Generation of Glioblastoma Patient-Derived Intracranial Xenografts for Preclinical Studies
Abstract
1. Introduction
2. Results
Primary GBM and PDX Derivatives Morphology After In Vivo Passaging
3. Materials and Methods
3.1. Tumor Collection
3.2. Xenografting
3.3. Immunohistochemistry and H&E Staining
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ostrom, Q.; Gittleman, H.; Fulop, J.; Liu, M.; Blanda, R.; Kromer, C.; Wolinksy, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol. 2015, 17, iv1–iv62. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Wu, Q.; Mclendon, R.E.; Hao, Y.; Shi, Q.; Hjelmeland, A.B.; Dewhirst, M.W.; Bigner, D.D.; Rich, J.N. Glioma Stem Cells Promote radioresistance by Preferential Activation of the DNA Damage Response. Nature 2006, 444, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, Y.; Yu, T.; Mckay, R.M.; Burns, D.K.; Kernie, S.G.; Parada, L.F. A Restricted Cell Population Propagates Glioblastoma Growth after Chemotherapy. Nature 2012, 488, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.J.; Hseih, J.K.; Manjila, S.; Lathia, J.; Sloan, A.E. The role of cancer stem cells in Glioblastoma. Neurosurg. Focus 2014, 37, E6. [Google Scholar] [CrossRef] [PubMed]
- Erasimus, H.; Gobin, M.; Niclou, S.; Van Dyck, E. DNA Repair Mechanisms and their Clinical Impact in Glioblastoma. Mutat. Res. 2016, 769, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Hawkins, C.; Clarke, I.D.; Squire, J.A.; Bayani, J.; Hide, T.; Henkelman, R.M.; Cusimano, M.D.; Dirks, P.B. Identification of human brain tumor initiating cells. Nature 2004, 18, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Hemmati, H.D.; Nakano, I.; Lazareff, J.A.; Mastermansmith, M.; Geschwind, D.H.; Bronnerfraser, M.; Kornblum, H.I. Cancerous stem cells arise from pediatric brain tumors. Proc. Natl. Acad. Sci. USA 2003, 100, 15178–15183. [Google Scholar] [CrossRef] [PubMed]
- Ignatova, T.N.; Kukekov, V.G.; Laywell, E.D.; Suslov, O.N.; Vrionis, F.D.; Steindler, D.A. Human Cortical Glial Tumors Contain Neural Stem-Like Cells Expressing Astroglial and Neuronal Markers in vitro. Glia 2002, 39, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Kim, J.L.Y.; Wu, A.; Wallace, L.C.; Prager, B.C.; Sanvoranart, T.; Gimple, R.C.; Gimple, R.C.; Wang, X.; Mack, S.C.; et al. Targeting glioma stem cells through combined BMI1 and EXH2 inhibition. Nat. Med. 2017, 23, 1352–1361. [Google Scholar] [CrossRef] [PubMed]
- Vargo-Gogola, T.; Rosen, J.M. Modelling Breast Cancer: One Size does not Fit All. Nat. Rev. Cancer 2007, 7, 659–672. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kotliarova, S.; Kotliarov, Y.; Li, A.; Su, Q.; Donin, N.M.; Pastorino, S.; Purow, B.W.; Christopher, N.; Zhang, W.; et al. Tumor Stem Cells Derived from Glioblastomas cultured in bFGF and EGF more Closely Mirror the Phenotype and Genotype of Primary Tumors than do Serum-Cultured Cell Lines. Cancer Cell 2006, 9, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Elahi, A.; Denley, R.C.; Rao, P.H.; Brennan, M.F.; Jhanwar, S.C. Molecular Characterization of Permanent Cell Lines from Primary, Metastatic and Recurrent Malignant Peripheral Nerve Sheath Tumors (MPNST) with Underlying Neurofibromatosis-1. Anticancer Res. 2009, 29, 1255–1262. [Google Scholar]
- Gazdar, A.F.; Girard, L.; Lockwood, W.W.; Lam, W.L.; Minna, J.D. Lung Cancer Cell Lines as Tools for Biomedical Discovery and Research. J. Natl. Cancer Inst. 2010, 102, 1310–1321. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Fillmore, C.M.; Jiang, G.; Shapira, S.; Tao, K.; Kuperwasser, C.; Lander, E.S. Stochastic State Transitions Give Rise to Phenotypic equilibrium in Populations of Cancer Cells. Cell 2011, 146, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, J.W.; Caldas, C.; Bruna, A. Maintaining Tumor Heterogeneity in Patient-Derived Tumor Xenografts. Cancer Res. 2015, 75, 2963–2968. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Chen, S.; Guo, Y.; Li, W.; Qi, X.; Yang, H.; Xiao, S.; Fang, G.; Hu, J.; Wen, C.; et al. Establishment and Evaluation of Four Different Types of Patient-Derived Xenograft Models. Cancer Cell Int. 2017, 17, 122. [Google Scholar] [CrossRef] [PubMed]
- William, D.; Mullins, C.S.; Schneider, B.; Orthmann, A.; Lamp, N.; Krohn, M.; Hoffmann, A.; Classen, C.; Linnebacher, M. Optimized creation of glioblastoma patient derived xenografts for the use in preclinical studies. J. Transl. Med. 2017, 15, 27. [Google Scholar] [CrossRef] [PubMed]
- Piaskowski, S.; Bienkowski, M.; Stoczynska-Fidelus, E.; Strawski, R.; Sieruta, M.; Szybka, M.; Papierz, W.; Wolanczyk, M.; Jaskolski, D.J.; Liberski, P.P.; et al. Glioma cells showing IDH1 mutation cannot be propagated in standard culture conditions. Br. J. Cancer 2011, 104, 968. [Google Scholar] [CrossRef] [PubMed]
- Sternberger, L.A.; Sternberger, N.H. The Unlabeled Antibody Method: Comparison of Peroxidase-Anti-Peroxidase with Avidin-Biotin complex by a New Method of Quantification. J. Histochem. Cytochem. 1986, 34, 599–605. [Google Scholar] [CrossRef] [PubMed]
Case | Patient Age at Diagnosis, Gender | Molecular Status of Patient Tumor (If Known) | Survival: Original PDX (in Days Post Inoculation) | Survival 2nd Generation PDX (in Days Post Inoculation) | Survival 3rd Generation PDX (in Days Post Inoculation) | Percent Decrease in Time to Moribund (from Original to 3rd Passage) |
---|---|---|---|---|---|---|
1711 | 75, male | IDH1wt | 163 | 107 | 118 | 28% |
1768 | 51, male | IDH1wt | 131 | 130 | 102 | 22% |
1783 | 75, male | N/A | 138 | 93 | 72 | 48% |
1786 | 67, male | IDH1wt | 93 | 60 | 53 | 43% |
1892 | 63, female | N/A | 126 | 143 | 109 | 13% |
1914 | N/A | 112 | 158 | 100 | 11% | |
1918 | 63, female | IDH1wt | 90 | 152 | 50 | 44% |
1919 | 53, male | IDH1wt, ATRXwt | 85 | 119 | 135 | - |
1949 | N/A | IDH1wt | 149 | 122 | 109 | 27% |
1951 | N/A | N/A | 148 | 86 | 102 | 31% |
1953 | N/A | IDH1wt | 166 | 142 | 109 | 34% |
1959 | N/A | N/A | 94 | 49 | 34 | 64% |
1962 | N/A | IDH1wt | 154 | 51 | 86 | 44% |
1963 | N/A | N/A | 154 | 89 | 109 | 30% |
1997 | N/A | N/A | 90 | 107 | 96 | - |
2014 | N/A | N/A | 88 | 115 | 112 | - |
2025 | N/A | N/A | 156 | 120 | 85 | 45% |
2033 | N/A | N/A | 151 | 131 | 106 | 30% |
2070 | N/A | IDH1wt | 148 | 125 | 92 | 38% |
2072 | N/A | IDH1wt | 167 | 113 | 63 | 62% |
2078 | N/A | IDH1wt | 161 | 113 | 108 | 33% |
2091 | N/A | IDH1wt | 166 | 110 | 95 | 43% |
2095 | N/A | N/A | 154 | 79 | 89 | 42% |
2096 | N/A | N/A | 135 | 16 | 106 | 22% |
2114 | N/A | IDH1wt | 112 | 110 | 100 | - |
2142 | 36, female | IDH1mut, ATRXmut | 154 | 74 | 95 | 38% |
2144 | N/A | IDH1wt, ATRXwt | 139 | 113 | 92 | 34% |
2152 | 79, male | IDH1wt, ATRXwt | 152 | 118 | 82 | 46% |
2188 | N/A | IDH1wt | 115 | 90 | 92 | 20% |
2187 | 35, male | N/A | 65 | 97 | 82 | - |
2214 | N/A | IDH1wt, ATRXwt | 83 | 97 | 82 | - |
2216 | 71, male | IDH1wt, ATRXwt | 155 | 102 | 36 | 77% |
2273 | 59, female | IDH1wt, ATRXwt | 42 | 93 | 78 | - |
2284 | 64, female | IDH1wt, ATRXwt | 40 | 17 | 99 | - |
2302 | 60, male | IDH1wt | 127 | 71 | 85 | 33% |
2381 | 67, male | IDH1wt, ATRXwt | 92 | 101 | 71 | 23% |
2409 | 57, male | IDH1wt, ATRXwt | 78 | 72 | 71 | 9% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerstetter-Fogle, A.E.; Harris, P.L.R.; Brady-Kalnay, S.M.; Sloan, A.E. Generation of Glioblastoma Patient-Derived Intracranial Xenografts for Preclinical Studies. Int. J. Mol. Sci. 2020, 21, 5113. https://doi.org/10.3390/ijms21145113
Kerstetter-Fogle AE, Harris PLR, Brady-Kalnay SM, Sloan AE. Generation of Glioblastoma Patient-Derived Intracranial Xenografts for Preclinical Studies. International Journal of Molecular Sciences. 2020; 21(14):5113. https://doi.org/10.3390/ijms21145113
Chicago/Turabian StyleKerstetter-Fogle, Amber E., Peggy L. R. Harris, Susann M. Brady-Kalnay, and Andrew E. Sloan. 2020. "Generation of Glioblastoma Patient-Derived Intracranial Xenografts for Preclinical Studies" International Journal of Molecular Sciences 21, no. 14: 5113. https://doi.org/10.3390/ijms21145113
APA StyleKerstetter-Fogle, A. E., Harris, P. L. R., Brady-Kalnay, S. M., & Sloan, A. E. (2020). Generation of Glioblastoma Patient-Derived Intracranial Xenografts for Preclinical Studies. International Journal of Molecular Sciences, 21(14), 5113. https://doi.org/10.3390/ijms21145113