The Association between Nitric Oxide Pathway, Blood Pressure Abnormalities, and Cardiovascular Risk Profile in Pediatric Chronic Kidney Disease
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Biochemical Analysis
4.3. Office BP and 24-h ABPM
4.4. Carotid Ultrasonography and Echocardiography
4.5. HPLC Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abdollahpour, I. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef]
- Urbina, E.M.; Williams, R.V.; Alpert, B.S.; Collins, R.T.; Daniels, S.R.; Hayman, L.; Jacobson, M.; Mahoney, L.; Mietus-Snyder, M.; Rocchini, A.; et al. Noninvasive assessment of subclinical atherosclerosis in children and adolescents: Recommendations for standard assessment for clinical research: A scientific statement from the American Heart Association. Hypertension 2009, 54, 919–950. [Google Scholar] [CrossRef] [PubMed]
- Mitsnefes, M.M. Cardiovascular disease in children with chronic kidney disease. J. Am. Soc. Nephrol. 2012, 23, 578–585. [Google Scholar] [CrossRef] [PubMed]
- McDonald, S.P.; Craig, J.C. Long-term survival of children with end-stage renal disease. N. Eng. J. Med. 2004, 350, 2654–2662. [Google Scholar] [CrossRef]
- Hsu, C.N.; Tain, Y.L. Regulation of nitric oxide production in the developmental programming of hypertension and kidney disease. Int. J. Mol. Sci. 2019, 20, 681. [Google Scholar] [CrossRef]
- Wilcox, C.S. Oxidative stress and nitric oxide deficiency in the kidney: A critical link to hypertension? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 89, R913–R915. [Google Scholar] [CrossRef]
- Baylis, C. Nitric oxide synthase derangements and hypertension in kidney disease. Curr. Opin. Nephrol. Hypertens. 2012, 21, 1–6. [Google Scholar] [CrossRef]
- Török, J. Participation of nitric oxide in different models of experimental hypertension. Physiol. Res. 2008, 57, 813–825. [Google Scholar]
- Wu, G.; Morris, S.M., Jr. Arginine metabolism: Nitric oxide and beyond. Biochem. J. 1998, 336, 1–17. [Google Scholar] [CrossRef]
- Hsu, C.N.; Tain, Y.L. Impact of arginine nutrition and metabolism during pregnancy on Offspring outcomes. Nutrients 2019, 11, 1452. [Google Scholar] [CrossRef]
- Levillain, O.; Parvy, P.; Hassler, C. Amino acid handling in uremic rats: Citrulline, a reliable marker of renal insufficiency and proximal tubular dysfunction. Metabolism 1997, 46, 611–618. [Google Scholar] [CrossRef]
- Tizianello, A.; De Ferrari, G.; Garibotto, G.; Gurreri, G.; Robaudo, C. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J. Clin. Invest. 1980, 65, 1162–1173. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.; Moncada, S.; Vallance, P.; Calver, A.; Collier, J. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 1992, 339, 572–575. [Google Scholar] [CrossRef]
- Tain, Y.L.; Hsu, C.N. Toxic dimethylarginines: Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). Toxins 2017, 9, 92. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, S.; Sonntag, S.R.; Lieb, W.; Maas, R. Asymmetric and symmetric dimethylarginine as risk markers for total mortality and cardiovascular outcomes: A systematic review and meta-analysis of prospective studies. PLoS ONE 2016, 11, 0165811. [Google Scholar] [CrossRef]
- Lin, I.C.; Hsu, C.N.; Lo, M.H.; Chien, S.J.; Tain, Y.L. Low urinary citrulline/arginine ratio associated with blood pressure abnormalities and arterial stiffness in childhood chronic kidney disease. J. Am. Soc. Hypertens. 2016, 10, 115–123. [Google Scholar] [CrossRef]
- Brooks, E.R.; Langman, C.B.; Wang, S.; Price, H.E.; Hodges, A.L.; Darling, L.; Yang, A.Z.; Smith, F.A. Methylated arginine derivatives in children and adolescents with chronic kidney disease. Pediatr. Nephrol. 2009, 24, 129–134. [Google Scholar] [CrossRef]
- Mitsnefes, M.; Flynn, J.; Cohn, S.; Samuels, J.; Blydt-Hansen, T.; Saland, J.; Kimball, T.; Furth, S.; Warady, B.; CKiD Study Group. Masked hypertension associates with left ventricular hypertrophy in children with CKD. J. Am. Soc. Nephrol. 2010, 21, 137–144. [Google Scholar] [CrossRef]
- Brady, T.M.; Schneider, M.F.; Flynn, J.T.; Cox, C.; Samuels, J.; Saland, J.; White, C.T.; Furth, S.; Warady, B.A.; Mitsnefes, M. Carotid intima-media thickness in children with CKD: Results from the CKiD study. Clin. J. Am. Soc. Nephrol. 2012, 7, 1930–1937. [Google Scholar] [CrossRef]
- Taal, M.W. Arterial stiffness in chronic kidney disease: An update. Curr. Opin. Nephrol. Hypertens. 2014, 23, 169–173. [Google Scholar] [CrossRef]
- Deanfield, J.E.; Halcox, J.P.; Rabelink, T.J. Endothelial function and dysfunction: Testing and clinical relevance. Circulation 2007, 115, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Lurbe, E.; Agabiti-Rosei, E.; Cruickshank, J.K.; Dominiczak, A.; Erdine, S.; Hirth, A.; Invitti, C.; Litwin, M.; Mancia, G.; Pall, D.; et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J. Hypertens. 2016, 34, 1887–1920. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.J.; Moxey-Mims, M.; Jerry-Fluker, J.; Warady, B.A.; Furth, S.L. CKiD (CKD in children) prospective cohort study: A review of current findings. Am. J. Kidney Dis. 2012, 60, 1002–1011. [Google Scholar] [CrossRef] [PubMed]
- Chou, H.H.; Lin, C.Y.; Chiou, Y.H.; Tain, Y.L.; Wang, Y.F.; Wang, H.H.; Chiou, Y.Y. Clinical characteristics and prevalence of complications of chronic kidney disease in children: The Taiwan Pediatric Renal Collaborative study. Pediatr. Nephrol. 2016, 31, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Graves, J.W.; Althaf, M.M. Utility of ambulatory blood pressure monitoring in children and adolescents. Pediatr. Nephrol. 2006, 21, 1640–1652. [Google Scholar] [CrossRef] [PubMed]
- Tomiyama, H.; Shiina, K.; Vlachopoulos, C.; Iwasaki, Y.; Matsumoto, C.; Kimura, K.; Fujii, M.; Chikamori, T.; Yamashina, A. Involvement of arterial stiffness and Inflammation in hyperuricemia-related development of hypertension. Hypertension 2018, 72, 739–745. [Google Scholar] [CrossRef]
- Fathallah-Shaykh, S.A.; Cramer, M.T. Uric acid and the kidney. Pediatr. Nephrol. 2004, 29, 999–1008. [Google Scholar] [CrossRef]
- Lau, T.; Owen, W.; Yu, Y.M.; Noviski, N.; Lyons, J.; Zurakowski, D.; Tsay, R.; Ajami, A.; Young, V.R.; Castillo, L. Arginine, citrulline, and nitric oxide metabolism in end-stage renal disease patients. J. Clin. Invest. 2000, 105, 1217–1225. [Google Scholar] [CrossRef]
- Bode-Boger, S.M.; Scalera, F.; Ignarro, L.J. The l-arginine paradox: Importance of the l-arginine/asymmetrical dimethylarginine ratio. Pharm. Ther. 2007, 114, 295–306. [Google Scholar] [CrossRef]
- Bassareo, P.P.; Fanos, V.; Puddu, M.; Flore, G.; Mercuro, G. Advanced intrauterine growth restriction is associated with reduced excretion of asymmetric dimethylarginine. Early Hum. Dev. 2014, 90, 173–176. [Google Scholar] [CrossRef]
- Tain, Y.L.; Huang, L.T.; Lin, I.C.; Lau, Y.T.; Lin, C.Y. Melatonin prevents hypertension and increased asymmetric dimethylarginine in young spontaneous hypertensive rats. J. Pineal Res. 2010, 49, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Emrich, I.E.; Zawada, A.M.; Martens-Lobenhoffer, J.; Fliser, D.; Wagenpfeil, S.; Heine, G.H.; Bode-Böger, S.M. Symmetric dimethylarginine (SDMA) outperforms asymmetric dimethylarginine (ADMA) and other methylarginines as predictor of renal and cardiovascular outcome in non-dialysis chronic kidney disease. Clin. Res. Cardiol. 2018, 107, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Drawz, P.E.; Alper, A.B.; Anderson, A.H.; Brecklin, C.S.; Charleston, J.; Chen, J.; Deo, R.; Fischer, M.J.; He, J.; Hsu, C.Y.; et al. Masked hypertension and elevated nighttime blood pressure in CKD: Prevalence and association with target organ damage. Clin. J. Am. Soc. Nephrol. 2016, 11, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Kollias, A.; Stergiou, G.S.; Dolan, E.; O’Brien, E. Ambulatory arterial stiffness index: A systematic review and meta-analysis. Atherosclerosis 2012, 224, 291–301. [Google Scholar] [CrossRef] [PubMed]
- K/DOQI Workgroup. K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am. J. Kidney Dis. 2005, 45, S1–S153. [Google Scholar]
- Gupta, D.; Chaturvedi, S.; Chandy, S.; Agarwal, I. Role of 24-h ambulatory blood pressure monitoring in children with chronic kidney disease. Indian, J. Nephrol. 2015, 25, 355–361. [Google Scholar] [CrossRef]
- National High Blood Pressure Education Program. The Fourth Report on the Diagnosis, Evaluation, and Treatment of High Blood Pressure in Children and Adolescents. 2004. Available online: https://www.nhlbi.nih.gov › docs › resources › heart › hbp_ped (accessed on 1 September 2019).
- Wuhl, E.; Witte, K.; Soergelm, M.; Mehls, O.; Schaefer, F.; German Working Group on Pediatric Hypertension. Distribution of 24-h ambulatory blood pressure in children: Normalized reference values and role of body dimensions. J. Hypertens. 2002, 20, 1995–2007. [Google Scholar] [CrossRef]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; de Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics 2017, 140, e20171904. [Google Scholar] [CrossRef]
- Levin, A.; Stevens, P.E.; Bilous, R.W.; Coresh, J.; De Francisco, A.L.M.; De Jong, P.E.; Griffith, K.E.; Hemmelgarn, B.R.; Iseki, K.; Lamb, E.J. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Schwartz, G.J.; Muñoz, A.; Schneider, M.F.; Mak, R.H.; Kaskel, F.; Warady, B.A.; Furth, S.L. New equations to estimate GFR in children with CKD. J. Am. Soc. Nephrol. 2009, 20, 629–637. [Google Scholar] [CrossRef]
- Renkema, K.Y.; Winyard, P.J.; Skovorodkin, I.N.; Levtchenko, E.; Hindryckx, A.; Jeanpierre, C.; Weber, S.; Salomon, R.; Antignac, C.; Vainio, S.; et al. Novel perspectives for investigating congenital anomalies of the kidney and urinary tract (CAKUT). Nephrol. Dial. Transplant. 2011, 26, 3843–3851. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.R.; Kimball, T.R.; Morrison, J.A.; Khoury, P.; Meyer, R.A. Indexing left ventricular mass to account for differences in body size in children and adolescents without cardiovascular disease. Am. J. Cardiol. 1995, 76, 699–701. [Google Scholar] [CrossRef]
- Chien, S.J.; Lin, I.C.; Hsu, C.N.; Lo, M.H.; Tain, Y.L. Homocysteine and arginine-to-asymmetric dimethylarginine ratio associated with blood pressure abnormalities in children with early chronic kidney disease. Circ. J. 2015, 79, 2031–2037. [Google Scholar] [CrossRef] [PubMed]
All Patients | Office BP | ||
---|---|---|---|
Normal | Abnormal | ||
Characteristic | N = 125 | N = 77 | N = 48 |
Age, years | 9.6 (5.3–14.4) | 10 (6.4–14.2) | 8.7 (4.8–15.7) |
Male | 72 (57.6%) | 41 (53.2%) | 31 (64.6%) |
CKD staging | |||
Stage G1 | 91 (72.8%) | 59 (76.6%) | 32 (66.7%) |
Stage G2 | 22 (17.6%) | 12 (15.6%) | 10 (20.8%) |
Stage G3 | 10 (8%) | 6 (7.8%) | 4 (8.3%) |
Stage G4 | 2 (1.6%) | 0 (0%) | 2 (4.2%) |
CAKUT | 80 (64%) | 51 (66.2%) | 29 (60.4%) |
Body height, percentile | 50 (20–75) | 50 (25–75) | 25 (15–75) |
Body weight, percentile | 50 (15–85) | 50 (15–75) | 63 (15–85) |
Systolic blood pressure, mmHg | 109 (100–120) | 103 (98–114) | 119 (109–136) * |
Diastolic blood pressure, mmHg | 69 (63–77) | 64 (60–71) | 77 (68–83) * |
Body mass index, kg·m−2 | 17.6 (15.6–20.7) | 17.1 (15.2–20.3) | 18 (16.1–22.3) |
Blood urea nitrogen, mg/dL | 12 (10–15) | 12 (10–14) | 13 (10–17) |
Creatinine, mg/dL | 0.5 (0.42–0.69) | 0.51 (0.44–0.67) | 0.5 (0.37–0.7) |
eGFR, mL/min/1.73 m2 | 107 (87–125) | 110 (91–125) | 102 (83–126) |
Urine total protein-to-creatinine ratio, mg/g | 69 (40–283) | 61 (38–169) | 128 (43–1424) * |
Hemoglobin, g/dL | 13.4 (12.6–14.2) | 13.4 (12.6–14.2) | 13.4 (12.4–14.6) |
Hematocrit, % | 39.7 (37.3–41.8) | 39.6 (37.3–41.8) | 40 (37.3–42.6) |
Total cholesterol, mg/dL | 165 (146–190) | 160 (140–179) | 177 (154–202) * |
LDL, mg/dL | 87 (71–105) | 81 (65–100) | 94 (78–128) * |
Triglyceride, mg/dL | 67 (51–103) | 62 (50–92) | 72 (51–142) |
Fasting glucose, mg/dL | 87 (83–92) | 87 (83–91) | 87 (83–94) |
Uric acid, mg/dL | 5.3 (4.1–6.3) | 4.9 (4–6.1) | 5.8 (5–7) * |
Sodium, mEq/L | 141 (140–142) | 141 (140–142) | 141 (140–142) |
Potassium, mEq/L | 4.4 (4.2–4.6) | 4.4 (4.2–4.5) | 4.4 (4.1–4.6) |
Calcium, mg/dL | 9.7 (9.3–9.9) | 9.7 (9.4–9.9) | 9.6 (9.1–10) |
Phosphate, mg/dL | 4.9 (4.5–5.3) | 4.9 (4.5–5.3) | 5 (4.4–5.4) |
Ca × P product, mg2/dL2 | 47.5 (41.7–51.8) | 47 (41.8–51.8) | 47.6 (41.4–51.8) |
Office BP | Normal | Abnormal |
---|---|---|
N = 74 | N = 47 | |
Citrulline, μM | 36 (25.7–46.1) | 37.6 (27.5–47.2) |
Arginine, μM | 92.2 (71–109) | 78.5 (57.5–98.9) * |
ADMA, μM | 1.05 (0.7–1.33) | 1.1 (0.8–1.3) |
SDMA, μM | 0.7 (0.6–0.93) | 0.6 (0.5–0.8) |
Arginine-to-ADMA ratio, μM/μM | 89.5 (54.2–141.4) | 74.8 (57.2–93.3) * |
ADMA-to-SDMA ratio, μM/μM | 1.5 (1–1.91) | 1.71 (1.43–2.33) * |
Citrulline-to-Arginine ratio, μM/μM | 0.4 (0.3–0.58) | 0.51 (0.39–0.68) * |
CKD Stage | G1 | G2–G4 | Total |
---|---|---|---|
24-h ABPM | N = 50 | N = 26 | N = 76 |
24-h systolic BP | 109 (101–116) | 120 (112–135) * | 112 (103–121) |
24-h diastolic BP | 63 (58–66) | 65 (61–72) * | 64 (59–68) |
SBP load | 2.5 (0–15) | 21 (2.8–45.3) * | 4 (2–27.8) |
DBP load | 2 (0–7.2) | 5 (0–16.3) * | 2 (0–8) |
Abnormal ABPM profile (with any of the following abnormalities) | 26 (52%) | 22 (85%) * | 48 (63%) |
Average 24-h BP > 95th percentile | 4 (8%) | 7 (27%) * | 11 (15%) |
Average daytime BP > 95th percentile | 4 (8%) | 8 (31%) * | 12 (16%) |
Average nighttime > 95th percentile | 8 (16%) | 10 (39%) * | 18 (24%) |
BP load ≥ 25% | 17 (34%) | 20 (77%) * | 37 (49%) |
Nocturnal decrease of BP < 10% | 19 (38%) | 13 (50%) | 32 (42%) |
cIMT, mm | 0.3 (0.3–0.4) | 0.3 (0.3–0.4) | 0.3 (0.3–0.4) |
PWV, m/s | 3.8 (3.4–4.2) | 4 (3.6–4.8) * | 3.85 (3.53–4.38) |
FMD, % | 8.3 (3.4–12.9) | 4.6 (2.6–15.4) | 7.8 (3.2–12.9) |
AASI | 0.37 (0.22–0.43) | 0.39 (0.33–0.48) | 0.36 (0.24–0.44) |
LV mass, g | 87.5 (66.5–115) | 123 (73.7–159) * | 94.9 (66.5–127) |
LVMI, g/m2.7 | 30.7 (25.6–37.2) | 31 (28.6–39) | 30.9 (26.1–38.2) |
BP | cIMT, mm | PWV, m/s | FMD, % | AASI | LVMI, g/m2.7 |
---|---|---|---|---|---|
24-h BP | |||||
Abnormal | 0.4 (0.3–0.4) | 4.1 (4–5) * | 7.4 (3.8–14.7) | 0.44 (0.36–0.54) * | 40.1 (28.9–47.2) * |
Normal | 0.3 (0.3–0.4) | 3.8 (3.5–4.3) | 7.8 (2.9–12.7) | 0.34 (0.24–0.43) | 30.6 (26–36.2) |
Daytime BP | |||||
Abnormal | 0.4 (0.3–0.4) | 4.2 (4–5) * | 6 (3.2–13.8) | 0.42 (0.36–0.54) * | 39.1 (29.5–46.9) * |
Normal | 0.3 (0.3–0.4) | 3.8 (3.4–4.3) | 7.8 (3–13) | 0.34 (0.24–0.43) | 30.6 (26–35.2) |
Nighttime BP | |||||
Abnormal | 0.4 (0.3–0.4) | 4.2 (3.9–4.8) * | 4.6 (3.2–12.9) | 0.42 (0.33–0.53) * | 37 (30.7–47.2) * |
Normal | 0.3 (0.3–0.4) | 3.8 (3.4–4.2) | 8.1 (2.8–13.2) | 0.34 (0.23–0.42) | 30.4 (25.8–35.1) |
BP load | |||||
Abnormal | 0.4 (0.3–0.4) | 4.1 (3.6–4.8) * | 5 (3–11.7) | 0.38 (0.24–0.46) | 32.9 (29.2–40.7) * |
Normal | 0.3 (0.3–0.4) | 3.8 (3.4–4.1) | 8.7 (4–15.3) | 0.34 (0.24–0.43) | 29.7 (25.6–32.9) |
Night dipping | |||||
Abnormal | 0.3 (0.3–0.4) | 3.9 (3.4–4.3) * | 6.5 (3.3–10.7) | 0.37 (0.24–0.49) | 31.1 (29.1–41) * |
Normal | 0.3 (0.3–0.4) | 3.8 (3.6–4.5) | 9.3 (2.5–15.7) | 0.34 (0.24–0.42) | 30.6 (25.9–36.8) |
ABPM profile | |||||
Abnormal | 0.4 (0.3–0.4) | 4 (3.6–4.6) * | 7.2 (3.3–11.7) | 0.39 (0.24–0.46) | 31.8 (28.1–40) * |
Normal | 0.3 (0.3–0.4) | 3.8 (3.4–4.2) | 9.3 (2.2–16.5) | 0.31 (0.24–0.42) | 28.8 (25.7–32.9) |
Dependent Valuable | Explanatory Valuable | Adjusted a | Model | ||
---|---|---|---|---|---|
Beta | p-Value | r | p-Value | ||
24-h systolic BP | Citrulline-to-arginine ratio | −0.288 | 0.006 | 0.613 | <0.001 |
24-h diastolic BP | Citrulline-to-arginine ratio | −0.409 | <0.001 | 0.625 | <0.001 |
SBP load | Citrulline-to-arginine ratio | −0.331 | 0.001 | 0.691 | <0.001 |
Citrulline | −0.240 | 0.032 | |||
DBP load | Citrulline-to-arginine ratio | −0.289 | 0.004 | 0.642 | <0.001 |
CV Markers | cIMT | PWV | FMD | AASI | LV Mass | LVMI | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | r | p | |
Citrulline | −0.028 | 0.813 | 0.035 | 0.771 | 0.027 | 0.835 | 0.092 | 0.443 | −0.127 | 0.291 | −0.143 | 0.233 |
Arginine | 0.346 | 0.003 * | 0.258 | 0.029 * | 0.026 | 0.845 | 0.21 | 0.079 | −0.197 | 0.099 | 0.21 | 0.078 |
ADMA | 0.084 | 0.483 | −0.074 | 0.537 | −0.177 | 0.173 | 0.118 | 0.328 | −0.003 | 0.978 | −0.128 | 0.287 |
SDMA | −0.122 | 0.307 | −0.051 | 0.673 | 0.076 | 0.561 | 0.039 | 0.745 | 0.079 | 0.515 | −0.21 | 0.079 |
Arginine-to-ADMA | 0.224 | 0.059 | 0.232 | 0.05 | 0.083 | 0.525 | 0.074 | 0.537 | 0.194 | 0.104 | 0.209 | 0.08 |
ADMA-to-SDMA | 0.006 | 0.961 | −0.009 | 0.942 | −0.089 | 0.494 | −0.009 | 0.942 | −0.127 | 0.291 | 0.046 | 0.688 |
Citrulline-to-Arginine | −0.342 | 0.003 * | −0.159 | 0.181 | 0.001 | 0.991 | −0.055 | 0.648 | −0.267 | 0.024 * | −0.302 | 0.011 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-N.; Lu, P.-C.; Lo, M.-H.; Lin, I.-C.; Tain, Y.-L. The Association between Nitric Oxide Pathway, Blood Pressure Abnormalities, and Cardiovascular Risk Profile in Pediatric Chronic Kidney Disease. Int. J. Mol. Sci. 2019, 20, 5301. https://doi.org/10.3390/ijms20215301
Hsu C-N, Lu P-C, Lo M-H, Lin I-C, Tain Y-L. The Association between Nitric Oxide Pathway, Blood Pressure Abnormalities, and Cardiovascular Risk Profile in Pediatric Chronic Kidney Disease. International Journal of Molecular Sciences. 2019; 20(21):5301. https://doi.org/10.3390/ijms20215301
Chicago/Turabian StyleHsu, Chien-Ning, Pei-Chen Lu, Mao-Hung Lo, I-Chun Lin, and You-Lin Tain. 2019. "The Association between Nitric Oxide Pathway, Blood Pressure Abnormalities, and Cardiovascular Risk Profile in Pediatric Chronic Kidney Disease" International Journal of Molecular Sciences 20, no. 21: 5301. https://doi.org/10.3390/ijms20215301
APA StyleHsu, C.-N., Lu, P.-C., Lo, M.-H., Lin, I.-C., & Tain, Y.-L. (2019). The Association between Nitric Oxide Pathway, Blood Pressure Abnormalities, and Cardiovascular Risk Profile in Pediatric Chronic Kidney Disease. International Journal of Molecular Sciences, 20(21), 5301. https://doi.org/10.3390/ijms20215301