Next Article in Journal
Transcription Factor OpWRKY3 Is Involved in the Development and Biosynthesis of Camptothecin and Its Precursors in Ophiorrhiza pumila Hairy Roots
Previous Article in Journal
Potential Functions of Gem-Associated Protein 2-Like Isoform X1 in the Oriental River Prawn Macrobrachium nipponense: Cloning, qPCR, In Situ Hybridization, and RNAi Analysis
Open AccessArticle

Effect of Layer Charge Density on Hydration Properties of Montmorillonite: Molecular Dynamics Simulation and Experimental Study

1
College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2
School of Resources Environment and Materials, Guangxi University, Nanning 530004, China
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2019, 20(16), 3997; https://doi.org/10.3390/ijms20163997
Received: 19 July 2019 / Revised: 12 August 2019 / Accepted: 14 August 2019 / Published: 16 August 2019
(This article belongs to the Section Materials Science)
  |  
PDF [4468 KB, uploaded 16 August 2019]
  |  

Abstract

Four kinds of Ca-montmorillonite with different layer charge density were used to study the effect of charge density on their hydration properties by molecular dynamics simulation and experiments. The research results of Z-density distribution of water molecules, Hw (hydrogen in water molecules), and Ca in the interlayer of montmorillonite show that the hydration properties of montmorillonite are closely related to its layer charge density. If the charge density is low, the water molecules in the interlayers are mainly concentrated on the sides of the central axis about –1.3 Å and 1.5 Å. As the charge density increases from 0.38semi-cell to 0.69semi-cell, the water molecules are distributed −2.5 Å and 2.4 Å away from the siloxane surface (Si-O), the concentration of water molecules near the central axis decreases, and at the same time, Ca2+ appears to gradually shift from the vicinity of the central axis to the Si-O surface on both sides in the montmorillonite layer. The simulation results of the radial distribution function (RDF) of the Ca-Hw, Ca-Ow (oxygen in water molecules), and Ca-Ot (the oxygen in the tetrahedron) show that the Ca2+ and Ow are more tightly packed together than that of Hw; with the increase of the charge density, due to the fact that the negative charge sites on the Si-O surface increase, under the action of electrostatic attraction, some of the Ca2+ are pulled towards the Si-O surface, which is more obvious when the layer charge density of the montmorillonite is higher. The results of the RDF of the Ot-Hw show that with the increase of charge density, the number of hydrogen bonds formed by Ot and Hw in the interlayers increase, and under the action of hydrogen bonding force, the water molecules near the central axis are pulled towards the two sides of Si-O surface. As a result, the arrangement of water molecules is more compact, and the structure is obvious. Correspondingly, the self-diffusion coefficient shows that the higher the layer charge density, the lower the self-diffusion coefficient of water molecules in interlayers is and the worse the hydration performance of montmorillonite. The experimental results of the experiments fit well with the above simulation results. View Full-Text
Keywords: montmorillonite; layer charge density; hydration property; molecular dynamics simulation; experiment montmorillonite; layer charge density; hydration property; molecular dynamics simulation; experiment
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Qiu, J.; Li, G.; Liu, D.; Jiang, S.; Wang, G.; Chen, P.; Zhu, X.; Yao, G.; Liu, X.; Lyu, X. Effect of Layer Charge Density on Hydration Properties of Montmorillonite: Molecular Dynamics Simulation and Experimental Study. Int. J. Mol. Sci. 2019, 20, 3997.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top