Next Article in Journal
The 40S Ribosomal Protein S6 Response to Blue Light by Interaction with SjAUREO in Saccharina japonica
Previous Article in Journal
ATP-Binding Cassette Transporter Regulates N,N′-diacetylchitobiose Transportation and Chitinase Production in Trichoderma asperellum T4
Article Menu
Issue 10 (May-2) cover image

Export Article

Open AccessArticle

Impact of CYP3A5, POR, and CYP2C19 Polymorphisms on Trough Concentration to Dose Ratio of Tacrolimus in Allogeneic Hematopoietic Stem Cell Transplantation

1
Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
2
Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
3
Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2019, 20(10), 2413; https://doi.org/10.3390/ijms20102413
Received: 4 April 2019 / Revised: 9 May 2019 / Accepted: 14 May 2019 / Published: 15 May 2019
(This article belongs to the Special Issue Molecular Mechanisms and Biomarkers in Drug-Induced Organ Injury)
  |  
PDF [957 KB, uploaded 16 May 2019]
  |  

Abstract

Single nucleotide polymorphisms in drug-metabolizing genes may affect tacrolimus pharmacokinetics. Here, we investigated the influence of genotypes of CYP3A5, CYP2C19, and POR on the concentration/dose (C/D) ratio of tacrolimus and episodes of acute graft-versus-host disease (GVHD) in Japanese recipients of allogeneic hematopoietic stem cell transplantation (HSCT). Thirty-six patients receiving the first HSCT using tacrolimus-based GVHD prophylaxis were enrolled with written informed consent. During continuous intravenous infusion, HSCT recipients carrying the CYP3A5*1 allele, particularly those with at least one POR*28 allele, had a significantly lower tacrolimus C/D ratio throughout all three post-HSCT weeks compared to that in recipients with POR*1/*1 (p < 0.05). The CYP3A5*3/*3 genotype and the concomitant use of voriconazole were independent predictors of an increased tacrolimus C/D ratio during the switch from continuous intravenous infusion to oral administration (p < 0.05). In recipients receiving concomitant administration of voriconazole, our results suggest an impact of not only CYP3A5 and CYP2C19 genotypes, but also plasma voriconazole concentration. Although switching from intravenous to oral administration at a ratio of 1:5 was seemingly appropriate in recipients with CYP3A5*1, a lower conversion ratio (1:2–3) was appropriate in recipients with CYP3A5*3/*3. Our results suggest that CYP3A5, POR, and CYP2C19 polymorphisms are useful biomarkers for individualized dosage adjustment of tacrolimus in HSCT recipients. View Full-Text
Keywords: CYP3A5; POR; CYP2C19; single nucleotide polymorphism; tacrolimus; hematopoietic stem cell transplantation CYP3A5; POR; CYP2C19; single nucleotide polymorphism; tacrolimus; hematopoietic stem cell transplantation
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Suetsugu, K.; Mori, Y.; Yamamoto, N.; Shigematsu, T.; Miyamoto, T.; Egashira, N.; Akashi, K.; Masuda, S. Impact of CYP3A5, POR, and CYP2C19 Polymorphisms on Trough Concentration to Dose Ratio of Tacrolimus in Allogeneic Hematopoietic Stem Cell Transplantation. Int. J. Mol. Sci. 2019, 20, 2413.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top