(R)-(+)-β-Citronellol and (S)-(−)-β-Citronellol in Combination with Amphotericin B against Candida Spp.
Abstract
:1. Introduction
2. Results
2.1. Determination of MIC and MFC of (R)-(+)-β-Citronellol, (S)-(−)-β-Citronellol, and AB on C. Albicans and C. Tropicalis
2.2. Effect of (R)-(+)-β-Citronellol and (S)-(−)-β-Citronellol on Yeast Growth Kinetics
2.3. Mechanism of Action: (R)-(+)-β-Citronellol and (S)-(−)-β-Citronellol
2.4. Interaction Profile of R-(+)-β-Citronellol and S-(−)-β-Citronellol with AB
3. Discussion
4. Materials and Methods
4.1. Phytoconstituents
4.2. Culture Media
4.3. Microorganisms and Inoculum Preparation
4.4. Determination of MIC
4.5. Determination of MFC
4.6. Effect of the Test Products on the Yeasts’ Growth Kinetics
4.7. Fungal Cell Wall Effect (Sorbitol Assay)
4.8. Interaction with Fungal Cell Membrane Ergosterol (Ergosterol Assay)
4.9. Study of β-Citronellol Associations with AB – Checkerboard Method
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DMSO | Dimethyl Sulfoxide |
SDA | Sabouraud Dextrose Agar |
RPMI | Roswell Park Memorial Institute |
MIC | Minimum Inhibitory Concentration |
ATCC | American Type Culture Collection |
MFC | Minimum Fungicide Concentration |
AB | Amphotericin B |
CFU | Colony Forming Units |
FICI | Fractional Inhibitory Concentration Index |
References and Notes
- Eliel, E.L.; Wilen, S.H. Stereochemistry of Organic Compounds, 1st ed.; Wiley: New York, NY, USA, 1994; p. 1267. [Google Scholar]
- Özek, T.; Tabanca, N.; Demirci, F.; Wedge, D.E.; Baser, K.H.C. Enantiomeric Distribution of Some Linalool Containing Essential Oils and Their Biological Activities. Rec. Nat. Prod. 2010, 4, 180–192. [Google Scholar]
- Montanari, C.A.; Bolzani, V.S. Planejamento racional de fármacos baseado em produtos naturais. Quim. Nova 2001, 24, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Jansen, D.J.; Shenvi, R.A. Synthesis of medicinally relevant terpenes: Reducing the cost and time of drug Discovery. Future Med. Chem. 2014, 6, 1127–1148. [Google Scholar] [CrossRef] [Green Version]
- Connolly, J.D.; Hill, R.A. Dictionary of Terpenoids, 1st ed.; Chapman and Hall: London, UK, 1991; p. 2156. [Google Scholar]
- Davis, E.M.; Croteau, R. Cyclization Enzymes in the Biosynthesis of Monoterpenes, Sesquiterpenes, and Diterpenes. Top. Curr. Chem. 2000, 209, 53–95. [Google Scholar]
- Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach, 3rd ed.; Wiley: West Sussex, UK, 2009; p. 550. [Google Scholar]
- Finefield, J.M.; Sherman, D.H.; Kreitman, M.; Williams, R.M. Enantiomeric Natural Products: Occurrence and Biogenesis. Angew. Chem. Int. Ed. Engl. 2012, 51, 4802–4836. [Google Scholar] [CrossRef] [Green Version]
- Lawless, J. The Illustrated Encyclopedia of Essential Oils; Harper Collins Publishers Ltd.: London, UK, 1995; p. 256. [Google Scholar]
- Avoseh, O.; Oyedeji, O.; Rungqu, P.; Nkeh-Chungag, B.; Oyedeji, A. Cymbopogon Species; Ethnopharmacology, Phytochemistry and the Pharmacological Importance. Molecules 2015, 20, 7438–7453. [Google Scholar] [CrossRef]
- Kpoviessi, S.; Bero, J.; Agbani, P.; Gbaguidi, F.; Kpadonu-kpoviessi, B.; Sinsin, B.; Accrombessi, G.; Frederich, M.; Moudachirou, M.; Quetin-Leclercq, J. Chemical composition, cytotoxicity and in vitro antitrypanosomal and antiplasmodial activity of the essential oils of four Cymbopogon species from Benin. J. Ethnopharmacol. 2014, 151, 652–659. [Google Scholar] [CrossRef]
- Tavares, E.S.; Julião, L.S.; Lopes, D.; Bizzo, H.R.; Lage, C.L.S.; Leitão, S.G. Análise do óleo essencial de folhas de três quimiotipos de Lippia alba (Mill.) N. E. Br. (Verbenaceae) cultivados em condições semelhantes. Rev. bras. farmacogn. 2005, 15, 1–5. [Google Scholar] [CrossRef]
- Sousa, D.P.; Goncalves, J.C.R.; Quintans-J’unior, L.; Cruz, J.S.; Araújo, D.A.M.; Almeida, R.N. Study of anticonvulsant effect of citronellol, a monoterpene alcohol, in rodents. Neurosci. Lett. 2006, 401, 231–235. [Google Scholar] [CrossRef]
- Su, Y.W.; Chao, S.H.; Lee, M.H.; Ou, T.Y.; Tsai, Y.C. Inhibitory Effects of Citronellol and Geraniol on Nitric Oxide and Prostaglandin E2 Production in Macrophages. Planta Med. 2010, 76, 1666–1671. [Google Scholar] [CrossRef]
- Bastos, J.F.A.; Moreira, I.J.A.; Ribeiro, T.P.; Medeiros, I.A.; Antoniolli, A.R.; Sousa, D.P.; Santos, M.R.V. Hypotensive and Vasorelaxant Effects of Citronellol, a Monoterpene Alcohol, in Rats. Basic Clin. Pharm. Toxicol. 2010, 106, 331–337. [Google Scholar] [CrossRef]
- Vasconcelos, T.B.; Ribeiro-Filho, H.V.; Lucetti, L.T.; Magalhães, P.J.C. β-Citronellol, an alcoholic monoterpene with inhibitory properties on the contractility of rat trachea. Braz. J. Med. Biol. Res. 2016, 49, e4800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins-Diniz, J.N.; Silva, R.A.M.; Miranda, E.T.; Mendes-Giannini, M.J.S. Monitoramento de fungos anemófilos e de leveduras em unidade hospitalar. Rev. Saúde Públ. 2005, 39, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Diekema, D.; Arbefeville, S.; Boyken, L.; Kroeger, J.; Pfaller, M. The changing epidemiology of healthcare-associated candidemia over three decades. Diagn. Microbiol. Infect. Dis. 2012, 73, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Giacomazzi, J.; Baethgen, L.; Carneiro, L.C.; Millington, M.A.; Denning, D.W.; Colombo, A.L.; Pasqualotto, A.C.; Association with the LIFE Program. The burden of serious human fungal infections in Brazil. Mycoses 2016, 59, 145–150. [Google Scholar] [CrossRef]
- Doi, A.M.; Pignatari, A.C.C.; Edmond, M.B.; Marra, A.R.; Camargo, L.F.A.; Siqueira, R.A.; Mota, V.P.; Colombo, A.L. Epidemiology and microbiologic characterization of nosocomial candidemia from a Brazilian national surveillance program. PLoS ONE 2016, 11, e0146909. [Google Scholar] [CrossRef]
- Guinea, J. Global trends in the distribution of candida species causing candidemia. Clin. Microbiol. Infect. 2014, 20, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Swinne, D.; Watelle, M.; Van der Flaes, M.; Nolard, N. In vitro activities of voriconazole (UK-109, 496), fluconazole, itraconazole and amphotericin B against 132 non-albicans bloodstream yeast isolates (CANARI study). Mycoses 2004, 47, 177–183. [Google Scholar] [CrossRef]
- Young, L.Y.; Hull, C.M.; Heitman, J. Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae. Antimicrob. Agents Chemother. 2003, 47, 2717–2724. [Google Scholar] [CrossRef] [Green Version]
- Tampieri, M.P.; Galuppi, R.; Macchioni, F.; Carelle, M.S.; Falcioni, L.; Cioni, P.L.; Morelli, I. The inhibition of Candida albicans by selected essential oils and their major componentes. Mycopathologia 2005, 159, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.F.; Silva, A.C.L.; Diniz-Neto, H.; Oliveira, H.M.B.F.; Medeiros, C.I.S.; Pereira, J.A.; Sousa, J.P.; Oliveira-Filho, A.A.; Lima, E.O. Activity anti-Candida albicans and Effects of the Association of β-citronellol with Three Antifungal Azolics. Lat. Am. J. Pharm. 2018, 37, 182–188. [Google Scholar]
- Iscan, G. Antibacterial and Anticandidal Activities of Common Essential Oil Constituents. Rec. Nat. Prod. 2017, 11, 374–388. [Google Scholar]
- Sartoratto, A.; Machado, A.L.M.; Delarmelina, C.; Figueira, G.M.; Duarte, M.C.T.; Rehder, V.L.G. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz. J. Microbiol. 2004, 35, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Aligiannis, N.; Kalpoutzakis, E.; Mitaku, S.; Chinou, I.B. Composition and Antimicrobial Activity of the Essential Oils of Two Origanum Species. J. Agric. Food Chem. 2001, 49, 4168–4170. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, Z.N.; Farooq, F.; Musthafa, T.N.M.; Ahmad, A.; Khan, A.U. Synthesis, characterization and antimicrobial evaluation of novel halopyrazole derivatives. J. Saudi Chem. Soc. 2013, 17, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Sütçü, M.; Acar, M.; Genç, G.E.; Kökçü, I.; Aktürk, H.; Atay, G.; Törun, S.H.; Salman, N.; Erturan, Z.; Somer, A. Evaluation of Candida species and antifungal susceptibilities among children with invasive candidiasis. Turk. J. Pediatr. 2017, 52, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A. Antifungal Drug Resistance: Mechanisms, Epidemiology, and Consequences for Treatment. Am. J. Med. 2012, 125, 3–13. [Google Scholar] [CrossRef]
- Sanguinetti, M.; Posteraro, B.; Lass-Florl, C. Antifungal drug resistance among Candida species: Mechanisms and clinical impact. Mycoses 2015, 58, 2–13. [Google Scholar] [CrossRef]
- O’Shaughnessy, E.M.; McCarthy, M.; Walsh, T.J. Amphotericin B: Polyene Resistance Mechanisms. In Antimicrobial Drug Resistance; Mayers, D.L., Lerner, S.A., Ouellette, M., Sobel, J.A., Eds.; Humana Press: New York, NY, USA, 2009; Volume 1, pp. 295–305. [Google Scholar]
- Perlin, D.S.; Richardson, R.R.; Izquierdo, A.A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017, 17, 383–392. [Google Scholar] [CrossRef]
- Oliveira, W.A.; Pereira, F.O.; Luna, G.C.G.; Lima, I.O.; Wanderley, P.A.; Lima, R.B.; Lima, E.O. Antifungal activity of Cymbopogon winterianus JOWITT Ex BOR against Candida Albicans. Braz. J. Microbiol. 2011, 42, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Di Pasqua, R.; Betts, G.; Hoskins, N.; Edwards, M.; Ercolini, D.; Mauriello, L. Membrane toxicity of antimicrobial compounds from essential oils. J. Agric. Food Chem. 2007, 55, 4863–4870. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F.O.; Mendes, J.M.; Lima, I.O.; Mota, K.S.; Oliveira, W.A.; Lima, E.O. Antifungal activity of geraniol and citronellol, two monoterpenes alcohols, against Trichophyton rubrum involves inhibition of ergosterol biosynthesis. Pharm. Biol. 2015, 53, 228–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gow, N.A.R.; Latge, J.P.; Munro, C.A. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiol. Spectr. 2017, 5, 1–25. [Google Scholar]
- Geitmann, A.; Emons, A.M.C. The cytoskeleton in plant and fungal cell tip growth. J. Microsc. 2002, 198, 218–245. [Google Scholar] [CrossRef] [Green Version]
- Loguercio-Leite, C.; Groposo, C.; Dreschler-Santos, E.R.; Figueiredo, N.F.; Godinho, P.S.; Abrão, R.L. A particularidade de ser um fungo – I. Constituintes celulares. Biotemas 2006, 19, 17–27. [Google Scholar]
- Mulyaningsih, S.; Sporer, F.; Zimmermann, S.; Reichling, J.; Wink, M. Synergistic properties of the terpenoids aromadendrene and 1, 8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine 2010, 17, 1061–1066. [Google Scholar] [CrossRef]
- Tullio, V.; Roana, J.; Scalas, D.; Mandras, N. Evaluation of the Antifungal Activity of Mentha x piperita (Lamiaceae) of Pancalieri (Turin, Italy) Essential Oil and Its Synergistic Interaction with Azoles. Molecules 2019, 24, 3148. [Google Scholar] [CrossRef] [Green Version]
- Nóbrega, J.R.; Sousa, P.M.S.; Mota, K.S.L.; Cordeiro, L.V.; Andrade-Júnior, F.P.; Oliveira, W.A. Antifungal activity of carvacrol and antifungal agent combinations against non-albicans Candida species. Sci. Plena 2019, 15, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, C.I.S.; Silva, D.F.; Pérez, A.L.A.L.; Almeida-Filho, G.G.; Oliveira-Filho, A.A.; Lima, E.O. Study of the antifungal potential of (R)-(+)-citronellal and its association with therapeutic agents used in the treatment of vulvovaginal candidiasis. Biosci. J. 2017, 33, 494–506. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Khan, A.; Khan, L.A.; Manzoor, N. In vitro synergy of eugenol and methyleugenol with fluconazole against clinical Candida isolates. J. Med. Microbiol. 2010, 59, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.F.; Italiano, C.M.; Heath, C.H.; Shih, S.; Rea, S.; Wood, F.M. Candidemia and invasive candidiasis: A review of the literature for the burns surgeon. Burns 2011, 37, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K.; Sheehan, D.J.; Hitchcock, C.A.; Ghannoum, M.A. Combination treatment of invasive fungal infections. Clin. Microbiol. Rev. 2005, 18, 163–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nascimento, P.F.C.; Nascimento, A.C.; Rodrigues, C.S.; Antoniolli, A.R.; Santos, M.P.O.; Júnior, A.M.B.; Trindade, R.C. Atividade antimicrobiana dos óleos essenciais: Uma abordagem multifatorial dos métodos. Rev Bras Farm. 2007, 17, 108–113. [Google Scholar] [CrossRef]
- Cleeland, L.; Squires, E. Evaluation of new antimicrobials in vitro and experimental animal infections. In Antibiotics in Laboratory Medicine, 3rd ed.; Lorian, V., Ed.; Williams & Wilkins: Baltimore, EUA, 1991; pp. 739–788. [Google Scholar]
- Hadacek, F.; Greger, H. Testing of antifungal natural products: Methodologies, comparability of results and assay choice. Phytochem. Anal. 2000, 11, 137–147. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts-Third Edition: Approved Standard M27-A3; 2008; 1–25.
- Clinical and Laboratory Standards Institud. Reference method for broth dilution antifungal susceptibility testing of yeasts. CLSI M27-A2, 2002, 22, 1–44.
- Ncube, N.S.; Afolayan, A.J.; Okoh, A.I. Assessment techniques of antimicrobial properties of natural compounds of plant origin: Current methods and future trends. Afr. J. Biotechnol. 2008, 7, 1797–1806. [Google Scholar] [CrossRef] [Green Version]
- Salie, F.; Eagles, P.F.; Leng, H.M. Preliminary antimicrobial screening of four South African Asteraceae species. J. Ethnopharmacol. 1996, 52, 27–33. [Google Scholar] [CrossRef]
- Klepser, M.E.; Wolfe, E.J.; Pfaller, M.A. Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B against Cryptococcus neoformans. J. Antimicrob. Chemother. 1998, 41, 397–401. [Google Scholar] [CrossRef] [Green Version]
- Frost, D.J.; Brandt, K.D.; Cugier, D.; Goldman, R. A whole-cell Candida albicans assay for the detection of inhibitors towards fungal cell wall synthesis and assembly. J. Antibiot. 1995, 28, 306–309. [Google Scholar] [CrossRef] [Green Version]
- Escalante, A.; Gattuso, M.; Pérez, P.; Zacchino, S. Evidence for the mechanism of action of the antifungal phytolaccoside B isolated from Phytolacca tetramera Hauman. J. Nat. Prod. 2008, 71, 1720–1725. [Google Scholar] [CrossRef]
- Lewis, R.E.; Diekema, D.J.; Messer, S.A.; Pfaller, M.A.; Klepser, M.E. Comparison of Etest, chequerboard dilution and time–kill studies for the detection of synergy or antagonism between antifungal agents tested against Candida species. J. Antimicrob. Chemother. 2002, 49, 345–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, L.A.; Gullo, F.P.; Sardi, J.C.; Pitangui, N.S.; Costa-Orlandi, C.B.; Sangalli-Leite, F.; Scorzoni, L.; Regasini, L.O.; Petrônio, M.S.; Souza, P.F.; et al. Anti-trichophyton activity of protocatechuates and their synergism with fluconazole. Evid. Based Complement. Altern. Med. 2014, 2014, 957860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strains | R-(+)-β-Citronellol | AB | Control * | ||
---|---|---|---|---|---|
MIC (µg/mL) | MFC (µg/mL) | MIC (µg/mL) | MFC (µg/mL) | ||
C. albicans ATCC 76645 | 64 | 256 | 0.125 | 0.25 | + |
C. albicans LM-52 | 64 | 128 | 0.125 | 0.25 | + |
C. albicans LM-80 | 256 | 512 | 1 | 2 | + |
C. albicans LM-92 | 64 | 64 | 0.125 | 0.125 | + |
C. albicans LM-240 | 64 | 512 | 0.5 | 2 | + |
C. albicans LM-271 | 64 | 128 | 0.125 | 0.5 | + |
C. albicans LM-612 | 256 | 1024 | 8 | 8 | + |
C. albicans LM-852 | 256 | 1024 | 32 | 128 | + |
C. tropicalis ATCC-13803 | 64 | 256 | 0.5 | 0.5 | + |
C. tropicalis LM-01 | 256 | 1024 | 1 | 2 | + |
C. tropicalis LM-04 | 128 | 256 | 0.125 | 0.5 | + |
C. tropicalis LM-06 | 256 | 1024 | 1 | 4 | + |
C. tropicalis LM-12 | 256 | 1024 | 1 | 4 | + |
C. tropicalis LM-18 | 512 | 1024 | 1 | 4 | + |
Strains | S-(−)-β-Citronellol | AB | Control * | ||
---|---|---|---|---|---|
MIC (µg/mL) | MFC (µg/mL) | MIC (µg/mL) | MFC (µg/mL) | ||
C. albicans ATCC-76645 | 32 | 128 | 0.125 | 0.25 | + |
C. albicans LM-52 | 32 | 128 | 0.125 | 0.25 | + |
C. albicans LM-80 | 128 | 1024 | 1 | 2 | + |
C. albicans LM-92 | 64 | 512 | 0.125 | 0.125 | + |
C. albicans LM-240 | 128 | 256 | 0.5 | 2 | + |
C. albicans LM-271 | 64 | 256 | 0.125 | 0.5 | + |
C. albicans LM-612 | 128 | 1024 | 8 | 8 | + |
C. albicans LM-852 | 128 | 256 | 32 | 128 | + |
C. tropicalis ATCC 13803 | 64 | 128 | 0.5 | 0.5 | + |
C. tropicalis LM-01 | 128 | 512 | 1 | 2 | + |
C. tropicalis LM-04 | 64 | 256 | 0.125 | 0.5 | + |
C. tropicalis LM-06 | 256 | 512 | 1 | 4 | + |
C. tropicalis LM-12 | 256 | 512 | 1 | 4 | + |
C. tropicalis LM-18 | 256 | 1024 | 1 | 4 | + |
Strains | R-(+)β-citronellol | S-(−)β-citronellol | ||
---|---|---|---|---|
MIC (µg/mL) | MIC (µg/mL) | |||
Absence of Sorbitol | Presence of Sorbitol | Absence of Sorbitol | Presence of Sorbitol | |
C. albicans ATCC 76645 | 64 | 64 | 32 | 32 |
C. albicans LM-852 | 256 | 256 | 128 | 128 |
C. tropicalis ATCC13803 | 64 | 64 | 64 | 64 |
C. tropicalis LM-04 | 128 | 128 | 64 | 64 |
Strains | R-(+)β-citronellol | S-(−)β-citronellol | ||
---|---|---|---|---|
MIC (µg/mL) | MIC (µg/mL) | |||
Absence of Ergosterol | Presence of Ergosterol | Absence of Ergosterol | Presence of Ergosterol | |
C. albicans ATCC-76645 | 64 | 8192 | 32 | 4096 |
C. albicans LM-852 | 256 | 32768 | 128 | 16384 |
C. tropicalis ATCC-13803 | 64 | 8192 | 64 | 8192 |
C. tropicalis LM-04 | 128 | 16384 | 64 | 4096 |
Strains | FICA | FICB | FICI | Interaction Type | FICA | FICB | FICI | Interaction Type |
---|---|---|---|---|---|---|---|---|
R-(+)-β-Citronellol | AB | S-(−)-β-Citronellol | AB | |||||
C. albicans ATCC 76645 | 0.0625 | 1 | 1.0625 | Indifferent | 0.0625 | 0.5 | 0.5625 | Additivity |
C. albicans LM-612 | 0.0625 | 0.125 | 0.1875 | Synergism | 0.125 | 0.0625 | 0.1875 | Synergism |
C. albicans LM-852 | 0.0625 | 0.125 | 0.1875 | Synergism | 0.0625 | 0.25 | 0.3125 | Synergism |
C. tropicalis ATCC 13803 | 0.0625 | 1 | 1.0625 | Indifferent | 0.0625 | 1 | 1.0625 | Indifferent |
C. tropicalis LM-04 | 0.0625 | 1 | 1.025 | Indifferent | 1 | 1 | 2 | Indifferent |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, D.; Diniz-Neto, H.; Cordeiro, L.; Silva-Neta, M.; Silva, S.; Andrade-Júnior, F.; Leite, M.; Nóbrega, J.; Morais, M.; Souza, J.; et al. (R)-(+)-β-Citronellol and (S)-(−)-β-Citronellol in Combination with Amphotericin B against Candida Spp. Int. J. Mol. Sci. 2020, 21, 1785. https://doi.org/10.3390/ijms21051785
Silva D, Diniz-Neto H, Cordeiro L, Silva-Neta M, Silva S, Andrade-Júnior F, Leite M, Nóbrega J, Morais M, Souza J, et al. (R)-(+)-β-Citronellol and (S)-(−)-β-Citronellol in Combination with Amphotericin B against Candida Spp. International Journal of Molecular Sciences. 2020; 21(5):1785. https://doi.org/10.3390/ijms21051785
Chicago/Turabian StyleSilva, Daniele, Hermes Diniz-Neto, Laísa Cordeiro, Maria Silva-Neta, Shellygton Silva, Francisco Andrade-Júnior, Maria Leite, Jefferson Nóbrega, Maria Morais, Juliana Souza, and et al. 2020. "(R)-(+)-β-Citronellol and (S)-(−)-β-Citronellol in Combination with Amphotericin B against Candida Spp." International Journal of Molecular Sciences 21, no. 5: 1785. https://doi.org/10.3390/ijms21051785
APA StyleSilva, D., Diniz-Neto, H., Cordeiro, L., Silva-Neta, M., Silva, S., Andrade-Júnior, F., Leite, M., Nóbrega, J., Morais, M., Souza, J., Rosa, L., Melo, T., Souza, H., Sousa, A., Rodrigues, G., Oliveira-Filho, A., & Lima, E. (2020). (R)-(+)-β-Citronellol and (S)-(−)-β-Citronellol in Combination with Amphotericin B against Candida Spp. International Journal of Molecular Sciences, 21(5), 1785. https://doi.org/10.3390/ijms21051785