Determination of the Synthetic Cannabinoids JWH-122, JWH-210, UR-144 in Oral Fluid of Consumers by GC-MS and Quantification of Parent Compounds and Metabolites by UHPLC-MS/MS
Abstract
:1. Introduction
2. Results
2.1. GC-MS, UHPLC-HRMS and Validation Parameters
2.2. Pharmacokinetics of JWH-122, JWH-210 and UR-144 and Their Metabolites
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Calibrators and Quality Control Solutions
4.3. Subjects, Study Design and Samples Collection
4.4. Synthetic Cannabinoids and Their Metabolites Extraction and Determination
4.5. GC-MS Instrumentation
4.6. UHPLC-HRMS Instrumentation
4.7. Method Validation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SCs | Synthetic Cannabinoids |
NPS | New psychoactive Substances |
GC-MS | Gas chromatography-mass spectrometry |
UHPLC-HRMS | Ultra-high performance liquid chromatography-high-resolution mass spectrometry |
OF | Oral Fluid |
JWH-122 | (4-methyl-1-naphthalenyl)(1-pentyl-1H-indol-3-yl)-methanone |
JWH-122 N-(-4-OH) | (1-(4-hydroxypentyl)-1H-indol-3-yl)(4-methylnaphthalen-1-yl)-methanone |
JWH-122 N-(-5-OH) | (1-(5-hydroxypentyl)-1H-indol-3-yl)(4-methylnaphthalen-1-yl)-methanone |
JWH-210 | (4-ethyl-1-naphthalenyl)(1-pentyl-1H-indol-3-yl)-methanone |
JWH-210 N-(4-OH) | (4-ethylnaphthalen-1-yl)(1-(4-hydroxypentyl)-1H-indol-3-yl)-methanone |
JWH-210 N-(5-OH) | (4-ethylnaphthalen-1-yl)(1-(5-hydroxypentyl)-1H-indol-3-yl)-methanone |
UR-144 | (1-pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)-methanone |
UR-144 N-(5-OH) | 1-(5-hydroxypentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)-methanone |
R2 | Determination coefficient |
LOD | Limit of detection |
LOQ | Limit of quantification |
QC | Quality control |
CV | Coefficient of variation |
Cmax | Maximum concentration |
Tmax | Time to reach the maximum concentratio |
IS | Internal standard |
References
- European Monitoring Centre for Drugs and Drug Addiction. 2018. Available online: https://www.emcdda.europa.eu/publications/rapid-communications/fentanils-and-synthetic-cannabinoids-ews-update_en (accessed on 20 November 2020).
- Castaneto, M.S.; Gorelick, D.A.; Desrosiers, N.A.; Hartman, R.L.; Pirard, S.; Huestis, M.A. Synthetic cannabinoids: Epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend. 2014, 144, 12–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Monitoring Centre for Drugs and Drug Addiction. 2020. Available online: https://www.emcdda.europa.eu/publications/edr/trends-developments/2020_en (accessed on 20 November 2020).
- Giorgetti, A.; Busardò, F.P.; Tittarelli, R.; Auwärter, V.; Giorgetti, R. Post-Mortem Toxicology: A Systematic Review of Death Cases Involving Synthetic Cannabinoid Receptor Agonists. Front. Psychiatry 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Alves, V.L.; Gonçalves, J.L.; Aguiar, J.; Teixeira, H.M.; Câmara, J.S. The synthetic cannabinoids phenomenon: From structure to toxicological properties. A review. Crit. Rev. Toxicol. 2020, 50, 359–382. [Google Scholar] [CrossRef] [PubMed]
- Moosmann, B.; Angerer, V.; Auwärter, V. Inhomogeneities in herbal mixtures: A serious risk for consumers. Forensic Toxicol. 2015, 33, 54–60. [Google Scholar] [CrossRef]
- Frinculescu, A.; Lyall, C.L.; Ramsey, J.; Miserez, B. Variation in commercial smoking mixtures containing third-generation synthetic cannabinoids. Drug Test. Anal. 2017, 9, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Aldlgan, A.A.; Torrance, H.J. Bioanalytical methods for the determination of synthetic cannabinoids and metabolites in biological specimens. TrAC Trends Anal. Chem. 2016, 80, 444–457. [Google Scholar] [CrossRef] [Green Version]
- Salomone, A.; Vincenti, M.; Gerace, E. Interpretation of NPS results in real hair samples. Toxicol. Anal. Clin. 2017, 29, 4–10. [Google Scholar] [CrossRef]
- Solimini, R.; Busardò, F.P.; Rotolo, M.C.; Ricci, S.; Mastrobattista, L.; Mortali, C.; Graziano, S.; Pellegrini, M.; di Luca, N.M.; Palmi, I. Hepatotoxicity associated to synthetic cannabinoids use. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1–6. [Google Scholar]
- Paul, A.B.M.; Simms, L.; Amini, S.; Paul, A.E. Teens and Spice: A Review of Adolescent Fatalities Associated with Synthetic Cannabinoid Use. J. Forensic Sci. 2018, 63, 1321–1324. [Google Scholar] [CrossRef]
- Karin, M.; Hold, B.S.; de Boer, D.; Zuidema, J.; Maes, A.A. Saliva as an Analytical Tool in Toxicology. Int. J. Drug Test. 1999, 1, 1–36. [Google Scholar]
- Sorribes-Soriano, A.; Verdeguer, J.; Pastor, A.; Armenta, S.; Esteve-Turrillas, F.A. Determination of Third-Generation Synthetic Cannabinoids in Oral Fluids. J. Anal. Toxicol. 2020, bkaa091. [Google Scholar] [CrossRef] [PubMed]
- Anzillotti, L.; Marezza, F.; Calò, L.; Andreoli, R.; Agazzi, S.; Bianchi, F.; Careri, M.; Cecchi, R. Determination of synthetic and natural cannabinoids in oral fluid by solid-phase microextraction coupled to gas chromatography/mass spectrometry: A pilot study. Talanta 2019, 201, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Anzillotti, L.; Marezza, F.; Calò, L.; Banchini, A.; Cecchi, R. A case report positive for synthetic cannabinoids: Are cardiovascular effects related to their protracted use? Leg. Med. 2019, 41, 101637. [Google Scholar] [CrossRef] [PubMed]
- Castaneto, M.S.; Wohlfarth, A.; Desrosiers, N.A.; Hartman, R.L.; Gorelick, D.A.; Huestis, M.A. Synthetic cannabinoids pharmacokinetics and detection methods in biological matrices. Drug Metab. Rev. 2015, 47, 124–174. [Google Scholar] [CrossRef]
- Oiestad, E.L.; Johansen, U.; Christophersen, A.S.; Karinen, R. Screening of synthetic cannabinoids in preserved oral fluid by UPLC-MS/MS. Bioanalysis 2013, 5, 2257–2268. [Google Scholar] [CrossRef]
- Rodrigues, W.C.; Catbagan, P.; Rana, S.; Wang, G.; Moore, C. Detection of synthetic cannabinoids in oral fluid using ELISA and LC-MS-MS. J. Anal. Toxicol. 2013, 37, 526–533. [Google Scholar] [CrossRef]
- Amaratunga, P.; Thomas, C.; Lemberg, B.L.; Lemberg, D. Quantitative measurement of XLR11 and UR-144 in oral fluid by LC-MS-MS. J. Anal. Toxicol. 2014, 38, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Toennes, S.W.; Geraths, A.; Pogoda, W.; Paulke, A.; Wunder, C.; Theunissen, E.L.; Ramaekers, J.G. Pharmacokinetic properties of the synthetic cannabinoid JWH-018 in oral fluid after inhalation. Drug Test. Anal. 2018, 10, 644–650. [Google Scholar] [CrossRef]
- Williams, M.; Martin, J.; Galettis, P. A Validated Method for the Detection of Synthetic Cannabinoids in Oral Fluid. J. Anal. Toxicol. 2019, 43, 10–17. [Google Scholar] [CrossRef]
- Mulet, C.T.; Tarifa, A.; DeCaprio, A.P. Comprehensive analysis of synthetic cannabinoids and metabolites in oral fluid by online solid-phase extraction coupled to liquid chromatography-triple quadrupole-mass spectrometry. Anal. Bioanal. Chem. 2020, 412, 7937–7953. [Google Scholar] [CrossRef]
- Calò, L.; Anzillotti, L.; Maccari, C.; Cecchi, R.; Andreoli, R. Validation of a Bioanalytical Method for the Determination of Synthetic and Natural Cannabinoids (New Psychoactive Substances) in Oral Fluid Samples by Means of HPLC-MS/MS. Front. Chem. 2020, 8, 439. [Google Scholar] [CrossRef] [PubMed]
- Kneisel, S.; Speck, M.; Moosmann, B.; Corneillie, T.M.; Butlin, N.G.; Auwärter, V. LC/ESI-MS/MS method for quantification of 28 synthetic cannabinoids in neat oral fluid and its application to preliminary studies on their detection windows. Anal. Bioanal. Chem. 2013, 405, 4691–4706. [Google Scholar] [CrossRef] [PubMed]
- Coulter, C.; Garnier, M.; Moore, C. Synthetic Cannabinoids in Oral Fluid. J. Anal. Toxicol. 2011, 35, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, M.; Marchei, E.; Papaseit, E.; Farré, M.; Zaami, S. UHPLC-HRMS and GC-MS Screening of a Selection of Synthetic Cannabinoids and Metabolites in Urine of Consumers. Medicina 2020, 56, 408. [Google Scholar] [CrossRef]
- Hermanns-Clausen, M.; Kithinji, J.; Spehl, M.; Angerer, V.; Franz, F.; Eyer, F.; Auwärter, V. Adverse effects after the use of JWH-210—A case series from the EU Spice II plus project: Case series of JWH-210 intoxications. Drug Test. Anal. 2016, 8, 1030–1038. [Google Scholar] [CrossRef]
- Adamowicz, P.; Gieroń, J.; Gil, D.; Lechowicz, W.; Skulska, A.; Tokarczyk, B. The effects of synthetic cannabinoid UR-144 on the human body—A review of 39 cases. Forensic Sci. Int. 2017, 273, e18–e21. [Google Scholar] [CrossRef]
- Silva, J.P.; Araújo, A.M.; de Pinho, P.G.; Carmo, H.; Carvalho, F. Synthetic Cannabinoids JWH-122 and THJ-2201 Disrupt Endocannabinoid-Regulated Mitochondrial Function and Activate Apoptotic Pathways as a Primary Mechanism of In Vitro Nephrotoxicity at In Vivo Relevant Concentrations. Toxicol. Sci. 2019, 169, 422–435. [Google Scholar] [CrossRef]
- La Maida, N.; Di Trana, A.; Giorgetti, R.; Tagliabracci, A.; Busardò, F.P.; Huestis, M.A. A review of synthetic cathinone-related fatalities from 2017 to 2020. Ther. Drug Monit. 2020. Publish Ahead of Print. [Google Scholar] [CrossRef]
- Pichini, S.; Solimini, R.; Berretta, P.; Pacifici, R.; Busardò, F.P. Acute Intoxications And Fatalities From Illicit Fentanyl And Analogues: An Update. Ther. Drug Monit. 2017, 1. [Google Scholar] [CrossRef]
- Zaami, S.; Busardò, F.P.; Pichini, S.; Pacifici, R.; Marinelli, E. The value of toxicological and forensic analyses in the global challenge to health risks caused by new psychoactive substances. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 6008–6010. [Google Scholar] [CrossRef]
- Wille, S.M.R.; Coucke, W.; De Baere, T.; Peters, F.T. Update of Standard Practices for New Method Validation in Forensic Toxicology. Curr. Pharm. Des. 2017, 23, 5442–5454. [Google Scholar] [CrossRef] [PubMed]
- Peters, F.T.; Wissenbach, D.K.; Busardo, F.P.; Marchei, E.; Pichini, S. Method Development in Forensic Toxicology. Curr. Pharm. Des. 2017, 23, 5455–5467. [Google Scholar] [CrossRef] [PubMed]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef] [PubMed]
GC-MS | ||||||
Analytes | Correlation Coefficient (R2) a | LOD (ng/mL) | LOQ (ng/mL) | Mean Recovery (%) b | ||
QC Samples | ||||||
Low | Medium | High | ||||
---|---|---|---|---|---|---|
JWH-122 | 0.997 ± 0.003 | 0.30 | 0.50 | 80.3 | 81.8 | 81.5 |
JWH-210 | 0.996 ± 0.001 | 0.70 | 1.00 | 83.7 | 83.9 | 84.4 |
UR-144 | 0.997 ± 0.003 | 0.70 | 2.30 | 71.5 | 78.0 | 71.1 |
UHPLC-HRMS | ||||||
Analytes | Determination Coefficient (R2) a | LOD (ng/mL) | LOQ (ng/mL) | Mean Recovery (%) b | ||
QC Samples | ||||||
Low | Medium | High | ||||
JWH-122 | 0.997 ± 0.003 | 0.07 | 0.25 | 84.4 | 93.5 | 98.6 |
JWH-122 N-(4-OH) | 0.996 ± 0.001 | 0.03 | 0.10 | 97.4 | 84.5 | 97.8 |
JWH-122 N-(5-OH) | 0.997 ± 0.003 | 0.03 | 0.10 | 85.3 | 87.6 | 88.8 |
JWH-210 | 0.997 ± 0.004 | 0.06 | 0.20 | 92.8 | 85.7 | 97.4 |
JWH-210 N-(4-OH) | 0.996 ± 0.001 | 0.02 | 0.07 | 90.6 | 87.0 | 101.5 |
JWH-210 N-(5-OH) | 0.996 ± 0.004 | 0.03 | 0.10 | 89.9 | 86.8 | 99.8 |
UR-144 | 0.991 ± 0.009 | 0.05 | 0.15 | 71.8 | 75.3 | 70.1 |
UR-144 N-(5-OH) | 0.996 ± 0.003 | 0.03 | 0.10 | 97.9 | 102.1 | 101.2 |
GC-MS | |||||||||
Analytes | Intra-Day Precision (CV%) | Inter-Day Precision (CV%) | Accuracy (% Error) | ||||||
QC Samples a | |||||||||
Low | Medium | High | Low | Medium | High | Low | Medium | High | |
JWH-122 | 4.8 | 7.3 | 9.4 | 9.7 | 8.7 | 6.9 | 8.7 | 8.7 | 7.3 |
JWH-210 | 3.2 | 9.1 | 5.3 | 9.9 | 5.3 | 7.2 | 9.9 | 10.2 | 10.1 |
UR-144 | 5.7 | 9.2 | 8.3 | 10.1 | 12.3 | 11.2 | 9.1 | 8.5 | 9.9 |
UHPLC-HRMS | |||||||||
Analytes | Intra-Day Precision (CV%) | Inter-Day Precision (CV%) | Accuracy (% Error) | ||||||
QC Samples a | |||||||||
Low | Medium | High | Low | Medium | High | Low | Medium | High | |
JWH-122 | 2.2 | 4.2 | 8.6 | 11.4 | 5.7 | 5.9 | 13.7 | 9.9 | 7.7 |
JWH-122 N-(4-OH) | 4.1 | 6.9 | 3.1 | 10.1 | 8.3 | 7.4 | 10.6 | 9.6 | 3.7 |
JWH-122 N-(5-OH) | 7.6 | 15.4 | 12.8 | 12.0 | 15.4 | 11.9 | 8.7 | 7.5 | 13.5 |
JWH-210 | 6.2 | 5.2 | 8.4 | 15.6 | 5.4 | 6.9 | 8.5 | 9.8 | 4.2 |
JWH-210 N-(4-OH) | 4.8 | 7.1 | 6.2 | 12.6 | 7.1 | 5.2 | 11.4 | 8.7 | 10.3 |
JWH-210 N-(5-OH) | 15.1 | 7.7 | 8.5 | 17.4 | 11.2 | 8.4 | 8.0 | 10.3 | 10.4 |
UR-144 | 7.6 | 15.4 | 12.8 | 12.0 | 15.4 | 11.9 | 8.7 | 7.5 | 10.8 |
UR-144 N-(5-OH) | 4.1 | 6.9 | 3.8 | 10.1 | 8.0 | 7.0 | 10.6 | 9.6 | 3.7 |
UHPLC-HRMS | GC-MS | ||||||
---|---|---|---|---|---|---|---|
Analytes | Chemical Formula | RRt (min) | Quantifier (m/z) [M + H]+ | Qualifiers (m/z) | RT (min) | Quantifier (m/z) | Qualifiers (m/z) |
JWH-122 | C25H25NO | 1.03 | 356.2008 | 169.0646 214.1223 | 13.9 | 298 | 214 284 |
JWH-122 N-(4-OH) | C25H25NO2 | 0.84 | 372.1949 | 141.0698 169.0649 | - | - | - |
JWH-122 N-(5-OH) | C25H25NO2 | 0.85 | 372.1951 | 141.0698 169.0647 | - | - | - |
JWH-210 | C26H27NO | 1.06 | 370.2157 | 183.0803 214.1222 | 14.8 | 214 | 144 183 |
JWH-210 N-(4-OH) | C26H27NO2 | 0.88 | 386.2105 | 144.0443 183.0806 | - | - | - |
JWH-210 N-(5-OH) | C26H27NO2 | 0.89 | 386.2106 | 183.0803 230.1172 | - | - | - |
UR-144 | C21H29NO | 0.96 | 312.2325 | 125.0961 244.0963 | 7.1 | 214 | 144 296 |
UR-144 N-(5-OH) | C21H29NO2 | 0.78 | 328.2271 | 125.0961 230.1172 | - | - | - |
JWH-018-d11 | C24H12D11NO | 1.00 | 353.2537 | - | 11.99 | 352 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Maida, N.; Pellegrini, M.; Papaseit, E.; Pérez-Mañá, C.; Poyatos, L.; Ventura, M.; Galindo, L.; Busardò, F.P.; Pichini, S.; Farré, M.; et al. Determination of the Synthetic Cannabinoids JWH-122, JWH-210, UR-144 in Oral Fluid of Consumers by GC-MS and Quantification of Parent Compounds and Metabolites by UHPLC-MS/MS. Int. J. Mol. Sci. 2020, 21, 9414. https://doi.org/10.3390/ijms21249414
La Maida N, Pellegrini M, Papaseit E, Pérez-Mañá C, Poyatos L, Ventura M, Galindo L, Busardò FP, Pichini S, Farré M, et al. Determination of the Synthetic Cannabinoids JWH-122, JWH-210, UR-144 in Oral Fluid of Consumers by GC-MS and Quantification of Parent Compounds and Metabolites by UHPLC-MS/MS. International Journal of Molecular Sciences. 2020; 21(24):9414. https://doi.org/10.3390/ijms21249414
Chicago/Turabian StyleLa Maida, Nunzia, Manuela Pellegrini, Esther Papaseit, Clara Pérez-Mañá, Lourdes Poyatos, Mireia Ventura, Liliana Galindo, Francesco Paolo Busardò, Simona Pichini, Magí Farré, and et al. 2020. "Determination of the Synthetic Cannabinoids JWH-122, JWH-210, UR-144 in Oral Fluid of Consumers by GC-MS and Quantification of Parent Compounds and Metabolites by UHPLC-MS/MS" International Journal of Molecular Sciences 21, no. 24: 9414. https://doi.org/10.3390/ijms21249414
APA StyleLa Maida, N., Pellegrini, M., Papaseit, E., Pérez-Mañá, C., Poyatos, L., Ventura, M., Galindo, L., Busardò, F. P., Pichini, S., Farré, M., & Marchei, E. (2020). Determination of the Synthetic Cannabinoids JWH-122, JWH-210, UR-144 in Oral Fluid of Consumers by GC-MS and Quantification of Parent Compounds and Metabolites by UHPLC-MS/MS. International Journal of Molecular Sciences, 21(24), 9414. https://doi.org/10.3390/ijms21249414