Metabolomic Insight into Polycystic Ovary Syndrome—An Overview
Abstract
:1. Introduction
1.1. Polycystic Ovary Syndrome
1.2. Metabolomic Approach in Studying the Pathogenesis of Polycystic Ovary Syndrome
1.3. Matrices for Metabolomic Studies
2. Metabolic Alterations in PCOS
2.1. Metabolomic Profile Plasma and Serum Samples
2.2. Metabolomic Profile of the Urine Samples
2.3. Metabolomic Profile of Follicular Fluid Samples
3. Discussion
Limitations of Metabolomic Studies
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HA | Hyperandrogenism |
AnO | Anovulatory oligomenorrhea |
TV-US | Transvaginal ultrasound |
PCOS | Polycystic ovary syndrome |
PCOM | Polycystic ovary morphology |
T2DM | Type 2 diabetes mellitus |
AH | Arterial hypertension |
MetS | Metabolic syndrome |
NAFLD | Non-alcoholic fatty liver disease |
CVD | Cardiovascular disease |
IR | Insulin resistance |
HMDB | Human Metabolome Database |
MS | Mass spectrometry |
GC-MS | Gas chromatography–mass spectrometry |
LC-MS | Liquid chromatography–mass spectrometry |
NMR | Nuclear magnetic resonance |
FF | Follicular fluid |
PPARγ | Peroxisome proliferator-activated receptor γ |
PUFAs | Poly-unsaturated fatty acids |
IGF-BP1 | Insulin-like growth factor binding protein 1 |
References
- Apridonidze, T.; Essah, P.A.; Iuorno, M.J.; Nestler, J.E. Prevalence and Characteristics of the Metabolic Syndrome in Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2005, 90, 1929–1935. [Google Scholar] [CrossRef] [Green Version]
- Crespo, R.; Bachega, T.; Mendonça, B.; Gomes, L. An update of genetic basis of PCOS pathogenesis. Arch. Endocrinol. Metab. 2018, 62, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Rosenfiel, R.L. The Diagnosis of Polycystic Ovary Syndrome in Adolescents. Pediatr. Vol. 2015, 136, 1154–1165. [Google Scholar] [CrossRef] [Green Version]
- Amiri, F.N.; Tehrani, F.R.; Simbar, M.; Montazeri, A.; Ali, R.; Thamtan, M. The Experience of Women Affected by Polycystic Ovary Syndrome: A Qualitative Study From Iran. Int. J. Endocrinol. Metab. 2014, 12, e13612. [Google Scholar]
- Rocha, A.L.L.; Faria, L.C.; Guimarães, T.C.M.; Moreira, G.V.; Cândido, A.L.; Couto, C.A.; Reis, F.M. Non-alcoholic fatty liver disease in women with polycystic ovary syndrome: Systematic review and meta-analysis. J. Endocrinol. Investig. 2017, 40, 1279–1288. [Google Scholar] [CrossRef]
- Carmina, E.; Bucchieri, S.; Esposito, A.; Del Puente, A.; Mansueto, P.; Orio, F.; Fede, G.D.; Rini, G. Abdominal Fat Quantity and Distribution in Women with Polycystic Ovary Syndrome and Extent of Its Relation to Insulin Resistance. J. Clin. Endocrinol. Metab. 2007, 92, 2500–2505. [Google Scholar] [CrossRef] [Green Version]
- Shukla, P.; Mukherjee, S. Mitochondrial dysfunction: An emerging link in the pathophysiology of polycystic ovary syndrome. Mitochondrion 2020, 52, 24–39. [Google Scholar] [CrossRef]
- Liu, Q.; Xie, Y.-J.; Qu, L.; Zhang, M.; Mo, Z. Dyslipidemia involvement in the development of polycystic ovary syndrome. Taiwan J. Obstet. Gynecol. 2019, 58, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, G.; Kandarako, E.; Papalou, O.; Vryonidou, A.; Diamanti-Kandarakis, E. Is cardiovascular risk in women with PCOS a real risk? Current insights. Minerva Endocrinol. 2017, 42, 340–355. [Google Scholar]
- Azziz, R.; Carmina, E.; Chen, Z.; Dunaif, A.; Laven, J.S.E.; Legro, R.S.; Lizneva, D.; Natterson-Horowtiz, B.; Teede, H.J.; Yildiz, B.O. Polycystic ovary syndrome. Nat. Rev. Dis. Prim. 2016, 2, 16057. [Google Scholar] [CrossRef]
- Murri, M.; Insenser, M.; Escobar-Morreale, H.F. Metabolomics in polycystic ovary syndrome. Clin. Chim. Acta 2014, 429, 181–188. [Google Scholar] [CrossRef]
- Yan, D.-K.; Liu, R.-H.; Jin, H.-Z.; Liu, X.-R.; Ye, J.; Shan, L.; Zhang, W.-D. “Omics” in pharmaceutical research: Overview, applications, challenges, and future perspectives. Chin. J. Nat. Med. 2015, 13, 3–21. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Piperi, C.; Spina, J.; Argyrakopoulou, G.; Papanastasiou, L.; Bergiele, A.; Panidis, D. Polycystic Ovary Syndrome: The influence of environmental and genetic factors. Hormones 2006, 5, 17–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindon, J.C.; Holmes, E.; Bollard, M.E.; Stanly, E.G.; Nicholson, J.K. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers 2004, 9, 1–31. [Google Scholar] [CrossRef]
- Luque-Ramírez, M.; Millán, J.L.S.; Escobar-Morreale, H.F. Genomic variants in polycystic ovary syndrome. Clin. Chim. Acta 2006, 366, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Atiomo, W.; Khalid, S.; Parameshweran, S.; Houda, M.; Layfield, R. Proteomic biomarkers for the diagnosis and risk stratification of polycystic ovary syndrome: A systematic review. Int. J. Obstet. Gynaecol. 2009, 116, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Barderas, M.G.; Laborde, C.M.; Posada, M.; de la Cuesta, F.; Zubiri, I.; Vivanco, F.; Alvarez-Llamas, G. Metabolomic profiling for identification of novel potential biomarkers in cardiovascular diseases. J. Biomed. Biotechnol. 2011, 2011, 790132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, Z.; Huhman, D.V.; Sumner, L.W. Mass spectrometry strategies in metabolomics. J. Biol. Chem. 2011, 286, 25435–25442. [Google Scholar] [CrossRef] [Green Version]
- Villas-Bôas, S.G.; Mas, S.; Åkesson, M.; Smedsgaard, J.; Nielsen, J. Mass spectrometry in metabolome analysis. Mass. Spectrom. Rev. 2005, 24, 613–646. [Google Scholar] [CrossRef]
- Edison, A.S.; Markley, J.L.; Bru, R.; Eghbalnia, H.R.; Powers, R.; Raftery, D.; Wishart, D.S. The future of NMR-based metabolomics. Curr. Opin. Biotechnol. 2017, 43, 34–40. [Google Scholar]
- Ma, X.; Fan, L.; Meng, Y.; Hou, Z.; Mao, Y.-D.; Wang, W.; Ding, W.; Liu, J.-Y. Proteomic analysis of human ovaries from normal and polycystic ovarian syndrome. Mol. Hum. Reprod. 2007, 13, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Matharoo-Ball, B.; Hughes, C.; Lancashire, L.; Tooth, D.; Ball, G.; Creaser, C.; Elgasim, M.; Rees, R.; Layfield, R.; Atiomo, W. Characterization of biomarkers in polycystic ovary syndrome (PCOS) using multiple distinct proteomic platforms. J. Proteome Res. 2007, 6, 3321–3328. [Google Scholar] [CrossRef]
- Schmid, C.W. Metabolomics: What’s happening downstream of DNA. Environ. Health Perspect. 2004, 112, 410–415. [Google Scholar]
- Sun, L.; Hu, W.; Liu, Q.; Hao, Q.; Sun, B.; Zhang, Q.; Mao, S.; Qiao, J.; Yan, X. Metabonomics Reveals Plasma Metabolic Changes and Inflammatory Marker in Polycystic Ovary Syndrome Patients. J. Proteome Res. 2012, 11, 2937–2946. [Google Scholar] [CrossRef]
- Zhao, Y.; Fu, L.; Li, R.; Wang, L.-N.; Yang, Y.; Liu, N.-N.; Zhang, C.-M.; Ying, W.; Ping, L.; Tu, B.-B.; et al. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: Plasma metabolomics analysis. BMC Med. 2012, 10, 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atiomo, W.; Daykin, C.A. Metabolomic biomarkers in women with polycystic ovary syndrome: A pilot study. Mol. Hum. Reprod. 2012, 18, 546–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobar-Morreale, H.F.; Samino, S.; Insenser, M.; Vinaixa, M.; Luque-Ramírez, M.; Lasunción, M.A.; Correig, X. Metabolic heterogeneity in polycystic ovary syndrome is determined by obesity: Plasma metabolomic approach using GC-MS. Clin. Chem. 2012, 58, 999–1009. [Google Scholar] [CrossRef] [Green Version]
- Whigham, L.D.; Butz, D.E.; Dashti, H.; Tonelli, M.; Johnson, L.K.; Cook, M.E.; Porter, W.P.; Eghbalnia, H.R.; Markley, J.L.; Steven, R.; et al. Metabolic Evidence of Diminished Lipid Oxidation in Women With Polycystic Ovary Syndrome. Curr. Metabolomics 2014, 2, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Xu, F.; Qi, B.; Hao, S.; Li, Y.; Zou, L.; Lu, C.; Xu, G.; Hou, L. Serum metabolomics study of polycystic ovary syndrome based on liquid chromatography-mass spectrometry. J. Proteome Res. 2014, 13, 1101–1111. [Google Scholar] [CrossRef]
- Dong, F.; Deng, D.; Chen, H.; Cheng, W.; Li, Q.; Luo, R.; Ding, S. Serum metabolomics study of polycystic ovary syndrome based on UPLC-QTOF-MS coupled with a pattern recognition approach. Anal. Bioanal. Chem. 2015, 407, 4683–4695. [Google Scholar] [CrossRef]
- RoyChoudhury, S.; Mishra, B.P.; Khan, T.; Chattopadhayay, R.; Lodh, I.; Datta Ray, C.; Bose, G.; Sarkar, H.S.; Srivastava, S.; Joshi, M.V.; et al. Serum metabolomics of Indian women with polycystic ovary syndrome using 1 H NMR coupled with a pattern recognition approach. Mol. Biosyst. 2016, 12, 3407–3416. [Google Scholar] [CrossRef]
- Szczuko, M.; Zapałowska-Chwyć, M.; Drozd, A.; Maciejewska, D.; Starczewski, A.; Stachowska, E. Metabolic pathways of oleic and palmitic acid are intensified in PCOS patients with normal androgen levels. Prostaglandins Leukot. Essent. Fat. Acids 2017, 126, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Buszewska-Forajta, M.; Rachoń, D.; Stefaniak, A.; Wawrzyniak, R. Identification of the metabolic fingerprints in women with polycystic ovary syndrome using the multiplatform metabolomics technique. J. Steroid Biochem. Mol. Biol. 2019, 186, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Xu, H.; Xu, Y.; Xu, Y.; Shi, Q. Serum metabolomics analysis of patients with polycystic ovary syndrome by mass spectrometry. Mol. Reprod. Dev. 2019, 86, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Haoula, Z.; Ravipati, S.; Stekel, D.J.; Ortori, C.A.; Hodgman, C.; Daykin, C.; Raine-Fenning, N.; Barrett, D.A.; Atiomo, W. Lipidomic analysis of plasma samples from women with polycystic ovary syndrome. Metabolomics 2015, 11, 657–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, X.; Jiang, J.; Huang, Z.; Gong, J.; Wang, Y.; Xue, W.; Deng, Y.; Wang, Y.; Zheng, T.; Sun, A.; et al. UPLC/Q-TOF-MS based plasma metabolomics and clinical characteristics of polycystic ovarian syndrome. Mol. Med. Rep. 2019, 19, 280–292. [Google Scholar] [CrossRef] [Green Version]
- Vonica, C.L.; Ilie, I.R.; Socaciu, C.; Moraru, C.; Georgescu, B.; Farcaş, A.; Roman, G.; Mureşan, A.A.; Georgescu, C.E. Lipidomics biomarkers in women with polycystic ovary syndrome (PCOS) using ultra-high performance liquid chromatography–quadrupole time of flight electrospray in a positive ionization mode mass spectrometry. Scand. J. Clin. Lab. Investig. 2019, 79, 437–442. [Google Scholar] [CrossRef]
- Fernández-Peralbo, M.A.; Luque de Castro, M.D. Preparation of urine samples prior to targeted or untargeted metabolomics mass-spectrometry analysis. Trends Anal. Chem. 2012, 41, 75–85. [Google Scholar] [CrossRef]
- Wang, W.; Wang, S.; Tan, S.; Wen, M.; Qian, Y.; Zeng, X.; Guo, Y.; Yu, C. Detection of urine metabolites in polycystic ovary syndrome by UPLC triple-TOF-MS. Clin. Chim. Acta 2015, 448, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Zhu, F.-F.; Fang, C.-Y.; Xiong, X.-Y.; Li, H.-Y. Identification of Potential Biomarkers for Urine Metabolomics of Polycystic Ovary Syndrome Based on Gas Chromatography-Mass Spectrometry. Chin. Med. J. (Engl.) 2018, 131, 945–949. [Google Scholar] [CrossRef]
- Dhayat, N.A.; Marti, N.; Kollmann, Z.; Troendle, A.; Bally, L.; Escher, G.; Grössl, M.; Ackermann, D.; Ponte, B.; Pruijm, M.; et al. Urinary steroid profiling in women hints at a diagnostic signature of the polycystic ovary syndrome: A pilot study considering neglected steroid metabolites. PLoS ONE 2018, 13, e0203903. [Google Scholar]
- Arya, B.K.; Haq, A.U.; Chaudhury, K. Oocyte quality reflected by follicular fluid analysis in poly cystic ovary syndrome (PCOS): A hypothesis based on intermediates of energy metabolism. Med. Hypotheses 2012, 78, 475–478. [Google Scholar] [CrossRef] [PubMed]
- McRae, C.; Sharma, V.; Fisher, J. Metabolite Profiling in the Pursuit of Biomarkers for IVF Outcome: The Case for Metabolomics Studies. Int. J. Reprod. Med. 2013, 2013, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhao, Y.; Li, T.; Li, M.; Li, J.; Li, R.; Liu, P.; Yu, Y.; Qiao, J. Metabolism alteration in follicular niche: The nexus among intermediary metabolism, mitochondrial function, and classic polycystic ovary syndrome. Free Radic. Biol. Med. 2015, 86, 295–307. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, L.; Yin, T.; Yang, J.; Xiong, C.-L. Follicular metabolic changes and effects on oocyte quality in polycystic ovary syndrome patients. Oncotarget 2017, 8, 80472–80480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Yin, T.-L.; Chen, Y.; Li, Y.; Yin, L.; Ding, J.; Yang, J.; Feng, H.L. Follicular dynamics of glycerophospholipid and sphingolipid metabolisms in polycystic ovary syndrome patients. J. Steroid Biochem. Mol. Biol. 2018, 185, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Chang, H.; Wang, A.; Song, J.; Zhang, X.; Guo, J.; Leung, P.C.K.; Lian, F. Identification of potential metabolic biomarkers of polycystic ovary syndrome in follicular fluid by SWATH mass spectrometry. Reprod. Biol. Endocrinol. 2019, 17, 45. [Google Scholar] [CrossRef]
- Chen, X.; Lu, T.; Wang, X.; Sun, X.; Zhang, J.; Zhou, K.; Ji, X.; Sun, R.; Wang, X.; Chen, M.; et al. Metabolic alterations associated with polycystic ovary syndrome: A UPLC Q-Exactive based metabolomic study. Clin. Chim. Acta 2020, 502, 280–286. [Google Scholar] [CrossRef]
- Tonks, K.T.; Coster, A.C.; Christopher, M.J.; Chaudhuri, R.; Xu, A.; Gagnon-Bartsch, J.; Chisholm, D.J.; James, D.E.; Meikle, P.J.; Greenfield, J.R.; et al. Skeletal muscle and plasma lipidomic signatures of insulin resistance and overweight/obesity in humans. Obesity 2016, 24, 908–916. [Google Scholar] [CrossRef] [Green Version]
- Popovic, M.; Sartorius, G.; Christ-Crain, M. Chronic low-grade inflammation in polycystic ovary syndrome: Is there a (patho)-physiological role for interleukin-1? Semin. Immunopathol. 2019, 41, 447–459. [Google Scholar] [CrossRef]
- Tang, L.; Yuan, L.; Yang, G.; Wang, F.; Fu, M.; Chen, M.; Liu, D. Changes in whole metabolites after exenatide treatment in overweight/obese polycystic ovary syndrome patients. Clin. Endocrinol. (Oxf.) 2019, 91, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, K.C.; Skowrońska-Jóźwiak, E.; Łukasiak, K.; Gałuszko, K.; Dukowicz, A.; Cedro, M.; Lewiński, A. How much insulin resistance in polycystic ovary syndrome? Comparison of HOMA-IR and insulin resistance (Belfiore) index models. Arch. Med. Sci. 2019, 15, 613–618. [Google Scholar] [CrossRef] [PubMed]
Metabolites | PCOS vs. Control | Metabolic Pathways | Studies | Techniques |
---|---|---|---|---|
Cholesterol | ↓ | Lipid metabolism | Zhao et al., 2012 | GC-MS GC-MS |
↓ | Escobar-Morreale et al., 2012 | |||
↓ | Buszewska-Forajta et al., 2019 | |||
Alpha-Tocopherol | ↓ | Lipid metabolism | Escobar-Morreale et al., 2012 | GC-MS |
HDL | ↓ | Lipid metabolism | Zhao et al., 2012 | NMR |
Phosphatidylcholine | ↓ | Lipid metabolism | Zhao et al., 2012 | NMR |
↓ | Sun et al., 2012 | NMR | ||
Linoleic acid | ↑ | Lipid metabolism | Zhao et al., 2012 | GC-MS |
↑ | Dong et al., 2015 | LC-MS | ||
Lipoprotein | ↑ | Lipid metabolism | Zhao et al., 2012 | NMR |
Palmitic acid | ↑ | Lipid metabolism | Zhao et al., 2012 | GC-MS |
C18:0 stearic acid | ↑ | Lipid metabolism | Zhao et al., 2012 | GC-MS |
↓ | Szczuko et al., 2017 | GC-MS | ||
Unsaturated fatty acid | ↑ | Lipid metabolism | Zhao et al., 2012 | NMR |
VLDL/LDL | ↑ | Lipid metabolism | Zhao et al., 2012 | NMR |
Lipid-CH2CH2CO | ↓ | Lipid metabolism | Atiomo et al., 2012 | NMR |
↑ | Zhao et al., 2012 | NMR | ||
FFA 16:1 | ↑ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
FFA 16:2 | ↑ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
FFA 18:1 | ↑ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
FFA 18:3 | ↑ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
FFA 20:1 | ↑ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
FFA 20:2 | ↑ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
FFA 20:3 | ↑ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
FFA 20:4 | ↑ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
FFA 20:5 | ↑ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
FFA 20:6 | ↑ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
FFA 22:5 | ↑ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
FFA 22:6 | ↑ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
FFA 24:2 | ↑ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
MG 18:1 | ↑ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
MG 20:3 | ↑ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
LPC (16:1) | ↓ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
LPC (16:0) | ↓ | Lipid metabolism | Haoula et al., 2015 | LC-MS |
LPC (18:0) | ↓ | Lipid metabolism | Haoula et al., 2015 | LC-MS |
LPC (18:1) | ↓ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
↓ | Haoula et al., 2015 | LC-MS | ||
LPC (18:2) | ↓ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
↓ | Dong et al., 2015 | LC-MS | ||
↓ | Jia et al., 2019 | LC-MS | ||
↑ | Buszewska-Forajta et al., 2019 | LC-MS | ||
↓ | Haoula et al., 2015 | LC-MS | ||
LPC 18:3 | ↓ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
↓ | Dong et al., 2015 | LC-MS | ||
LPC 20:5 | ↓ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
LPC 22:5 | ↓ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
LPE 16:0 | ↓ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
LPE 18:1 | ↓ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
LPE 18:2 | ↓ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
LPE 20:4 | ↓ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
LPE 22:5 | ↓ | Lipid metabolism | Zhao et al., 2014 | LC-MS |
↓ | Dong et al., 2015 | LC-MS | ||
↓ | Jia et al., 2019 | LC-MS | ||
PC (18:1/18:4) | ↓ | Lipid metabolism | Vonica et al., 2019 | LC-MS |
PC (18:3/18:2) | ↓ | Lipid metabolism | Vonica et al., 2019 | LC-MS |
PC (32:4) | ↓ | Lipid metabolism | Haoula et al., 2015 | LC-MS |
PC (30:0) | ↓ | Lipid metabolism | Haoula et al., 2015 | LC-MS |
PE (42:1) | ↓ | Lipid metabolism | Haoula et al., 2015 | LC-MS |
PE (34:0) | ↓ | Lipid metabolism | Haoula et al., 2015 | LC-MS |
SM (d18:0/20:2) | ↑ | Lipid metabolism | Haoula et al., 2015 | LC-MS |
SM (d18:0/18:0) | ↑ | Lipid metabolism | Haoula et al., 2015 | LC-MS |
Triglycerides | ↑ | Lipid metabolism | Haoula et al., 2015 | LC-MS |
DG (36:2) | ↑ | Lipid metabolism | Haoula et al., 2015 | LC-MS |
DG (36:3) | ↑ | Lipid metabolism | Haoula et al., 2015 | LC-MS |
Plasmalogen (30:0) | ↓ | Lipid metabolism | Haoula et al., 2015 | LC-MS |
Plasmalogen (40:7) | ↑ | Lipid metabolism | Haoula et al., 2015 | LC-MS |
Azelaic acid | ↑ | Lipid metabolism | Dong et al., 2015 | LC-MS |
N-undecanoylglycine | ↑ | Lipid metabolism | Dong et al., 2015 | LC-MS |
Chenodeoxycholic acid | ↑ | Lipid metabolism | Fan et al., 2019 | LC-MS |
Cholic acid | ↓ | Lipid metabolism | Fan et al., 2019 | LC-MS |
Clupanodonylcarnitine | ↑ | Lipid metabolism | Fan et al., 2019 | LC-MS |
2-Hydroxylauroylcarnitine | ↑ | Lipid metabolism | Vonica et al., 2019 | LC-MS |
Trans-2-dodecenoylcarnitine | ↑ | Lipid metabolism | Vonica et al., 2019 | LC-MS |
Cholestane-3β | ↑ | Sterol lipid metabolism | Vonica et al., 2019 | LC-MS |
Cholestane-5α (18:0/0:0) | ↑ | Sterol lipid metabolism | Vonica et al., 2019 | LC-MS |
Cholestane-6β-triol | ↑ | Sterol lipid metabolism | Vonica et al., 2019 | LC-MS |
Cholestane (18:1/0:0) | ↑ | Sterol lipid metabolism | Vonica et al., 2019 | LC-MS |
Androsterone sulphate | ↑ | Lipid transport and metabolism | Fan et al., 2019 | LC-MS |
11′-Carboxy-α-chromanol | ↑ | Lipid transport and metabolism | Fan et al., 2019 | LC-MS |
(9-cis,9′-cis)-7,7′,8,8′-Tetrahydro-y,y-Carotene | ↑ | Lipid transport and metabolism | Fan et al., 2019 | LC-MS |
Sphinganine | ↓ | Sphingolipid metabolism | Dong et al., 2015 | LC-MS |
↓ | Jia et al., 2019 | LC-MS | ||
↑ | Buszewska-Forajta et al., 2019 | LC-MS | ||
Phytosphingosine | ↓ | Sphingolipid metabolism | Dong et al., 2015 | LC-MS |
Palmitoylsphingomyelin | ↑ | Sphingomyelin metabolism | Fan et al., 2019 | LC-MS |
SM (d18:1/16:0) | ↑ | Sphingomyelin metabolism | Fan et al., 2019 | LC-MS |
LysoPC (O-18:0) | ↓ | Lecithin metabolism | Fan et al., 2019 | LC-MS |
LysoPC (16:0) | ↓ | Lecithin metabolism | Fan et al., 2019 | LC-MS |
LysoPC [20:2(11Z,14Z)] | ↓ | Lecithin metabolism | Fan et al., 2019 | LC-MS |
Glyceric acid | ↑ | Glycerolipid metabolism | Dong et al., 2015 | LC-MS |
LPC (20:2) | ↓ | Glycerophospholipid metabolism | Dong et al., 2015 | LC-MS |
2-Arachidonoyl | ↑ | Glycerophospholipid metabolism | Fan et al., 2019 | LC-MS |
glycerophosphocholine | ||||
PG [18:1(9Z)/16:0] | ↓ | Glycerophospholipid metabolism | Fan et al., 2019 | LC-MS |
PE [O-18:1(1Z)/20:4 (5Z,8Z,11Z,14Z)] | ↓ | Glycerophospholipid metabolism | Fan et al., 2019 | LC-MS |
LysoPE [0:0/22:1(13Z)] | ↓ | Glycerophospholipid metabolism | Fan et al., 2019 | LC-MS |
PE [O-16:1(1Z)/22:6 (4Z,7Z,10Z,13Z,16Z,19Z)] | ↓ | Glycerophospholipid metabolism | Fan et al., 2019 | LC-MS |
PE [22:4(7Z,10Z,13Z,16Z)/16:0] | ↓ | Glycerophospholipid metabolism | Fan et al., 2019 | LC-MS |
PC [16:1(9Z)/22:2(13Z,16Z)] | ↓ | Glycerophospholipid metabolism | Fan et al., 2019 | LC-MS |
PG (18:0/16:0) | ↑ | Glycerophospholipid metabolism | Fan et al., 2019 | LC-MS |
PG (18:1(9Z)/18:0) | ↓ | Glycerophospholipid metabolism | Fan et al., 2019 | LC-MS |
DG (18:1n9/0:0/20:4n3) | ↑ | Diacyloglycerol metabolism | Fan et al., 2019 | LC-MS |
TG (18:2/18:2/0-18:0) | ↑ | Diacyloglycerol metabolism | Vonica et al., 2019 | LC-MS |
DG (22:2/0:0/22:4) | ↓ | Diacyloglycerol metabolism | Vonica et al., 2019 | LC-MS |
Arginine | ↓ | Amino acids metabolism | Atiomo et al., 2012 | NMR |
↓ | Sun et al., 2012 | NMR | ||
Choline | ↓ | Amino acids metabolism | Sun et al., 2012 | NMR |
Citruline | ↓ | Amino acids metabolism | Atiomo et al., 2012 | NMR |
Glutamate | ↓ | Amino acids metabolism | Atiomo et al., 2012 | NMR |
Glycerophosphocholine/phosphocholine | ↓ | Amino acids metabolism | Sun et al., 2012 | NMR |
Glycine | ↓ | Amino acids metabolism | Zhao et al., 2012 | GC-MS |
Histidine | ↓ | Amino acids metabolism | Atiomo et al., 2012 | NMR |
↓ | RoyChoudhury et al., 2016 | |||
AAA | ↑ | Amino acids metabolism | Zhao et al., 2012 | GC-MS |
BCAA | ↑ | Amino acids metabolism | Zhao et al., 2012 | GC-MS |
BCAA/AAA | ↓ | Amino acids metabolism | Zhao et al., 2012 | GC-MS |
Aspartate | ↑ | Amino acids metabolism | Zhao et al., 2012 | GC-MS |
Endogenous AAs | ↑ | Amino acids metabolism | Zhao et al., 2012 | GC-MS |
Gluconeogenic AAs | ↑ | Amino acids metabolism | Zhao et al., 2012 | GC-MS |
Serine | ↑ | Amino acids metabolism | Zhao et al., 2012 | GC-MS |
2-Aminobutyrate | ↑ | Amino acid metabolism | Whigham et al., 2014 | NMR |
2-Hydroxybutyrate | ↑ | Amino acid metabolism | Whigham et al., 2014 | NMR |
2-Hyroxyisovalerate | ↑ | Amino acid metabolism | Whigham et al., 2014 | NMR |
2-Oxocaproate | ↑ | Amino acid metabolism | Whigham et al., 2014 | NMR |
2-Oxoisocaproate | ↑ | Amino acid metabolism | Whigham et al., 2014 | NMR |
3-Hydroxybutyrate | ↑ | Amino acid metabolism | Whigham et al., 2014 | NMR |
3-Methyl-2-oxovalerate | ↑ | Amino acid metabolism | Whigham et al., 2014 | NMR |
Betadine | ↑ | Amino acid metabolism | Whigham et al., 2014 | NMR |
Creatinine | ↑ | Amino acid metabolism | Whigham et al., 2014 | NMR |
↓ | Sun et al., 2012 | NMR | ||
Dimethylamine | ↑ | Amino acid metabolism | Whigham et al., 2014 | NMR |
Lysine | ↑ | Amino acid metabolism | Whigham et al., 2014 | NMR |
↑ | Zhao et al., 2012 | GC-MS | ||
↓ | Atiomo et al., 2012 | NMR | ||
Methionine | ↑ | Amino acid metabolism | Whigham et al., 2014 | NMR |
↓ | Sun et al., 2012 | NMR | ||
Ornithine | ↑ | Amino acid metabolism | Whigham et al., 2014 | NMR |
↑ | Zhao et al., 2012 | GC-MS | ||
↓ | Atiomo et al., 2012 | NMR | ||
Sarcosine | ↑ | Amino acid metabolism | Whigham et al., 2014 | NMR |
Taurine | ↑ | Amino acid metabolism | Whigham et al., 2014 | NMR |
Tryptophan | ↑ | Amino acid metabolism | Whigham et al., 2014 | NMR |
↑ | Zhao et al., 2012 | GC-MS | ||
↑ | Buszewska-Forajta et al., 2019 | GC/LC-MS | ||
Tyrosine | ↑ | Amino acid metabolism | Whigham et al., 2014 | NMR |
↑ | Zhao et al., 2012 | GC-MS | ||
↑ | Buszewska-Forajta et al., 2019 | GC-MS | ||
Glutamate | ↓ | Amino acids metabolism | RoyChoudhury et al., 2016 | NMR |
↑ | Whigham et al., 2014 | NMR | ||
Glutamine | ↓ | Amino acids metabolism | RoyChoudhury et al., 2016 | NMR |
↑ | Whigham et al., 2014 | NMR | ||
↓ | Sun et al., 2012 | NMR | ||
Proline | ↓ | Amino acids metabolism | Atiomo et al., 2012 | NMR |
↓ | Zhao et al., 2012 | GC-MS | ||
↓ | RoyChoudhury et al., 2016 | NMR | ||
↑ | Whigham et al., 2014 | NMR | ||
Alanine | ↑ | Amino acids metabolism | RoyChoudhury et al., 2016 | NMR |
↑ | Whigham et al., 2014 | NMR | ||
↑ | Zhao et al., 2012 | NMR | ||
↓ | Escobar-Morreale et al., 2012 | GC-MS | ||
Leucine | ↑ | Amino acids metabolism | RoyChoudhury et al., 2016 | NMR |
↑ | Whigham et al., 2014 | NMR | ||
↓ | Sun et al., 2012 | NMR | ||
↑ | Zhao et al., 2012 | GC-MS | ||
Isoleucine | ↑ | Amino acids metabolism | Whigham et al., 2014 | NMR |
↓ | Zhao et al., 2012 | GC-MS | ||
Valine | ↑ | Amino acids metabolism | RoyChoudhury et al., 2016 | NMR |
↑ | Whigham et al., 2014 | NMR | ||
↑ | Zhao et al., 2012 | GC-MS | ||
Threonine | ↑ | Amino acids metabolism | RoyChoudhury et al., 2016 | NMR |
↑ | Whigham et al., 2014 | NMR | ||
↑ | Zhao et al., 2012 | GC-MS | ||
↑ | Buszewska-Forajta et al., 2019 | GC-MS | ||
Cysteine-S-sulphate | ↑ | Amino acid metabolism | Fan et al., 2019 | LC-MS |
Glu-Glu | ↑ | Amino acid metabolism | Dong et al., 2015 | LC-MS |
Asparagine | ↑ | Amino acid metabolism | Whigham et al., 2014 | NMR |
Ketoleucine | ↓ | Valine, leucine, and isoleucine degradation | Dong et al., 2015 | LC-MS |
Glutamic acidc | ↑ | Glutamate metabolism, amino sugar metabolism | Dong et al., 2015 | LC-MS |
Phenylpyruvic acid | ↑ | Phenylalanine and tyrosine metabolism | Dong et al., 2015 | LC-MS |
Gly.Phe | ↑ | Phenylalanine and tyrosine metabolism | Zhao et al., 2014 | LC-MS |
Phenylalanine | ↑ | Phenylalanine and tyrosine metabolism | Zhao et al., 2014 | LC-MS |
↑ | Whigham et al., 2014 | NMR | ||
↑ | Zhao et al., 2012 | GC-MS | ||
↑ | Buszewska-Forajta et al., 2019 | GC-MS | ||
Phe−Phe | ↑ | Phenylalanine and tyrosine metabolism | Zhao et al., 2014 | LC-MS |
Kynurenine | ↓ | Tryptophan metabolism | Zhao et al., 2014 | LC-MS |
5-Hydroxyindoleacetic acid | ↓ | Tryptophan metabolism | Dong et al., 2015 | LC-MS |
Homoserine | ↓ | Methionine metabolism | Zhao et al., 2014 | LC-MS |
↑ | Whigham et al., 2014 | NMR | ||
S-Adenosylmethionine | ↓ | Thiol amino acid metabolic cycle | Fan et al., 2019 | LC-MS |
Pyroglutamic acid | ↑ | Glutathione metabolism | Dong et al., 2015 | LC-MS |
Lysyl-albumin | ↓ | Protein metabolism | Zhao et al., 2012 | NMR |
Trimethylamine N-oxide | ↓ | Protein metabolism | Sun et al., 2012 | NMR |
2-Ketoisocaproic acid | ↓ | Protein metabolism | Escobar-Morreale et al., 2012 | GC-MS |
Dimethylamine | ↑ | Protein metabolism | Sun et al., 2012 | NMR |
N-acetylglycoprotein | ↓ | Protein metabolism | Zhao et al., 2012 | NMR |
↑ | Sun et al., 2012 | NMR | ||
Hypoxanthine | ↑ | Purine metabolism | Zhao et al., 2014 | LC-MS |
Inosine | ↑ | Purine metabolism | Zhao et al., 2014 | LC-MS |
Allantoic acid | ↑ | Purine metabolism | Dong et al., 2015 | LC-MS |
Uric acid | ↑ | Purine metabolism | Zhao et al., 2012 | GC-MS |
↑ | Buszewska-Forajta et al., 2019 | GC/LC-MS | ||
Cyclic GMP | ↑ | Purine metabolism | Fan et al., 2019 | LC-MS |
Uridine | ↓ | Pyrimidine metabolism | Zhao et al., 2014 | LC-MS |
↓ | Dong et al., 2015 | LC-MS | ||
5,6-Dihydrouridine | ↑ | Pyrimidine metabolic cycle | Fan et al., 2019 | LC-MS |
DHEAS | ↑ | Androgen metabolism | Zhao et al., 2014 | LC-MS |
↑ | Dong et al., 2015 | LC-MS | ||
↑ | Buszewska-Forajta et al., 2019 | LC-MS | ||
↑ | Jia et al., 2019 | LC-MS | ||
↑ | Fan et al., 2019 | LC-MS | ||
ANDS | ↑ | Androgen metabolism | Zhao et al., 2014 | LC-MS |
DHTS | ↑ | Androgen metabolism | Zhao et al., 2014 | LC-MS |
Pregnenolone sulphate | ↓ | Steroid hormone biosynthesis | Dong et al., 2015 | LC-MS |
19-Oxotestosterone | ↑ | Steroid hormone biosynthesis | Dong et al., 2015 | LC-MS |
C10:0 lauric acid | ↓ | Fatty acid metabolism | Szczuko et al., 2017 | GC-MS |
C15:0 pentadecanoic acid | ↓ | Fatty acid metabolism | Szczuko et al., 2017 | GC-MS |
C15:1 cis-10-pentadecanoic acid | ↓ | Fatty acid metabolism | Szczuko et al., 2017 | GC-MS |
C17:0 heptadecanoic acid | ↓ | Fatty acid metabolism | Szczuko et al., 2017 | GC-MS |
C20:0 arachidic acid | ↓ | Fatty acid metabolism | Szczuko et al., 2017 | GC-MS |
C20:1 cis-11-eicosanoic acid | ↑ | Fatty acid metabolism | Szczuko et al., 2017 | GC-MS |
C22:5 EPA | ↓ | Fatty acid metabolism | Szczuko et al., 2017 | GC-MS |
C22:0 behenic acid | ↓ | Fatty acid metabolism | Szczuko et al., 2017 | GC-MS |
C23:0 tricosanoic acid | ↓ | Fatty acid metabolism | Szczuko et al., 2017 | GC-MS |
C22:4n6 docosatetraenic acid | ↑ | Fatty acid metabolism | Szczuko et al., 2017 | GC-MS |
C24:0 lignoceric acid | ↓ | Fatty acid metabolism | Szczuko et al., 2017 | GC-MS |
C24:1 nervonic acid | ↑ | Fatty acid metabolism | Szczuko et al., 2017 | GC-MS |
9-HODE/13-HODE | ↑ | Fatty acid metabolism | Dong et al., 2015 | LC-MS |
α-Linolenic acid | ↑ | Fatty acid metabolism | Dong et al., 2015 | LC-MS |
C18:2n6c linoleic acid | ↓ | Fatty acid metabolism | Szczuko et al., 2017 | GC-MS |
Vaccenic acid | ↑ | Fatty acid metabolism | Dong et al., 2015 | LC-MS |
Docosatrienoic acid | ↑ | Fatty acid metabolism | Dong et al., 2015 | LC-MS |
Eicosapentaenoic acid | ↑ | Fatty acid metabolism | Dong et al., 2015 | LC-MS |
Galbanic acid | ↑ | Fatty acid metabolism | Fan et al., 2019 | LC-MS |
C14:0 myristic acid | ↑ | Fatty acid biosynthesis | Dong et al., 2015 | LC-MS |
↓ | Szczuko et al., 2017 | GC-MS | ||
Palmitoleic acid | ↑ | Fatty acid biosynthesis | Dong et al., 2015 | LC-MS |
Palmitoleoylethanolamide | ↑ | Fatty acid amide metabolism | Dong et al., 2015 | LC-MS |
Oleamide | ↑ | Fatty acid amide metabolism | Zhao et al., 2014 | LC-MS |
↑ | Dong et al., 2015 | LC-MS | ||
Palmitic amide | ↑ | Fatty acid amide metabolism | Zhao et al., 2014 | LC-MS |
↑ | Dong et al., 2015 | LC-MS | ||
PEA | ↑ | Fatty acid amide metabolism | Zhao et al., 2014 | LC-MS |
AEA | ↑ | Fatty acid amide metabolism | Zhao et al., 2014 | LC-MS |
Carnitine C2:0 | ↑ | Beta oxidation of fatty acids | Zhao et al., 2014 | LC-MS |
Carnitine C6:0 | ↑ | Beta oxidation of fatty acids | Zhao et al., 2014 | LC-MS |
Carnitine C18 | ↑ | Beta oxidation of fatty acids | Zhao et al., 2014 | LC-MS |
Carnitine | ↓ | Oxidation of fatty acids | Dong et al., 2015 | LC-MS |
↓ | Jia et al., 2019 | LC-MS | ||
Glycocholic acid | ↓ | Bile acid metabolism | Zhao et al., 2014 | LC-MS |
↓ | Jia et al., 2019 | LC-MS | ||
3,7-Dihydroxy-5-cholestenoic acid | ↑ | Bile acid metabolism | Fan et al., 2019 | LC-MS |
3-β-Hydroxy-4-β-methyl-5-α-cholest-7-ene-4-α-carboxylate | ↑ | Bile acid metabolism | Fan et al., 2019 | LC-MS |
Formate | ↑ | Pyruvate metabolism | Whigham et al., 2014 | NMR |
Fructose | ↑ | Pyruvate metabolism | Whigham et al., 2014 | NMR |
Mannose | ↑ | Pyruvate metabolism | Whigham et al., 2014 | NMR |
Citrate | ↓ | TCA cycle metabolism | Whigham et al., 2014 | NMR |
↓ | Atiomo et al., 2012 | NMR | ||
↓ | Sun et al., 2012 | NMR | ||
Acetate | ↑ | TCA cycle metabolism | RoyChoudhury et al., 2016 | NMR |
↑ | Whigham et al., 2014 | NMR | ||
4a-Methylzymosterol-4-carboxylic acid | ↑ | TCA cycle metabolism | Fan et al., 2019 | LC-MS |
Lactate | ↑ | Gluconeogenesis/Glycolysis | RoyChoudhury et al., 2016 | NMR |
↑ | Whigham et al., 2014 | NMR | ||
↑ | Zhao et al., 2012 | GC-MS/ | ||
NMR | ||||
Lactic acid | ↑ | Gluconeogenesis/Glycolysis | Buszewska-Forajta et al., 2019 | GC-MS |
Gluconolactone | ↑ | Pentose phosphate pathway | Dong et al., 2015 | LC-MS |
3-Hydroxybutyric acid | ↓ | Energy metabolism | RoyChoudhury et al., 2016 | NMR |
Glucose | ↓ | Energy metabolism | RoyChoudhury et al., 2016 | NMR |
↓ | Zhao et al., 2012 | GC-MS | ||
↑ | Whigham et al., 2014 | /NMR | ||
NMR | ||||
Glyceraldehyde 3-phosphate | ↑ | ATP metabolism | Fan et al., 2019 | LC-MS |
Glycerol | ↓ | Glucose metabolism | Whigham et al., 2014 | NMR |
Acetoacetate | ↑ | Glucose metabolism | Whigham et al., 2014 | NMR |
Pyruvate | ↑ | Glucose metabolism | Whigham et al., 2014 | NMR |
Acetone | ↑ | Glucose metabolism | Whigham et al., 2014 | NMR |
↓ | Atiomo et al., 2012 | NMR | ||
Fructose 6-phosphate | ↓ | Amino sugar metabolism | Dong et al., 2015 | LC-MS |
Aspartic acid | ↑ | Aspartate metabolism | Zhao et al., 2014 | LC-MS |
Thyroxine sulphate | ↓ | ATP metabolism | Fan et al., 2019 | LC-MS |
Pantothenic acid | ↑ | Pantothenate and CoA biosynthesis | Dong et al., 2015 | LC-MS |
Prostaglandin F2a | ↑ | Arachidonic acid metabolism | Dong et al., 2015 | LC-MS |
↑ | Vonica et al., 2019 | LC-MS | ||
25-Methyl-1-hexacosanol | ↓ | Fatty alcohols | Fan et al., 2019 | LC-MS |
S-(PGJ2)—glutathione | ↑ | Immune modulation | Fan et al., 2019 | LC-MS |
Oryzanol A | ↓ | Endocrine modulation | Fan et al., 2019 | LC-MS |
Metabolites | PCOS vs. Control | Metabolic Pathways | Studies | Techniques |
---|---|---|---|---|
Lactose | ↑ | Carbohydrate metabolism | Zou et al., 2018 | GC-MS |
Gluconic acid | ↑ | Carbohydrate metabolism | Zou et al., 2018 | GC-MS |
3-hydroxypropionic acid | ↑ | Carbohydrate metabolism | Zou et al., 2018 | GC-MS |
Arabinitol | ↑ | Carbohydrate metabolism | Zou et al., 2018 | GC-MS |
Fucose | ↑ | Carbohydrate metabolism | Zou et al., 2018 | GC-MS |
Oxalic acid | ↑ | Carbohydrate metabolism | Zou et al., 2018 | GC-MS |
Arabic candy | ↑ | Lipid metabolism | Zou et al., 2018 | GC-MS |
Stearic acid | ↑ | Lipid metabolism | Zou et al., 2018 | GC-MS |
Palmitic acid | ↑ | Lipid metabolism | Zou et al., 2018 | GC-MS |
Phosphoethanolamine | ↑ | Lipid metabolism | Zou et al., 2018 | GC-MS |
2-(14,15-Epoxyeicosatrienoyl) | ↓ | Glycerolipids | Wang et al., 2015 | LC-MS |
TG (14:1(9Z)/14:0/22:2(13Z,16Z)) | ↓ | Glycerolipids | Wang et al., 2015 | LC-MS |
TG (14:0/24:1(15Z)/14:1(9Z)) | ↓ | Glycerolipids | Wang et al., 2015 | LC-MS |
TG(16:0/14:0/18:0) | ↓ | Glycerolipids | Wang et al., 2015 | LC-MS |
TG (16:0/14:1(9Z)/20:1(11Z)) | ↓ | Glycerolipids | Wang et al., 2015 | LC-MS |
TG | ↑ | Glycerolipids | Wang et al., 2015 | LC-MS |
DG (16:1(9Z)/14:0/0:0) | ↑ | Glycerolipids | Wang et al., 2015 | LC-MS |
PC (22:2(13Z,16Z)/18:1(9Z)) | ↓ | Glycerophospholipids | Wang et al., 2015 | LC-MS |
PC (14:1(9Z)/14:1(9Z)) | ↓ | Glycerophospholipids | Wang et al., 2015 | LC-MS |
LPA (16:0/0:0) | ↓ | Glycerophospholipids | Wang et al., 2015 | LC-MS |
PE (14:1(9Z)/14:1(9Z)) | ↑ | Glycerophospholipids | Wang et al., 2015 | LC-MS |
LysoPC (18:1(9Z)) | ↑ | Glycerophospholipids | Wang et al., 2015 | LC-MS |
Cer (d18:0/20:0) | ↓ | Sphingolipids | Wang et al., 2015 | LC-MS |
Phytosphingosine | ↓ | Sphingolipids | Wang et al., 2015 | LC-MS |
Glycocholic acid | ↓ | Steroids | Wang et al., 2015 | LC-MS |
Chenodeoxycholic acid 3-sulphate | ↓ | Steroids | Wang et al., 2015 | LC-MS |
3-Oxo-4,6-choladienoic acid | ↓ | Steroids | Wang et al., 2015 | LC-MS |
Cortolone-3-glucuronide | ↑ | Steroids | Wang et al., 2015 | LC-MS |
11α-Hydroxyprogesterone | ↑ | Steroids | Wang et al., 2015 | LC-MS |
Testosterone glucuronide | ↑ | Steroids | Wang et al., 2015 | LC-MS |
Tetrahydroaldosterone-3-glucuronide | ↑ | Steroids | Wang et al., 2015 | LC-MS |
Dehydroepiandrosterone | ↑ | Androgen metabolism | Dhayat et al., 2018 | GC-MS |
16α-OH-dehydroepiandrosterone | ↑ | Androgen metabolism | Dhayat et al., 2018 | GC-MS |
Androstenediol | ↑ | Androgen metabolism | Dhayat et al., 2018 | GC-MS |
Testosterone | ↑ | Androgen metabolism | Dhayat et al., 2018 | GC-MS |
5α-DH-testosterone | ↑ | Androgen metabolism | Dhayat et al., 2018 | GC-MS |
Androstanediol | ↑ | Androgen metabolism | Dhayat et al., 2018 | GC-MS |
Androsterone | ↑ | Androgen metabolism | Dhayat et al., 2018 | GC-MS |
11β-OH-androsterone | ↑ | Androgen metabolism | Dhayat et al., 2018 | GC-MS |
Etiocholanolone | ↑ | Androgen metabolism | Dhayat et al., 2018 | GC-MS |
Estriol | ↓ | Estrogen metabolism | Dhayat et al., 2018 | GC-MS |
Suberic acid | ↑ | Fatty acid metabolism | Zou et al., 2018 | GC-MS |
3,4,5-hydroxyvaleric acid | ↑ | Fatty acid metabolism | Zou et al., 2018 | GC-MS |
(R)-3-Hydroxy-hexadecanoic acid | ↓ | Fatty acid metabolism | Wang et al., 2015 | LC-MS |
6-Keto-decanoylcarnitine | ↓ | Fatty acid esters | Wang et al., 2015 | LC-MS |
Tiglylcarnitine | ↑ | Fatty acid esters | Wang et al., 2015 | LC-MS |
Butyrylcarnitine | ↑ | Fatty acid esters | Wang et al., 2015 | LC-MS |
4-hydroxyphenylacetic acid | ↑ | Tyrosine metabolism | Zou et al., 2018 | GC-MS |
Capryloylglycine | ↓ | Amino acid metabolism | Wang et al., 2015 | LC-MS |
N-(7-Isocucurbinoyl)isoleucine | ↑ | Amino acid metabolism | Wang et al., 2015 | LC-MS |
Aspartylglycosamine | ↑ | Amino acid metabolism | Wang et al., 2015 | LC-MS |
α-ketoglutarate | ↑ | Amino acid metabolism | Zou et al., 2018 | GC-MS |
Threonine | ↑ | Amino acid metabolism | Zou et al., 2018 | GC-MS |
Serine | ↑ | Amino acid metabolism | Zou et al., 2018 | GC-MS |
Glycine | ↑ | Amino acid metabolism | Zou et al., 2018 | GC-MS |
5-Oxoproline | ↑ | Amino acid metabolism | Zou et al., 2018 | GC-MS |
Benzoylglycine | ↑ | Amino acid metabolism | Zou et al., 2018 | GC-MS |
Indoleacetyl glutamine | ↓ | Aromatic Amino acids | Wang et al., 2015 | LC-MS |
Flazine methyl ether | ↓ | Aromatic Amino acids | Wang et al., 2015 | LC-MS |
Succinyladenosine | ↑ | Aromatic Amino acids | Wang et al., 2015 | LC-MS |
Thyronine | ↑ | Aromatic Amino acids | Wang et al., 2015 | LC-MS |
Gamma-glutamyl-leucine | ↓ | Peptides | Wang et al., 2015 | LC-MS |
Tryptophyl-proline | ↓ | Peptides | Wang et al., 2015 | LC-MS |
Methionyl-phenylalanine | ↑ | Peptides | Wang et al., 2015 | LC-MS |
Phenylalanyl-histidine | ↑ | Peptides | Wang et al., 2015 | LC-MS |
Arginyl-valiney | ↑ | Peptides | Wang et al., 2015 | LC-MS |
Threoninyl-lysine | ↑ | Peptides | Wang et al., 2015 | LC-MS |
Tryptophyl-arginine | ↑ | Peptides | Wang et al., 2015 | LC-MS |
Tyrosyl-leucine | ↑ | Peptides | Wang et al., 2015 | LC-MS |
Tryptophyl-valine | ↑ | Peptides | Wang et al., 2015 | LC-MS |
Cis-aconitic acid | ↑ | CTA metabolism | Zou et al., 2018 | GC-MS |
3-Hydroxy-3-Methylglutaric acid | ↑ | Energy metabolism | Zou et al., 2018 | GC-MS |
2-Hydroxyglutaric acid | ↑ | Energy metabolism | Zou et al., 2018 | GC-MS |
Threonic acid | ↑ | Sugar acids metabolism | Zou et al., 2018 | GC-MS |
Inosine | ↑ | Purine metabolism | Zou et al., 2018 | GC-MS |
2,3,4-Hydroxybutyric acid | ↑ | Energy metabolism | Zou et al., 2018 | GC-MS |
3,4-Hydroxybutyric acid | ↑ | Energy metabolism | Zou et al., 2018 | GC-MS |
4-Hydroxybutyric acid | ↑ | Energy metabolism | Zou et al., 2018 | GC-MS |
2-Hydroxyisobutyric acid | ↑ | Energy metabolism | Zou et al., 2018 | GC-MS |
Uracil | ↑ | Pyrimidine metabolism | Zou et al., 2018 | GC-MS |
Glyceryl acid | ↑ | Hydroxy acid metabolism | Zou et al., 2018 | GC-MS |
Glycolic acid | ↑ | Hydroxy acid metabolism | Zou et al., 2018 | GC-MS |
2-Hydroxyisobutyric acid | ↑ | Energy metabolism | Zou et al., 2018 | GC-MS |
Succinic acid | ↓ | Glucose metabolism | Zou et al., 2018 | GC-MS |
Benzophenone | ↑ | Acetophenones | Wang et al., 2015 | LC-MS |
5′-Carboxy-γ-chromanol | ↓ | Benzopyrans | Wang et al., 2015 | LC-MS |
5′-Carboxy-α-chromanol | ↓ | Benzopyrans | Wang et al., 2015 | LC-MS |
9′-Carboxy-α-chromanol | ↓ | Benzopyrans | Wang et al., 2015 | LC-MS |
11′-Carboxy-α-tocotrienol | ↓ | Benzopyrans | Wang et al., 2015 | LC-MS |
FMNH2 | ↑ | Pteridines | Wang et al., 2015 | LC-MS |
Urobilin | ↓ | Tetrapyrroles | Wang et al., 2015 | LC-MS |
Mesobilirubinogen | ↓ | Tetrapyrroles | Wang et al., 2015 | LC-MS |
Harderoporphyrinogen | ↓ | Tetrapyrroles | Wang et al., 2015 | LC-MS |
MG (18:4(6Z,9Z,12Z,15Z)/0:0/0:0) | ↑ | Lineolic acids | Wang et al., 2015 | LC-MS |
Hydroxyvalerylcarnitine | ↑ | Alkylamines | Wang et al., 2015 | LC-MS |
Labadoside | ↑ | Glycosides | Wang et al., 2015 | LC-MS |
Dihydrocaffeic acid 3-O-glucuronide | ↓ | Sugar acids | Wang et al., 2015 | LC-MS |
Dihydroferulic acid 4-O-glucuronide | ↓ | Sugar acids | Wang et al., 2015 | LC-MS |
5-Hydroxy-6-methoxyindole glucuronide | ↑ | Sugar acids | Wang et al., 2015 | LC-MS |
p-Cresol glucuronide | ↓ | Sugar acids | Wang et al., 2015 | LC-MS |
6β-OH-cortisol | ↑ | Glucocorticoid metabolism | Dhayat et al., 2018 | GC-MS |
18-OH-cortisol | ↑ | Glucocorticoid metabolism | Dhayat et al., 2018 | GC-MS |
TH-cortisol | ↑ | Glucocorticoid metabolism | Dhayat et al., 2018 | GC-MS |
11β-OH-etiocholanolone | ↑ | Glucocorticoid metabolism | Dhayat et al., 2018 | GC-MS |
TH-cortisone | ↑ | Glucocorticoid metabolism | Dhayat et al., 2018 | GC-MS |
Metabolites | PCOS vs. Control | Metabolic Pathways | Studies | Techniques |
---|---|---|---|---|
Paxilline | Naphthopyrans | Liu et al., 2018 | LC-MS | |
PC (o-22:0/20:4(8Z,11Z,14Z,17Z)) | Glycerophospholipid | Liu et al., 2018 | LC-MS | |
PC (o22:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) | Glycerophospholipid | Liu et al., 2018 | LC-MS | |
LysoPC (16:1(9Z)) | Glycerophospholipid | Liu et al., 2018 | LC-MS | |
LysoPC (16:0) | Glycerophospholipid | Liu et al., 2018 | LC-MS | |
Sun et al., 2019 | LC-MS | |||
LysoPC (14:0) | Glycerophospholipid | Sun et al., 2019 | LC-MS | |
LysoPC (18:0) | Glycerophospholipid | Sun et al., 2019 | LC-MS | |
LysoPC (20:4(8Z,11Z,14Z,17Z)) | Glycerophospholipid | Liu et al., 2018 | LC-MS | |
PGP (16:0/20:4(5Z,8Z,11Z,14Z) | Glycerophospholipid | Liu et al., 2018 | LC-MS | |
Glycerophosphocholine | Glycerophospholipid | Chen et al., 2020 | LC-MS | |
Ceramide (d18:0/16:0) | Sphingolipids | Liu et al., 2018 | LC-MS | |
Ceramide (d18:0/24:0) | Sphingolipids | Liu et al., 2018 | LC-MS | |
Galabiosylceramide (d18:1/24:1(15Z)) | Sphingolipids | Liu et al., 2018 | LC-MS | |
Tetrahexosylceramide (d18:1/24:0) | Sphingolipids | Liu et al., 2018 | LC-MS | |
7β-Hydroxycholesterol | Lipid metabolism | Chen et al., 2020 | LC-MS | |
Malyl-CoA | Fatty Acyls | Liu et al., 2018 | LC-MS | |
1-Hydroxy-2,12,15-heneicosatrien-4-one | Fatty Acyls | Liu et al., 2018 | LC-MS | |
16-hydroxypalmitic acid | Fatty Acyls | Liu et al., 2018 | LC-MS | |
Tridecanol | Fatty Acyls | Liu et al., 2018 | LC-MS | |
Carnitine | Fatty acids metabolism | Chen et al., 2020 | LC-MS | |
4-Hydroxy-3-(16-methylheptadecyl)-2H-pyran-2-one | Pyrans | Liu et al., 2018 | LC-MS | |
Anandamide | Organonitrogen compounds | Liu et al., 2018 | LC-MS | |
Indan-1-ol | Indanes | Liu et al., 2018 | LC-MS | |
2-p-Tolyl-1-propene, p-Mentha-1,3,5,8-tetraene | Phenylpropenes | Liu et al., 2018 | LC-MS | |
β -Ionol | Sesquiterpenoids | Liu et al., 2018 | LC-MS | |
Androstenol | Androstane steroids | Liu et al., 2018 | LC-MS | |
(3R, 6′Z)-3,4-Dihydro-8-hydroxy-3-(6-pentadecenyl)-1H-2-benzopyran-1-one | Benzopyrans | Liu et al., 2018 | LC-MS | |
6-Tridecylsalicylic acid | Benzoic acids and derivatives | Liu et al., 2018 | LC-MS | |
2,3-dihydroxypropyl dodecanoate | Glycerol metabolism | Chen et al., 2020 | LC-MS | |
Methylmalonic acid | Carboxylic acids | Liu et al., 2018 | LC-MS | |
Lysyl-Valine | Carboxylic acids and derivatives | Liu et al., 2018 | LC-MS | |
Prolyl-Methionine | Carboxylic acids and derivative | Liu et al., 2018 | LC-MS | |
VPGPR Enterostatin | Carboxylic acids and derivative | Liu et al., 2018 | LC-MS | |
1H-Indol-3-ylacetyl-myo-inositol | Indoles and derivatives | Liu et al., 2018 | LC-MS | |
1-Pentadecene | Unsaturated hydrocarbons | Liu et al., 2018 | LC-MS | |
Lithocholic acid glycine conjugate | Non classified | Liu et al., 2018 | LC-MS | |
Lactate | Gluconeogenesis/Glycolysis | Zhang et al., 2017 | NMR | |
Liu el al., 2018 | GC-MS | |||
Glyceraldehyde | Gluconeogenesis/Glycolysis | Chen et al., 2020 | LC-MS | |
Pyruvate | Glucose glycolysis | Zhang et al., 2017 | NMR | |
Zhao et al., 2015 | GC-MS | |||
Valine | Amino acid metabolism | Zhao et al., 2015 | MS/MS | |
Isoleucine | Amino acid metabolism | Zhao et al., 2015 | MS/MS | |
Leucine | Amino acid metabolism | Zhao et al., 2015 | MS/MS | |
Sun et al., 2019 | LC-MS | |||
Alanine | Amino acid metabolism | Zhang et al., 2017 | NMR | |
Glutamine | Amino acid metabolism | Zhang et al., 2017 | NMR | |
Tyrosine | Amino acid metabolism | Zhang et al., 2017 | NMR | |
Phenylalanine | Amino acid metabolism | Sun et al., 2019 | LC-MS | |
d-Glutamic acid | Amino acid metabolism | Chen et al., 2020 | LC-MS | |
Ferulic acid | Amino acid metabolism | Chen et al., 2020 | LC-MS | |
Salicylic acid | Amino acid metabolism | Chen et al., 2020 | LC-MS | |
Lysine | Amino acid metabolism | Chen et al., 2020 | LC-MS | |
3-Methylhistidine | Amino acid metabolism | Chen et al., 2020 | LC-MS | |
α-Keto-β-methylvalerate | Alpha-keto acids | Zhao et al., 2015 | GC-MS | |
α-Ketoisovalerate | Alpha-keto acids | Zhao et al., 2015 | GC-MS | |
α-Ketoisocaproate | Alpha-keto acids | Zhao et al., 2015 | GC-MS | |
Hexanoyl (C6) | Acylcarnitines | Zhao et al., 2015 | MS/MS | |
Malonyl (C3DC) | Acylcarnitines | Zhao et al., 2015 | MS/MS | |
Hydroxyisovaleryl (C5OH) | Acylcarnitines | Zhao et al., 2015 | MS/MS | |
Octenoyl (C8:1) | Acylcarnitines | Zhao et al., 2015 | MS/MS | |
Adipyl (C6DC) | Acylcarnitines | Zhao et al., 2015 | MS/MS | |
β-Hydroxybutyrate | Ketones | Zhao et al., 2015 | GC-MS | |
Succinate | TCA cycle metabolites | Zhao et al., 2015 | GC-MS | |
Malate | TCA cycle metabolites | Zhao et al., 2015 | GC-MS | |
Oxaloacetate | TCA cycle metabolites | Zhao et al., 2015 | GC-MS | |
Cis-aconitate | TCA cycle metabolites | Zhao et al., 2015 | GC-MS | |
Acetate | TCA cycle metabolites | Zhang et al., 2017 | NMR | |
Acetoacetate | TCA cycle metabolites | Zhang et al., 2017 | NMR | |
3-Hyroxybutyrate | TCA cycle metabolites | Zhang et al., 2017 | NMR | |
N-Methylnicotinamide | Metabolites of NAD catabolism | Zhao et al., 2015 | LC-MS/MS | |
N1-Methyl-2-pyridone-5-carboxamide (2PY) | Metabolites of NAD catabolism | Zhao et al., 2015 | LC-MS/MS | |
N1-Methyl-4-pyridone-3-carboxamide (4PY) | Metabolites of NAD catabolism | Zhao et al., 2015 | LC-MS/MS | |
Deoxycorticosterone | Steroid metabolism | Sun et al., 2019 | LC-MS | |
Pregnenolone | Steroid metabolism | Chen et al., 2020 | LC-MS | |
17-Hydroxyprogesterone | Steroid metabolism | Chen et al., 2020 | LC-MS | |
3-Hydroxynonanoyl carnitine | Fatty acid metabolism | Sun et al., 2019 | LC-MS | |
Eicosapentaenoic acid | Fatty acid metabolism | Sun et al., 2019 | LC-MS | |
Phytosphingosine | Sphingolipid metabolism | Sun et al., 2019 | LC-MS | |
N-acetylneuraminic acid | Sialic acid metabolism | Chen et al., 2020 | LC-MS | |
Pyridoxal 5′-phosphate | Vitamin B6 metabolism | Chen et al., 2020 | LC-MS | |
Purine | Purines metabolism | Chen et al., 2020 | LC-MS | |
1,3-Dimethyluracil | Purines metabolism | Chen et al., 2020 | LC-MS | |
Oxalic acid | Glyoxylic acid metabolism | Chen et al., 2020 | LC-MS | |
Phenylglyoxylic acid | Glyoxylic acid metabolism | Chen et al., 2020 | LC-MS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajska, A.; Buszewska-Forajta, M.; Rachoń, D.; Markuszewski, M.J. Metabolomic Insight into Polycystic Ovary Syndrome—An Overview. Int. J. Mol. Sci. 2020, 21, 4853. https://doi.org/10.3390/ijms21144853
Rajska A, Buszewska-Forajta M, Rachoń D, Markuszewski MJ. Metabolomic Insight into Polycystic Ovary Syndrome—An Overview. International Journal of Molecular Sciences. 2020; 21(14):4853. https://doi.org/10.3390/ijms21144853
Chicago/Turabian StyleRajska, Anna, Magdalena Buszewska-Forajta, Dominik Rachoń, and Michał Jan Markuszewski. 2020. "Metabolomic Insight into Polycystic Ovary Syndrome—An Overview" International Journal of Molecular Sciences 21, no. 14: 4853. https://doi.org/10.3390/ijms21144853
APA StyleRajska, A., Buszewska-Forajta, M., Rachoń, D., & Markuszewski, M. J. (2020). Metabolomic Insight into Polycystic Ovary Syndrome—An Overview. International Journal of Molecular Sciences, 21(14), 4853. https://doi.org/10.3390/ijms21144853