The FKBP4 Gene, Encoding a Regulator of the Androgen Receptor Signaling Pathway, Is a Novel Candidate Gene for Androgen Insensitivity Syndrome
Abstract
:1. Introduction
2. Results
2.1. PAIS Case Report
2.2. Identification of the FKBP4:c.956T>C (p.Leu319Pro) Mutation in the Patient
3. Discussion
4. Materials and Methods
4.1. Patient Description
4.2. Hormonal Analysis
4.3. DNA Isolation and Whole Exome Sequencing (WES)
4.4. Sanger Sequencing
4.5. Bioinformatics
4.6. Accession Numbers
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AR | androgen receptor |
AIS | androgen insensitivity syndrome |
PAIS | partial androgen insensitivity syndrome |
CAIS | complete androgen insensitivity syndrome |
DSD | disorder of sexual development |
BMI | body mass index |
AMH | anti-Müllerian hormone |
LH | luteinizing hormone |
FSH | follicle-stimulating hormone |
TSH | thyroid-stimulating hormone |
PRL | prolactin |
DHEAS | dehydroepiandrosterone sulfate |
hCG | human chorionic gonadotropin |
WES | whole exome sequencing |
TPR | tetratricopeptide repeat |
PPIase | prolyl isomerase |
SNP | single nucleotide polymorphism |
FKBP4 | peptidyl-prolyl cis-trans isomerase FKBP4 |
AKR1C4 | aldo-keto reductase family 1 member C4 |
CYP17A1 | Steroid 17-alpha-hydroxylase/17,20 lyase |
FREM2 | FRAS1-related extracellular matrix protein 2 |
IL17RD | interleukin-17 receptor D |
NKD2 | rotein naked cuticle homolog 2 |
gnomAD | The Genome Aggregation Database |
1000G | The 1000 Genomes Project |
ExAC | The Exome Aggregation Consortium |
SIFT | sorting intolerant from tolerant |
SNAP | screening for non-acceptable polymorphisms |
References
- Hughes, I.A.; Davies, J.D.; Bunch, T.I.; Pasterski, V.; Mastroyannopoulou, K.; MacDougall, J. Androgen insensitivity syndrome. Lancet 2012, 380, 1419–1428. [Google Scholar] [CrossRef][Green Version]
- Murashima, A.; Kishigami, S.; Thomson, A.; Yamada, G. Androgens and mammalian male reproductive tract development. Biochim. Biophys. Acta 2015, 1849, 163–170. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shukla, G.C.; Plaga, A.R.; Shankar, E.; Gupta, S. Androgen receptor-related diseases: What do we know? Andrology 2016, 4, 366–381. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Davies, T.H.; Sanchez, E.R. Fkbp52. Int. J. Biochem. Cell Biol. 2005, 37, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Cheung-Flynn, J.; Prapapanich, V.; Cox, M.B.; Riggs, D.L.; Suarez-Quian, C.; Smith, D.F. Physiological role for the cochaperone FKBP52 in androgen receptor signaling. Mol. Endocrinol. 2005, 19, 1654–1666. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nair, S.C.; Toran, E.J.; Rimerman, R.A.; Hjermstad, S.; Smithgall, T.E.; Smith, D.F. A pathway of multi-chaperone interactions common to diverse regulatory proteins: Estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor. Cell Stress Chaperones 1996, 1, 237–250. [Google Scholar] [CrossRef][Green Version]
- De Leon, J.T.; Iwai, A.; Feau, C.; Garcia, Y.; Balsiger, H.A.; Storer, C.L.; Suro, R.M.; Garza, K.M.; Lee, S.; Kim, Y.S.; et al. Targeting the regulation of androgen receptor signaling by the heat shock protein 90 cochaperone FKBP52 in prostate cancer cells. Proc. Natl. Acad. Sci. USA 2011, 108, 11878–11883. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Guy, N.C.; Garcia, Y.A.; Cox, M.B. Therapeutic Targeting of the FKBP52 Co-Chaperone in Steroid Hormone Receptor-Regulated Physiology and Disease. Curr. Mol. Pharm. 2015, 9, 109–125. [Google Scholar] [CrossRef]
- Riggs, D.L.; Cox, M.B.; Tardif, H.L.; Hessling, M.; Buchner, J.; Smith, D.F. Noncatalytic role of the FKBP52 peptidyl-prolyl isomerase domain in the regulation of steroid hormone signaling. Mol. Cell. Biol. 2007, 27, 8658–8669. [Google Scholar] [CrossRef][Green Version]
- Riggs, D.L.; Roberts, P.J.; Chirillo, S.C.; Cheung-Flynn, J.; Prapapanich, V.; Ratajczak, T.; Gaber, R.; Picard, D.; Smith, D.F. The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J. 2003, 22, 1158–1167. [Google Scholar] [CrossRef]
- Gottlieb, B.; Beitel, L.K.; Nadarajah, A.; Paliouras, M.; Trifiro, M. The androgen receptor gene mutations database: 2012 update. Hum. Mutat. 2012, 33, 887–894. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Bashamboo, A.; Lucas-Herald, A.; McElreavey, K. Understanding the genetic aetiology in patients with XY DSD. Br. Med. Bull. 2013, 106, 67–89. [Google Scholar] [CrossRef] [PubMed]
- Hornig, N.C.; Ukat, M.; Schweikert, H.U.; Hiort, O.; Werner, R.; Drop, S.L.; Cools, M.; Hughes, I.A.; Audi, L.; Ahmed, S.F.; et al. Identification of an AR Mutation-Negative Class of Androgen Insensitivity by Determining Endogenous AR Activity. J. Clin. Endocrinol. Metab. 2016, 101, 4468–4477. [Google Scholar] [CrossRef][Green Version]
- Ogata, T.; Sano, S.; Nagata, E.; Kato, F.; Fukami, M. MAMLD1 and 46,XY disorders of sex development. Semin. Reprod. Med. 2012, 30, 410–416. [Google Scholar] [CrossRef]
- Tuhan, H.; Anik, A.; Catli, G.; Onay, H.; Aykut, A.; Abaci, A.; Bober, E. A novel mutation in steroidogenic factor (SF1/NR5A1) gene in a patient with 46 XY DSD without adrenal insufficiency. Andrologia 2017, 49. [Google Scholar] [CrossRef][Green Version]
- Adachi, M.; Takayanagi, R.; Tomura, A.; Imasaki, K.; Kato, S.; Goto, K.; Yanase, T.; Ikuyama, S.; Nawata, H. Androgen-insensitivity syndrome as a possible coactivator disease. N. Engl. J. Med. 2000, 343, 856–862. [Google Scholar] [CrossRef]
- Gulia, C.; Baldassarra, S.; Zangari, A.; Briganti, V.; Gigli, S.; Gaffi, M.; Signore, F.; Vallone, C.; Nucciotti, R.; Costantini, F.M.; et al. Androgen insensitivity syndrome. Eur. Rev. Med. Pharm. Sci. 2018, 22, 3873–3887. [Google Scholar] [CrossRef]
- Babler, E.K. Clinical Handbook of Pediatric Endocrinology, 2nd ed.; Taylor and Francis India: New Delhi, India, 2014. [Google Scholar]
- Biason-Lauber, A.; Leiberman, E.; Zachmann, M. A single amino acid substitution in the putative redox partner-binding site of P450c17 as cause of isolated 17,20-lyase deficiency. J. Clin. Endocrinol. Metab. 1997, 82, 3807–3812. [Google Scholar] [CrossRef][Green Version]
- Geller, D.H.; Auchus, R.J.; Mendonca, B.B.; Miller, W.L. The genetic and functional basis of isolated 17,20-lyase deficiency. Nat. Genet. 1997, 17, 201–205. [Google Scholar] [CrossRef]
- Van Haelst, M.M.; Maiburg, M.; Baujat, G.; Jadeja, S.; Monti, E.; Bland, E.; Pearce, K.; Fraser Syndrome Collaboration, G.; Hennekam, R.C.; Scambler, P.J. Molecular study of 33 families with Fraser syndrome new data and mutation review. Am. J. Med. Genet. A 2008, 146, 2252–2257. [Google Scholar] [CrossRef]
- Fluck, C.E.; Meyer-Boni, M.; Pandey, A.V.; Kempna, P.; Miller, W.L.; Schoenle, E.J.; Biason-Lauber, A. Why boys will be boys: Two pathways of fetal testicular androgen biosynthesis are needed for male sexual differentiation. Am. J. Hum. Genet. 2011, 89, 201–218. [Google Scholar] [CrossRef][Green Version]
- Miraoui, H.; Dwyer, A.A.; Sykiotis, G.P.; Plummer, L.; Chung, W.; Feng, B.; Beenken, A.; Clarke, J.; Pers, T.H.; Dworzynski, P.; et al. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism. Am. J. Hum. Genet. 2013, 92, 725–743. [Google Scholar] [CrossRef][Green Version]
- Yong, W.; Yang, Z.; Periyasamy, S.; Chen, H.; Yucel, S.; Li, W.; Lin, L.Y.; Wolf, I.M.; Cohn, M.J.; Baskin, L.S.; et al. Essential role for Co-chaperone Fkbp52 but not Fkbp51 in androgen receptor-mediated signaling and physiology. J. Biol. Chem. 2007, 282, 5026–5036. [Google Scholar] [CrossRef][Green Version]
- Beleza-Meireles, A.; Barbaro, M.; Wedell, A.; Tohonen, V.; Nordenskjold, A. Studies of a co-chaperone of the androgen receptor, FKBP52, as candidate for hypospadias. Reprod. Biol. Endocrinol. 2007, 5, 8. [Google Scholar] [CrossRef][Green Version]
- Shimamoto, S.; Kubota, Y.; Tokumitsu, H.; Kobayashi, R. S100 proteins regulate the interaction of Hsp90 with Cyclophilin 40 and FKBP52 through their tetratricopeptide repeats. FEBS Lett. 2010, 584, 1119–1125. [Google Scholar] [CrossRef][Green Version]
- Portnoi, M.F.; Dumargne, M.C.; Rojo, S.; Witchel, S.F.; Duncan, A.J.; Eozenou, C.; Bignon-Topalovic, J.; Yatsenko, S.A.; Rajkovic, A.; Reyes-Mugica, M.; et al. Mutations involving the SRY-related gene SOX8 are associated with a spectrum of human reproductive anomalies. Hum. Mol. Genet. 2018, 27, 1228–1240. [Google Scholar] [CrossRef][Green Version]
- O’Bryan, M.K.; Takada, S.; Kennedy, C.L.; Scott, G.; Harada, S.; Ray, M.K.; Dai, Q.; Wilhelm, D.; De Kretser, D.M.; Eddy, E.M.; et al. Sox8 is a critical regulator of adult Sertoli cell function and male fertility. Dev. Biol. 2008, 316, 359–370. [Google Scholar] [CrossRef][Green Version]
- Hughes, I.A.; Deeb, A. Androgen resistance. Best Pr. Res. Clin. Endocrinol. Metab. 2006, 20, 577–598. [Google Scholar] [CrossRef] [PubMed]
- Callier, P.; Calvel, P.; Matevossian, A.; Makrythanasis, P.; Bernard, P.; Kurosaka, H.; Vannier, A.; Thauvin-Robinet, C.; Borel, C.; Mazaud-Guittot, S.; et al. Loss of function mutation in the palmitoyl-transferase HHAT leads to syndromic 46,XY disorder of sex development by impeding Hedgehog protein palmitoylation and signaling. PLoS Genet. 2014, 10, e1004340. [Google Scholar] [CrossRef]
- Santoni, F.A.; Makrythanasis, P.; Nikolaev, S.; Guipponi, M.; Robyr, D.; Bottani, A.; Antonarakis, S.E. Simultaneous identification and prioritization of variants in familial, de novo, and somatic genetic disorders with VariantMaster. Genom. Res. 2014, 24, 349–355. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alfoldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Genomes Project, C.; Abecasis, G.R.; Auton, A.; Brooks, L.D.; DePristo, M.A.; Durbin, R.M.; Handsaker, R.E.; Kang, H.M.; Marth, G.T.; McVean, G.A. An integrated map of genetic variation from 1,092 human genomes. Nature 2012, 491, 56–65. [Google Scholar] [CrossRef][Green Version]
- Karczewski, K.J.; Weisburd, B.; Thomas, B.; Solomonson, M.; Ruderfer, D.M.; Kavanagh, D.; Hamamsy, T.; Lek, M.; Samocha, K.E.; Cummings, B.B.; et al. The ExAC browser: Displaying reference data information from over 60 000 exomes. Nucleic Acids Res. 2017, 45, D840–D845. [Google Scholar] [CrossRef][Green Version]
- Capriotti, E.; Calabrese, R.; Fariselli, P.; Martelli, P.L.; Altman, R.B.; Casadio, R. WS-SNPs&GO: A web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genom. 2013, 14, S6. [Google Scholar] [CrossRef][Green Version]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef][Green Version]
Hormone, Unit | Age 10 Years | Age 10 Years Reference Values [18] | Age 13 Years | Age 13 Years Reference Values [18] | |
---|---|---|---|---|---|
Total testosterone, ng/dL | Baseline after hCG | 2.5 | <3–10 | 120 | 18–150 |
20.0 | 970 | ||||
AMH, ng/mL | 167.4 | 7.4–243 | |||
Estradiol, pg/mL | 0.3 | <1.0 | |||
LH, mIU/mL | 0.2 | 0.02–0.3 | |||
FSH, mIU/mL | 0.6 | 0.26–3.0 | |||
TSH, mIU/L | 3.9 | 0.6–6.3 | |||
PRL, ng/mL | 12.3 | 3–18 | |||
DHEAS, µmol/L | 24.8 | 13–115 | |||
Cortisol, nmol/L | 289.5 | 140–550 | |||
Progesterone, nmol/L | 2.9 | ≤3.8 |
Gene/Protein | Associated Recessive Diseases | Related Pathway | SNP ID | Frequency (gnomAD) | DNA Change | Protein Change | Mother | Father | Meta-SNP |
---|---|---|---|---|---|---|---|---|---|
FKBP4/ Peptidyl-prolyl cis-trans isomerase FKBP4 | ----- | AR signaling | - | - | c.956T>C | p.Leu319Pro | Het | - | Disease |
AKR1C4/ aldo-keto reductase family 1 member C4 | AKR1C4 may act as a modifier of 46,XY disorder of sex development due to testicular 17,20-lyase deficiency [22] | Alternative pathways of testicular androgen biosynthesis | rs533399756 | 0.00007946 | c.704T>C | p.Leu235Pro | - | Het | Disease |
CYP17A1/ Steroid 17-alpha-hydroxylase/17,20 lyase | 46,XY disorder of sex development due to isolated 17,20-lyase deficiency [19,20] | Steroid hormone biosynthesis | rs373661758 | 0.00001443 | c.910G>A | p.Val304Met | - | Het | Disease |
FREM2/ FRAS1-related extracellular matrix protein 2 | Fraser Syndrome 2 (characterized by ambiguous genitalia in 46,XY individuals) [21] | Extracellular matrix-receptor interaction | rs200316547 | 0.00022000 | c.996G>T | p.Gln332His | Het | - | Disease |
rs142821775 | 0.00002850 | c.6445A>G | p.Met2149Val | - | Het | Neutral | |||
IL17RD/ Interleukin-17 receptor D | Hypogonadotropic hypogonadism 18 [23] | RET signaling | - | - | c.1164G>C | p.Glu388Asp | Het | Neutral | |
NKD2/ Protein naked cuticle homolog 2 | ----- | Inhibitor of WNT signaling | - | - | c.809G>A | p.Arg270Lys | - | Het | Neutral |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilaslan, E.; Markosyan, R.; Sproll, P.; Stevenson, B.J.; Sajek, M.; Sajek, M.P.; Hayrapetyan, H.; Sarkisian, T.; Livshits, L.; Nef, S.; Jaruzelska, J.; Kusz-Zamelczyk, K. The FKBP4 Gene, Encoding a Regulator of the Androgen Receptor Signaling Pathway, Is a Novel Candidate Gene for Androgen Insensitivity Syndrome. Int. J. Mol. Sci. 2020, 21, 8403. https://doi.org/10.3390/ijms21218403
Ilaslan E, Markosyan R, Sproll P, Stevenson BJ, Sajek M, Sajek MP, Hayrapetyan H, Sarkisian T, Livshits L, Nef S, Jaruzelska J, Kusz-Zamelczyk K. The FKBP4 Gene, Encoding a Regulator of the Androgen Receptor Signaling Pathway, Is a Novel Candidate Gene for Androgen Insensitivity Syndrome. International Journal of Molecular Sciences. 2020; 21(21):8403. https://doi.org/10.3390/ijms21218403
Chicago/Turabian StyleIlaslan, Erkut, Renata Markosyan, Patrick Sproll, Brian J. Stevenson, Malgorzata Sajek, Marcin P. Sajek, Hasmik Hayrapetyan, Tamara Sarkisian, Ludmila Livshits, Serge Nef, Jadwiga Jaruzelska, and Kamila Kusz-Zamelczyk. 2020. "The FKBP4 Gene, Encoding a Regulator of the Androgen Receptor Signaling Pathway, Is a Novel Candidate Gene for Androgen Insensitivity Syndrome" International Journal of Molecular Sciences 21, no. 21: 8403. https://doi.org/10.3390/ijms21218403