019, 25, 1076029619828113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vacas, E.; Bajo, A.M.; Schally, A.V.; Sánchez-Chapado, M.; Prieto, J.C.; Carmena, M.J. Vasoactive intestinal peptide induces oxidative stress and suppresses metastatic potential in human clear cell renal cell carcinoma. Mol. Cell. Endocrinol. 2013, 365, 212–222. [Google Scholar] [CrossRef] [PubMed]
- García, S.P.; Carrión, M.; Gutiérrez-Cañas, I.; González-Álvaro, I.; Gomáriz, R.M.P.; Juarranz, Y. VIP and CRF reduce ADAMTS expression and function in osteoarthritis synovial fibroblasts. J. Cell. Mol. Med. 2016, 20, 678–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado, M.; Abad, C.; Martinez, C.; Leceta, J.; Gomariz, R.P. Vasoactive intestinal peptide prevents experimental arthritis by downregulating both autoimmune and inflammatory components of the disease. Nat. Med. 2001, 7, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Juarranz, Y.; Abad, C.; Martinez, C.; Arranz, A.; Gutierrez-Cañas, I.; Rosignoli, F.; Gomariz, R.P.; Leceta, J. Protective effect of vasoactive intestinal peptide on bone destruction in the collagen-induced arthritis model of rheumatoid arthritis. Arthritis Res. 2005, 7, R1034–R1045. [Google Scholar] [CrossRef] [Green Version]
- Martínez, C.; Ortiz, A.M.; Juarranz, Y.; Lamana, A.; Seoane, I.V.; Leceta, J.; García-Vicuña, R.; Gomariz, R.P.; González-Álvaro, I. Serum Levels of Vasoactive Intestinal Peptide as a Prognostic Marker in Early Arthritis. PLoS ONE 2014, 9, e85248. [Google Scholar] [CrossRef] [Green Version]
- Seoane, I.V.; Martínez, C.; García-Vicuña, R.; Ortiz, A.M.; Juarranz, Y.; Talayero, V.C.; González-Álvaro, I.; Gomariz, R.P.; Lamana, A. Vasoactive intestinal peptide gene polymorphisms, associated with its serum levels, predict treatment requirements in early rheumatoid arthritis. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Schuelert, N.; McDougall, J. Electrophysiological evidence that the vasoactive intestinal peptide receptor antagonist VIP6–28 reduces nociception in an animal model of osteoarthritis. Osteoarthr. Cartil. 2006, 14, 1155–1162. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.; Dobson, P.R.; Bunning, R.A.; Russell, R.G.; Brown, B.L. The regulation of connective tissue metabolism by vasoactive intestinal polypeptide. Regul. Pept. 1992, 37, 111–121. [Google Scholar] [CrossRef]
- Altman, R.; Asch, E.; Bloch, D.; Bole, G.; Borenstein, D.; Brandt, K.; Christy, W.; Cooke, T.D.; Greenwald, R.; Hochberg, M.; et al. Development of criteria for the classification and reporting of osteoarthritis: Classification of osteoarthritis of the knee. Arthritis Rheum. 1986, 29, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Calamia, V.; Ruiz-Romero, C.; Rocha, B.; Fernandez-Puente, P.; Mateos, J.; Montell, E.; Verges, J.; Blanco, F.J. Pharmacoproteomic study of the effects of chondroitin and glucosamine sulfate on human articular chondrocytes. Arthritis Res. Ther. 2010, 12, R138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calamia, V.; Rocha, B.; Mateos, J.; Fernandez-Puente, P.; Ruiz-Romero, C.; Blanco, F.J. Metabolic labeling of chondro-cytes for the quantitative analysis of the interleukin-1-beta-mediated modulation of their intracellular and extracellular proteomes. J. Proteome Res. 2011, 10, 3701–3711. [Google Scholar] [CrossRef] [PubMed]
Acc No a | Protein Symbol | Protein Name | Biological Function |
---|---|---|---|
P01023 | A2MG | Alpha-2-macroglobulin | Immune response |
P63261 | ACTG | Actin, cytoplasmic 2 | Cytoskeletal protein |
P12814 | ACTN1 | Alpha-actinin-1 | Cytoskeletal protein |
P04075 | ALDOA | Fructose-bisphosphate aldolase A | Cellular metabolic process |
P15144 | AMPN | Aminopeptidase N | Immune response |
P01008 | ANT3 | Antithrombin-III | Angiogenesis |
P27695 | APEX1 | DNA-(apurinic or apyrimidinic site) lyase | Oxidative stress |
Q9P1U1 | ARP3B | Actin-related protein 3B | Cytoskeletal organization |
P61769 | B2MG | Beta-2-microglobulin | Immune response |
Q15582 | BGH3 | Transforming growth factor-beta-induced protein ig-h3 | TGF-beta signaling |
P00736 | C1R | Complement C1r subcomponent | Complement activation |
P09871 | C1S | Complement C1s subcomponent | Complement activation |
P40121 | CAPG | Macrophage-capping protein | Macrophage function |
P07858 | CATB | Cathepsin B | ECM degradation |
P07339 | CATD | Cathepsin D | ECM degradation |
P07711 | CATL1 | Cathepsin L1 | ECM degradation |
P16070 | CD44 | CD44 antigen | ECM degradation/Inflammatory response |
P00751 | CFAB | Complement factor B | Complement activation |
P08603 | CFAH | Complement factor H | Complement activation |
P36222 | CH3L1 | Chitinase-3-like protein 1 | Inflammatory response |
P10909 | CLUS | Clusterin | Immune response/Complement activation |
Q8N137 | CNTRB | Centrobin | Centriole duplication |
P08123 | CO1A2 | Collagen alpha-2(I) chain | ECM component |
P01024 | CO3 | Complement C3 | Complement activation |
P12109 | CO6A1 | Collagen alpha-1(VI) chain | ECM component |
P12111 | CO6A3 | Collagen alpha-3(VI) chain | ECM component |
Q99715 | COCA1 | Collagen alpha-1(XII) chain | ECM component |
P49747 | COMP | Cartilage oligomeric matrix protein | ECM component |
Q14019 | COTL1 | Coactin-like protein | Cytoskeletal protein binding |
P02511 | CRYAB | Alpha-crystallin B chain | Cytoskeletal protein binding |
O94985 | CSTN1 | Calsyntenin-1 | Cytoskeletal protein binding |
P13639 | EF2 | Elongation factor 2 | Cytoskeletal protein binding |
P06733 | ENOA | Alpha-enolase | Immune response |
Q12805 | FBLN3 | EGF-containing fibulin-like extracellular matrix protein 1 | ECM component/Negative regulator of chondrocyte differentiation |
P02751 | FINC | Fibronectin | ECM component/ECM degradation |
Q06828 | FMOD | Fibromodulin | ECM component |
P04406 | G3P | Glyceraldehyde-3-phphate dehydrogenase | Cellular metabolic process/Immune response |
P06744 | G6PI | Gluce-6-phphate isomerase | Cellular metabolic process/Immune response |
P50395 | GDIB | Rab GDP dissociation inhibitor beta | Immune response |
P07093 | GDN | Glia-derived nexin | ECM component/Serine protease inhibitor |
P28161 | GSTM2 | Glutathione S-transferase Mu 2 | Cellular metabolic process/Inflammatory response |
P09211 | GSTP1 | Glutathione S-transferase P | Cellular metabolic process/Inflammatory response |
P57053 | H2BFS | Histone H2B type F-S | Immune response |
P02042 | HBD | Hemoglobin subunit delta | Oxygen transport |
P11142 | HSP7C | Heat shock cognate 71 kDa protein | Immune response |
P04792 | HSPB1 | Heat shock protein beta-1 | Immune response |
P17936 | IBP3 | Insulin-like growth factor-binding protein 3 | Cell proliferation and differentiation |
P22692 | IBP4 | Insulin-like growth factor-binding protein 4 | Cell proliferation and differentiation |
P24592 | IBP6 | Insulin-like growth factor-binding protein 6 | Cell proliferation and differentiation |
Q16270 | IBP7 | Insulin-like growth factor-binding protein 7 | Cell proliferation and differentiation |
P05155 | IC1 | Plasma protease C1 inhibitor | Complement activation |
P0DOX7 | IGK | Immunoglobulin kappa light chain | Immune response |
P05231 | IL6 | Interleukin-6 | Inflammatory response |
P13645 | K1C10 | Keratin, type I cytoskeletal 10 | Cytoskeletal protein |
P35527 | K1C9 | Keratin, type I cytoskeletal 9 | Cytoskeletal protein |
P04264 | K2C1 | Keratin, type II cytoskeletal 1 | Cytoskeletal protein |
P14618 | KPYM | Pyruvate kinase PKM | Cellular metabolic process/Immune response |
P00338 | LDHA | L-lactate dehydrogenase A chain | Cellular metabolic process |
P17931 | LEG3 | Galectin-3 | Inflammatory response |
P51884 | LUM | Lumican | ECM component |
P33908 | MA1A1 | Mannosyl-oligosaccharide 1,2-alpha-mannidase IA | Cellular metabolic process |
P40925 | MDHC | Malate dehydrogenase, cytoplasmic | Cellular metabolic process |
P14174 | MIF | Macrophage migration inhibitory factor | Immune response |
P03956 | MMP1 | Interstitial collagenase | ECM degradation |
P08253 | MMP2 | 72 kDa type IV collagenase | ECM degradation |
P08254 | MMP3 | Stromelysin-1 | ECM degradation |
P26038 | MOES | Moesin | Cytoskeletal protein binding |
P22392 | NDKB | Nucleoside diphosphate kinase B | Immune response |
Q96TA1 | NIBL1 | Niban-like protein 1 | Apoptosis suppression |
P05121 | PAI1 | Plasminogen activator inhibitor 1 | Serine protease inhibitor |
Q15113 | PCOC1 | Procollagen C-endopeptidase enhancer 1 | Cellular metabolic process |
P30101 | PDIA3 | Protein disulfide-isomerase A3 | Cellular metabolic process |
Q15084 | PDIA6 | Protein disulfide-isomerase A6 | Cellular metabolic process |
P18669 | PGAM1 | Phosphoglycerate mutase 1 | Cellular metabolic process |
P00558 | PGK1 | Phosphoglycerate kinase 1 | Cellular metabolic process |
P21810 | PGS1 | Biglycan | ECM component/ECM degradation |
P07585 | PGS2 | Decorin | ECM component/ECM degradation |
O60664 | PLIN3 | Perilipin-3 | Protein transport |
P62937 | PPIA | Peptidyl-prolyl cis-trans isomerase A | Cellular metabolic process |
P23284 | PPIB | Peptidyl-prolyl cis-trans isomerase B | Cellular metabolic process |
Q06830 | PRDX1 | Peroxiredoxin-1 | Immune response |
P30041 | PRDX6 | Peroxiredoxin-6 | Immune response |
Q92954 | PRG4 | Proteoglycan 4 | ECM component/Control of synovial growth and adhesion of to the cartilage surface |
P07737 | PROF1 | Profilin-1 | Cytoskeletal protein binding |
P49721 | PSB2 | Proteasome subunit beta type-2 | Immunoproteasome assembly |
Q9UL46 | PSME2 | Proteasome activator complex subunit 2 | Immunoproteasome assembly |
P26022 | PTX3 | Pentraxin-related protein 3 | Inflammatory response |
O00391 | QSOX1 | Sulfhydryl oxidase 1 | Oxidation-reduction process |
P55017 | S12A3 | Solute carrier family 12 member 3 | Inflammatory response |
P50454 | SERPH | Serpin H1 | ECM organization |
Q9H299 | SH3L3 | SH3 domain-binding glutamic acid-rich-like protein 3 | Oxidation-reduction process |
P04179 | SODM | Superoxide dismutase [Mn], mitochondrial | Oxidation-reduction process |
P09486 | SPRC | SPARC | Cell proliferation and differentiation |
P42224 | STAT1 | Signal transducer and activator of transcription 1-alpha/beta | Immune response |
P23381 | SYWC | Tryptophan--tRNA ligase, cytoplasmic | Angiogenesis |
P68363 | TBA1B | Tubulin alpha-1B chain | Cytoskeletal protein |
Q13509 | TBB3 | Tubulin beta-3 chain | Cytoskeletal protein |
P07437 | TBB5 | Tubulin beta chain | Cytoskeletal protein |
P24821 | TENA | Tenascin | ECM component |
P01033 | TIMP1 | Metalloproteinase inhibitor 1 | Metalloprotease inhibitor |
P16035 | TIMP2 | Metalloproteinase inhibitor 2 | Metalloprotease inhibitor |
P29401 | TKT | Transketolase | Oxidation-reduction process |
P60174 | TPIS | Triosephosphate isomerase | Oxidation-reduction process |
P02787 | TRFE | Serotransferrin | Iron binding transport protein |
P02788 | TRFL | Lactotransferrin | Iron binding transport protein |
Q8NBS9 | TXND5 | Thioredoxin domain-containing protein 5 | Immune response |
P19971 | TYPH | Thymidine phosphorylase | Angiogenesis |
P22314 | UBA1 | Ubiquitin-like modifier-activating enzyme 1 | Proteasome degradation |
O60701 | UGDH | UDP-glucose 6-dehydrogenase | Biosynthesis of ECM components |
Q6EMK4 | VASN | Vasorin | TGF-beta signaling |
P08670 | VIME | Vimentin | Cytoskeletal protein/Immune response |
P18206 | VINC | Vinculin | ECM binding/Immune response |
P02774 | VTDB | Vitamin D-binding protein | Vitamin D transport and storage |
P04004 | VTNC | Vitronectin | ECM binding/Immune response |
Q5GH72 | XKR7 | XK-related protein 7 | XK related family |
Acc No a | Protein Symbol | Gene Symbol | Protein Name | Ratio b | |
---|---|---|---|---|---|
Forward | Reverse | ||||
P01024 | CO3 | C3 | Complement C3 | 0.545 | 0.346 |
P36222 | CH3L1 | CHI3L1 | Chitinase-3-like protein 1 | 0.481 | 0.559 |
P26022 | PTX3 | PTX3 | Pentraxin-related protein 3 | 0.451 | 0.628 |
O00391 | QSOX1 | QSOX1 | Sulfhydryl oxidase 1 | 0.610 | 0.474 |
P07585 | PGS2 | DCN | Decorin | 0.582 | 0.540 |
P07858 | CATB | CTSB | Cathepsin B | 0.660 | 0.516 |
P08253 | MMP2 | MMP2 | 72 kDa type IV collagenase | 0.672 | 0.541 |
P00736 | C1R | C1R | Complement C1r subcomponent | 0.666 | 0.649 |
P68363 | TBA1B | TUBA1B | Tubulin alpha-1B chain | 1.907 | 1.511 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-García, S.; Calamia, V.; Hermida-Gómez, T.; Gutiérrez-Cañas, I.; Carrión, M.; Villanueva-Romero, R.; Castro, D.; Martínez, C.; Juarranz, Y.; Blanco, F.J.; et al. Proteomic Analysis of Synovial Fibroblasts and Articular Chondrocytes Co-Cultures Reveals Valuable VIP-Modulated Inflammatory and Degradative Proteins in Osteoarthritis. Int. J. Mol. Sci. 2021, 22, 6441. https://doi.org/10.3390/ijms22126441
Pérez-García S, Calamia V, Hermida-Gómez T, Gutiérrez-Cañas I, Carrión M, Villanueva-Romero R, Castro D, Martínez C, Juarranz Y, Blanco FJ, et al. Proteomic Analysis of Synovial Fibroblasts and Articular Chondrocytes Co-Cultures Reveals Valuable VIP-Modulated Inflammatory and Degradative Proteins in Osteoarthritis. International Journal of Molecular Sciences. 2021; 22(12):6441. https://doi.org/10.3390/ijms22126441
Chicago/Turabian StylePérez-García, Selene, Valentina Calamia, Tamara Hermida-Gómez, Irene Gutiérrez-Cañas, Mar Carrión, Raúl Villanueva-Romero, David Castro, Carmen Martínez, Yasmina Juarranz, Francisco J. Blanco, and et al. 2021. "Proteomic Analysis of Synovial Fibroblasts and Articular Chondrocytes Co-Cultures Reveals Valuable VIP-Modulated Inflammatory and Degradative Proteins in Osteoarthritis" International Journal of Molecular Sciences 22, no. 12: 6441. https://doi.org/10.3390/ijms22126441