Calvaria Bone Transcriptome in Mouse Models of Osteogenesis Imperfecta
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. Library Preparation and RNA Sequencing
Data Post-Processing and Statistical Evaluation
4.3. Real-Time PCR Validation
4.4. Micro-Computed Tomography (MicroCT)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Forlino, A.; Marini, J.C. Osteogenesis imperfecta. Lancet 2016, 387, 1657–1671. [Google Scholar] [CrossRef]
- Bardai, G.; Moffatt, P.; Glorieux, F.H.; Rauch, F. DNA sequence analysis in 598 individuals with a clinical diagnosis of osteogenesis imperfecta: Diagnostic yield and mutation spectrum. Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2016, 27, 3607–3613. [Google Scholar] [CrossRef] [PubMed]
- Rauch, F.; Travers, R.; Parfitt, A.M.; Glorieux, F.H. Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone 2000, 26, 581–589. [Google Scholar] [CrossRef]
- Rauch, F.; Lalic, L.; Roughley, P.; Glorieux, F.H. Relationship between genotype and skeletal phenotype in children and adolescents with osteogenesis imperfecta. J. Bone Miner. Res. Off. J. Am. Soc. Bone Mineral. Res. 2010, 25, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- Chipman, S.D.; Sweet, H.O.; McBride, D.J.; Davisson, M.T.; Marks, S.C.; Shuldiner, A.R.; Wenstrup, R.J.; Rowe, D.W.; Shapiro, J.R. Defective pro alpha 2(I) collagen synthesis in a recessive mutation in mice: A model of human osteogenesis imperfecta. Proc. Natl. Acad. Sci. USA 1993, 90, 1701–1705. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Guo, R.; Itoh, S.; Moreno, L.; Rosenthal, E.; Zappitelli, T.; Zirngibl, R.A.; Flenniken, A.; Cole, W.; Grynpas, M.; et al. First mouse model for combined osteogenesis imperfecta and Ehlers-Danlos syndrome. J. Bone Miner. Res. Off. J. Am. Soc. Bone Mineral. Res. 2014, 29, 1412–1423. [Google Scholar] [CrossRef]
- Zimmerman, S.M.; Dimori, M.; Heard-Lipsmeyer, M.E.; Morello, R. The osteocyte transcriptome is extensively dysregulated in mouse models of osteogenesis imperfecta. JBMR Plus 2019, 3, e10171. [Google Scholar] [CrossRef]
- Grafe, I.; Alexander, S.; Peterson, J.R.; Snider, T.N.; Levi, B.; Lee, B.; Mishina, Y. TGF-beta family signaling in mesenchymal differentiation. Cold Spring Harb. Perspect. Biol. 2018, 10. [Google Scholar] [CrossRef]
- Kim, H.N.; Iyer, S.; Ring, R.; Almeida, M. The role of FoxOs in bone health and disease. Curr. Top. Dev. Biol. 2018, 127, 149–163. [Google Scholar] [CrossRef]
- Roschger, A.; Roschger, P.; Keplingter, P.; Klaushofer, K.; Abdullah, S.; Kneissel, M.; Rauch, F. Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta. Bone 2014, 66, 182–188. [Google Scholar] [CrossRef]
- Tauer, J.T.; Abdullah, S.; Rauch, F. Effect of anti-TGF-beta treatment in a mouse model of severe osteogenesis imperfecta. J. Bone Miner. Res. Off. J. Am. Soc. Bone Mineral. Res. 2019, 34, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Cardinal, M.; Tys, J.; Roels, T.; Lafont, S.; Ominsky, M.S.; Devogelaer, J.P.; Chappard, D.; Mabilleau, G.; Ammann, P.; Nyssen-Behets, C.; et al. Sclerostin antibody reduces long bone fractures in the oim/oim model of osteogenesis imperfecta. Bone 2019, 124, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Grafe, I.; Yang, T.; Alexander, S.; Homan, E.P.; Lietman, C.; Jiang, M.M.; Bertin, T.; Munivez, E.; Chen, Y.; Dawson, B.; et al. Excessive transforming growth factor-beta signaling is a common mechanism in osteogenesis imperfecta. Nat. Med. 2014, 20, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Seitz, H.K.; Mueller, S. Alcohol and cancer: An overview with special emphasis on the role of acetaldehyde and cytochrome P450 2E1. Adv. Exp. Med. Biol. 2015, 815, 59–70. [Google Scholar] [CrossRef]
- Hong, A.R.; Kim, K.; Lee, J.Y.; Yang, J.Y.; Kim, J.H.; Shin, C.S.; Kim, S.W. Transformation of Mature Osteoblasts into Bone Lining Cells and RNA Sequencing-Based Transcriptome Profiling of Mouse Bone during Mechanical Unloading. Endocrinol. Metab. 2020, 35, 456–469. [Google Scholar] [CrossRef]
- Pathak, J.L.; Liu, L.; Zhu, Y.Q.; Bureik, M. Cytochrome P450 expression patterns in human osteoblasts during osteogenic differentiation with or without TNFalpha treatment. Biopharm. Drug Dispos. 2020, 41, 184–191. [Google Scholar] [CrossRef]
- Matthews, B.G.; Roeder, E.; Wang, X.; Aguila, H.L.; Lee, S.K.; Grcevic, D.; Kalajzic, I. Splenomegaly, myeloid lineage expansion and increased osteoclastogenesis in osteogenesis imperfecta murine. Bone 2017, 103, 1–11. [Google Scholar] [CrossRef]
- Moffatt, P.; Boraschi-Diaz, I.; Bardai, G.; Rauch, F. Muscle transcriptome in mouse models of osteogenesis imperfecta. Bone 2021, 148, 115940. [Google Scholar] [CrossRef]
- Selch, S.; Chafai, A.; Sticht, H.; Birkenfeld, A.L.; Fromm, M.F.; Konig, J. Analysis of naturally occurring mutations in the human uptake transporter NaCT important for bone and brain development and energy metabolism. Sci. Rep. 2018, 8, 11330. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.Y.; Rawal, A.; Schmidt-Rohr, K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc. Natl. Acad. Sci. USA 2010, 107, 22425–22429. [Google Scholar] [CrossRef]
- Fratzl, P.; Paris, O.; Klaushofer, K.; Landis, W.J. Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle x-ray scattering. J. Clin. Investig. 1996, 97, 396–402. [Google Scholar] [CrossRef][Green Version]
- Irizarry, A.R.; Yan, G.; Zeng, Q.; Lucchesi, J.; Hamang, M.J.; Ma, Y.L.; Rong, J.X. Defective enamel and bone development in sodium-dependent citrate transporter (NaCT) Slc13a5 deficient mice. PLoS ONE 2017, 12, e0175465. [Google Scholar] [CrossRef] [PubMed]
- Schossig, A.; Bloch-Zupan, A.; Lussi, A.; Wolf, N.I.; Raskin, S.; Cohen, M.; Giuliano, F.; Jurgens, J.; Krabichler, B.; Koolen, D.A.; et al. SLC13A5 is the second gene associated with Kohlschutter-Tonz syndrome. J. Med. Genet. 2017, 54, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Wang, L.; Xiong, Y.; Li, J.; Wang, Y.; Shi, T.; Ma, D. The novel secretory protein Cgref1 inhibits the activation of AP-1 transcriptional activity and cell proliferation. Int. J. Biochem. Cell Biol. 2015, 65, 32–39. [Google Scholar] [CrossRef]
- Gharibi, B.; Ghuman, M.S.; Cama, G.; Rawlinson, S.C.F.; Grigoriadis, A.E.; Hughes, F.J. Site-specific differences in osteoblast phenotype, mechanical loading response and estrogen receptor-related gene expression. Mol. Cell. Endocrinol. 2018, 477, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, P.; Gaumond, M.H.; Salois, P.; Sellin, K.; Bessette, M.C.; Godin, E.; de Oliveira, P.T.; Atkins, G.J.; Nanci, A.; Thomas, G. Bril: A novel bone-specific modulator of mineralization. J. Bone Miner. Res. Off. J. Am. Soc. Bone Mineral. Res. 2008, 23, 1497–1508. [Google Scholar] [CrossRef] [PubMed]
- Cho, T.J.; Lee, K.E.; Lee, S.K.; Song, S.J.; Kim, K.J.; Jeon, D.; Lee, G.; Kim, H.N.; Lee, H.R.; Eom, H.H.; et al. A single recurrent mutation in the 5’-UTR of IFITM5 causes osteogenesis imperfecta type V. Am. J. Hum. Genet. 2012, 91, 343–348. [Google Scholar] [CrossRef]
- Semler, O.; Garbes, L.; Keupp, K.; Swan, D.; Zimmermann, K.; Becker, J.; Iden, S.; Wirth, B.; Eysel, P.; Koerber, F.; et al. A mutation in the 5’-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am. J. Hum. Genet. 2012, 91, 349–357. [Google Scholar] [CrossRef]
- Greenblatt, M.B.; Ono, N.; Ayturk, U.M.; Debnath, S.; Lalani, S. The unmixing problem: A guide to applying single-cell RNA sequencing to bone. J. Bone Miner. Res. Off. J. Am. Soc. Bone Mineral. Res. 2019, 34, 1207–1219. [Google Scholar] [CrossRef]
- Aubin, I.; Adams, C.P.; Opsahl, S.; Septier, D.; Bishop, C.E.; Auge, N.; Salvayre, R.; Negre-Salvayre, A.; Goldberg, M.; Guenet, J.L.; et al. A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse. Nat. Genet. 2005, 37, 803–805. [Google Scholar] [CrossRef]
- Jin, Y.R.; Stohn, J.P.; Wang, Q.; Nagano, K.; Baron, R.; Bouxsein, M.L.; Rosen, C.J.; Adarichev, V.A.; Lindner, V. Inhibition of osteoclast differentiation and collagen antibody-induced arthritis by CTHRC1. Bone 2017, 97, 153–167. [Google Scholar] [CrossRef]
- Cooling, L. Blood groups in infection and host susceptibility. Clin. Microbiol Rev. 2015, 28, 801–870. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, S.M.; Heard-Lipsmeyer, M.E.; Dimori, M.; Thostenson, J.D.; Mannen, E.M.; O’Brien, C.A.; Morello, R. Loss of RANKL in osteocytes dramatically increases cancellous bone mass in the osteogenesis imperfecta mouse (oim). Bone Rep. 2018, 9, 61–73. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Trapnell, C.; Hendrickson, D.G.; Sauvageau, M.; Goff, L.; Rinn, J.L.; Pachter, L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 2013, 31, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef]
- DeLuca, D.S.; Levin, J.Z.; Sivachenko, A.; Fennell, T.; Nazaire, M.D.; Williams, C.; Reich, M.; Winckler, W.; Getz, G. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics 2012, 28, 1530–1532. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Zhang, B.; Kirov, S.; Snoddy, J. WebGestalt: An integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 2005, 33, W741–W748. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [Google Scholar] [CrossRef] [PubMed]
Gene | Description | Fold Change | p |
---|---|---|---|
Cyp2e1 | Cytochrome P450, family 2, subfamily e, polypeptide 1 | 4.25 | 0.009 |
Bglap | Bone gamma carboxyglutamate protein | 3.44 | <0.001 |
Bglap2 | Bone gamma-carboxyglutamate protein 2 | 3.14 | <0.001 |
Cyp2f2 | Cytochrome P450, family 2, subfamily f, polypeptide 2 | 2.90 | <0.001 |
Ighg2c | 2.87 | 0.02 | |
Slc13a5 | Solute carrier family 13, member 5 | 2.59 | <0.001 |
Creb3l3 | cAMP responsive element binding protein 3-like 3 | 2.55 | 0.003 |
Tpsb2 | Tryptase beta 2 | 2.38 | 0.003 |
Col11a1 | Collagen, type XI, alpha 1 | 2.34 | 0.006 |
Col11a2 | Collagen, type XI, alpha 2 | 2.31 | 0.015 |
Lipc | Lipase, hepatic | 2.30 | <0.001 |
Cgref1 | Cell growth regulator with EF hand domain 1 | 2.29 | <0.001 |
Ifi27l2a | Interferon, alpha-inducible protein 27 like 2A | 2.24 | <0.001 |
Smpd3 | Sphingomyelin phosphodiesterase 3, neutral | 2.22 | <0.001 |
Ifitm5 | Interferon induced transmembrane protein 5 | 2.19 | <0.001 |
Ctsw | Cathepsin W | 2.14 | 0.04 |
Kazald1 | Kazal-type serine peptidase inhibitor domain 1 | 2.14 | <0.001 |
Cthrc1 | Collagen triple helix repeat containing 1 | 2.05 | <0.001 |
Rerg | RAS-like, estrogen-regulated, growth-inhibitor | 2.05 | 0.002 |
Adamts14 | A disintegrin-like and metallopeptidase with thrombospondin type 1 motif, 14 | 1.98 | <0.001 |
Gene | Description | Fold Change | p |
---|---|---|---|
Mt2 | Metallothionein 2 | 7.32 | 0.004 |
Edn1 | Endothelin 1 | 7.10 | <0.001 |
Aspg | Asparaginase | 6.37 | 0.002 |
Slc10a6 | Solute carrier family 10, member 6 | 5.71 | <0.001 |
Npas2 | Neuronal PAS domain protein 2 | 5.51 | <0.001 |
Cyp2e1 | Cytochrome P450, family 2, subfamily e, polypeptide 1 | 5.51 | <0.001 |
Angptl7 | Angiopoietin-like 7 | 5.27 | 0.005 |
Ddit4 | DNA-damage-inducible transcript 4 | 4.99 | <0.001 |
Arl4d | ADP-ribosylation factor-like 4D | 4.74 | <0.001 |
Cdkn1a | NUS1 dehydrodolichyl diphosphate synthase subunit | 4.74 | <0.001 |
Sult5a1 | Sulfotransferase family 5A, member 1 | 4.71 | <0.001 |
Cxcl13 | Chemokine (C-X-C motif) ligand 13 | 4.69 | <0.001 |
Zbtb16 | Zinc finger and BTB domain containing 16 | 4.67 | <0.001 |
Adamts15 | A disintegrin-like and metallopeptidase with thrombospondin type 1 motif, 15 | 4.66 | <0.001 |
Igfbp3 | Insulin-like growth factor binding protein 3 | 4.35 | <0.001 |
Mt1 | Metallothionein 1 | 4.35 | <0.001 |
Stc2 | Stanniocalcin 2 | 4.35 | <0.001 |
Syt13 | Synaptotagmin XIII | 4.33 | <0.001 |
Itga10 | Integrin, alpha 10 | 4.32 | <0.001 |
Adm | Adrenomedullin | 4.31 | 0.001 |
Gene | Description | Jrt | oim | ||
---|---|---|---|---|---|
Fold Change | p | Fold Change | p | ||
Upregulated | |||||
Cyp2e1 | Cytochrome P450, family 2, subfamily e, polypeptide 1 | 4.25 | 0.009 | 5.51 | <0.001 |
Slc13a5 | Solute carrier family 13, member 5 | 2.29 | <0.001 | 3.30 | <0.001 |
Cgref1 | Cell growth regulator with EF hand domain 1 | 2.05 | <0.001 | 2.87 | <0.001 |
Smpd3 | Sphingomyelin phosphodiesterase 3, neutral | 2.59 | <0.001 | 2.70 | 0.02 |
Ifitm5 | Interferon induced transmembrane protein 5 | 2.05 | <0.001 | 2.54 | <0.001 |
Cthrc1 | Collagen triple helix repeat containing 1 | 2.22 | <0.001 | 2.51 | <0.001 |
Rerg | RAS-like, estrogen-regulated, growth-inhibitor | 2.19 | 0.002 | 2.09 | <0.001 |
Downregulated | |||||
Gypa | Glycophorin A | 0.45 | <0.001 | 0.44 | 0.01 |
Gene Set | Description | FDR | Genes in Set |
---|---|---|---|
Upregulated | |||
GO:0001503 | ossification | <0.001 | Alpl; Aspn; Bglap; Bglap2; Bmp1; Bmp3; Bmp8a; Col11a1; Col11a2; Creb3l1; Cthrc1; Dkk1; Dmp1; Gdf10; Gja1; Ifitm5; Igsf10; Kazald1; Lrrc17; Mepe; Omd; Ostn; P3h1; Phex; Phospho1; Pth1r; Smad6; Sp7; Tmem119; Twist1 |
Downregulated | |||
GO:0030099 | myeloid cell differentiation | <0.001 | Alas2; Ank1; Bpgm; Car2; Dmtn; Epb42; Hmgb2; Myb; Rhag; Rhd; Spib; Tal1; Trim10; Trim58; Zfpm1 |
Gene Set | FDR | Genes in Set |
---|---|---|
Upregulated | ||
GO:0001503 (ossification) | <0.001 | Acvr1; Alpl; Ank; Ano6; Atraid; Axin2; Bcl2; Bmp1; Bmp2; Bmp3; Bmp4; Bmp8a; Bmpr1a; Bmpr2; Cd276; Cebpb; Cebpd; Chrdl1; Clec11a; Col11a1; Col11a2; Col13a1; Col5a2; Creb3l1; Cthrc1; Dchs1; Ddr2; Dlx5; Dmp1; Ecm1; Epha2; Ext1; Ext2; Fam20c; Fat4; Fgfr1; Fgfr2; Fndc3b; Foxc1; Foxc2; Fzd1; Gabbr1; Gja1; Gli1; Gpc3; Gpm6b; Gpnmb; Hspg2; Ibsp; Id3; Id4; Ifitm5; Igf2; Igfbp3; Igsf10; Il6st; Intu; Jag1; Kazald1; Kremen1; Lgr4; Lrp4; Lrp5; Lrp6; Lrrc17; Ltbp3; Mepe; Mgp; Mia3; Mmp14; Mmp2; Mn1; Nab2; Nog; Npnt; Npr2; Omd; P3h1; Phex; Pkdcc; Ptch1; Pth1r; Ptk2; S1pr1; Sfrp1; Sfrp2; Sh3pxd2b; Sik3; Six2; Smad1; Smad6; Smo; Smoc1; Snai1; Sost; Sp7; Tgfb2; Tgfbr3; Thbs3; Thra; Tmem119; Tnfsf11; Tnn; Trpm4; Twist1; Twsg1; Wnt10b; Wwtr1; Zbtb16; Zhx3 |
Downregulated | ||
GO:0030099 (myeloid cell differentiation) | <0.001 | B2m; Adar; Fes; Rcor1; G6pdx; Nrros; Itgb3; Casp8; Tyrobp; Ubd; Creb1; Pde1b; Tmem14c; Fcer1g; Pf4; Fli1; Wdr1; Tcf3; Senp1; Pml; Atpif1; Plscr1; Myh9; Pknox1; Ubash3b; Rb1; Spi1; Casp3; Kit; Adam8; Nckap1l; Smarca4; Ets1; Tspan2; Eif2ak1; Hcls1; Isg15; Ptbp3; Pabpc4; Inpp5d; Cd300lf; Lyn; Clec2i; Ptk2b; Ankle1; Mpl; Ltf; Ncapg2; Hmgb3; Clec1b; Ptpn6; Pilrb1; Cdk6; Irf8; Clec5a; Prtn3; Tfrc; Tesc; Ceacam1; Cd101; Lmo2; Irf4; Csf3r; Hhex; Stap1; Cebpe; Bpgm; Hmgb2; Ank1; Gfi1b; Gata1; Spib; Dmtn; Zfpm1; Rhd; Alas2; Rhag; Tal1; Dyrk3; Car2; Myb; Epb42; Trim10; Trim58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moffatt, P.; Boraschi-Diaz, I.; Marulanda, J.; Bardai, G.; Rauch, F. Calvaria Bone Transcriptome in Mouse Models of Osteogenesis Imperfecta. Int. J. Mol. Sci. 2021, 22, 5290. https://doi.org/10.3390/ijms22105290
Moffatt P, Boraschi-Diaz I, Marulanda J, Bardai G, Rauch F. Calvaria Bone Transcriptome in Mouse Models of Osteogenesis Imperfecta. International Journal of Molecular Sciences. 2021; 22(10):5290. https://doi.org/10.3390/ijms22105290
Chicago/Turabian StyleMoffatt, Pierre, Iris Boraschi-Diaz, Juliana Marulanda, Ghalib Bardai, and Frank Rauch. 2021. "Calvaria Bone Transcriptome in Mouse Models of Osteogenesis Imperfecta" International Journal of Molecular Sciences 22, no. 10: 5290. https://doi.org/10.3390/ijms22105290
APA StyleMoffatt, P., Boraschi-Diaz, I., Marulanda, J., Bardai, G., & Rauch, F. (2021). Calvaria Bone Transcriptome in Mouse Models of Osteogenesis Imperfecta. International Journal of Molecular Sciences, 22(10), 5290. https://doi.org/10.3390/ijms22105290