Role of MicroRNAs in Renal Parenchymal Diseases—A New Dimension
Abstract
:1. Introduction
2. Search Strategy
3. miRNA Discovery and Biogenesis
4. Role of miRNAs in Renal Development
5. Role of miRNAs in Renal Physiology
6. Role of miRNAs in Renal Fibrosis and Maladaptive Repair
7. miRNAs in Select Renal Parenchymal Diseases
7.1. Diabetic Nephropathy
7.2. Hypertension
7.3. Glomerulonephritis
7.3.1. Focal Segmental Glomerulosclerosis
7.3.2. IgA Nephropathy
7.3.3. Lupus Nephritis
7.3.4. Anti-Neutrophilic Cytoplasmic Antibodies Associated Vasculitis (ANCA)
7.3.5. Systemic Sclerosis (Scleroderma)
7.3.6. Autosomal Dominant Polycystic Kidney Disease (ADPKD)
7.3.7. Alport Syndrome
8. miRNA Detection
miRNA as Personalized Diagnostics
9. Micro RNAs as a Therapeutic Option in Renal Diseases
9.1. miRNA Delivery
9.2. MicroRNA-Based Renal Therapeutics
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
3′ UTR | 3′-Untranslated Region |
ACE | Angiotensin-converting Enzyme |
ACEi | Angiotensin-converting Enzyme Inhibitors |
ADPKD | Autosomal Dominant Polycystic Kidney Disease |
ANCA Vasculitis | Anti-Neutrophilic Cytoplasmic Antibodies associated Vasculitis |
Ang II | Angiotensin 2 |
AT1R | Angiotensin 1 Receptor |
BDNF | Brain Derived Neurotrophic Factor |
BIM | Bcl-2-Like Protein 11 |
BP | Blood Pressure |
C1GALT1 | 1-β-1,3-Galactosyltransferase-1 |
CCD | Cortical Collecting Duct |
Col4 α3−/− | Homozygous for Collagen Type 4 alpha 3 Chain Absence |
Consomic SS-13BN | Consomic Salt Sensitive Rats |
Dahl-SS | Dahl Salt-Sensitive |
DCT | Distal Convoluted Tubule |
ddPCR | Droplet Digital Polymerase Chain Reaction |
DOPC | 1,2-Dioleoyl-sn-Glycero-3- Phosphocholine |
ECM | Extra Cellular Matrix |
eGFR | Estimated Glomerular Filtration Rate |
EMT | Epithelial to Mesenchymal Transition |
ENaC | Epithelial Sodium Channel |
eNOS | Endothelial Nitric Oxide Synthase |
ESRD | End-stage Renal Disease |
FF | Feed Forward |
FOXP3 | Forkhead Box P3 |
FSGS | Focal Segmental Glomerulosclerosis |
GALNT2 | N-Acetylgalactosaminyltransferase 2 |
GN | Glomerulonephritis |
HUVECs | Human Umbilical Vein Endothelial Cells |
IL-1β | Interleukin 1 Beta |
isomiRs | Imprecise miRNA Processing |
miRNA | Micro RNA |
MPO | Myeloperoxidase |
mRNA | Messenger Ribonucleic Acid |
MWF rat model | Munich Wistar Fromter (MWF) Rat Model |
NCC | Sodium Chloride Co-Transporter |
NF-Κβ | Nuclear Factor Kappa Beta |
NGS | Next-Generation Sequencing |
NO | Nitric Oxide |
PI-3/Akt | Phosphatidylinositol-3 Kinase/Akt Pathway |
PKD1 | Polycystic Kidney Disease 1 |
PLGA | Poly Lactic-Co-Glycolic Acid |
PR3 | Proteinase 3 |
PTEN | Tensin Homolog Deleted on Chromosome 10 |
qPCR | Quantitative real-time Polymerase Chain Reaction |
RANTES | Regulated Upon Activation, Normal T-cell Expressed and Secreted |
RhoA | Ras Homolog Gene Family, Member A |
RNA | Ribonucleic Acid |
ROMK | Renal Outer Medullary Potassium Channel |
ROS | Reactive Oxygen Species |
rRNA | Ribosomal Ribonucleic Acid |
SERPINE1 | Serine Protease Inhibitor Protein 1 |
siRNA | Small Interfering Micro Ribonucleic Acid |
SLE | Systemic Lupus Erythematosus |
SPRY1 | Sprouty Homolog 1 |
sRNA-seq | Small RNA Sequencing |
TGF-β | Transforming Growth Factor Beta |
TNF-α | Tumor Necrosis Factor Alpha |
tRNA | Transfer Ribonucleic Acid |
VSMCs | Vascular Smooth Muscle Cells |
WNK | with no Lysine Kinase System |
ZEB2 | Zinc Finger E-Box-Binding Homeobox 2 |
References
- Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Creugny, A.; Fender, A.; Pfeffer, S. Regulation of primary microRNA processing. FEBS Lett. 2018. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Hung, M.-C. Signaling-mediated regulation of MicroRNA processing. Cancer Res. 2015, 75, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Achkar, N.P.; Cambiagno, D.A.; Manavella, P.A. miRNA Biogenesis: A Dynamic Pathway. Trends Plant Sci. 2016, 21, 1034–1044. [Google Scholar] [CrossRef] [PubMed]
- miRBase. Available online: http://www.mirbase.org/ (accessed on 20 November 2017).
- Ho, J.; Pandey, P.; Schatton, T.; Sims-Lucas, S.; Khalid, M.; Frank, M.H.; Hartwig, S.; Kreidberg, J.A. The pro-apoptotic protein Bim is a microRNA target in kidney progenitors. J. Am. Soc. Nephrol. 2011, 22, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Mogilyansky, E.; Rigoutsos, I. The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 2013, 20, 1603–1614. [Google Scholar] [CrossRef] [PubMed]
- Nagalakshmi, V.K.; Ren, Q.; Pugh, M.M.; Valerius, M.T.; McMahon, A.P.; Yu, J. Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney Int. 2011, 79, 317–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrone, A.K.; Stolz, D.B.; Bastacky, S.I.; Kostka, D.; Bodnar, A.J.; Ho, J. MicroRNA-17~92 is required for nephrogenesis and renal function. J. Am. Soc. Nephrol. 2014, 25, 1440–1452. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Hajarnis, S.; Williams, D.; Hunter, R.; Huynh, D.; Igarashi, P. MicroRNAs regulate renal tubule maturation through modulation of Pkd1. J. Am. Soc. Nephrol. 2012, 23, 1941–1948. [Google Scholar] [CrossRef] [PubMed]
- Harvey, S.J.; Jarad, G.; Cunningham, J.; Goldberg, S.; Schermer, B.; Harfe, B.D.; McManus, M.T.; Benzing, T.; Miner, J.H. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J. Am. Soc. Nephrol. 2008, 19, 2150–2158. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Yu, L.; Chiu, C.; Sun, Y.; Chen, J.; Khitrov, G.; Merkenschlager, M.; Holzman, L.B.; Zhang, W.; Mundel, P.; et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J. Am. Soc. Nephrol. 2008, 19, 2159–2169. [Google Scholar] [CrossRef] [PubMed]
- Zhdanova, O.; Srivastava, S.; Di, L.; Li, Z.; Tchelebi, L.; Dworkin, S.; Johnstone, D.B.; Zavadil, J.; Chong, M.M.; Littman, D.R.; et al. The inducible deletion of Drosha and microRNAs in mature podocytes results in a collapsing glomerulopathy. Kidney Int. 2011, 80, 719–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sequeira-Lopez, M.L.S.; Weatherford, E.T.; Borges, G.R.; Monteagudo, M.C.; Pentz, E.S.; Harfe, B.D.; Carretero, O.; Sigmund, C.D.; Gomez, R.A. The MicroRNA-Processing Enzyme Dicer Maintains Juxtaglomerular Cells. J. Am. Soc. Nephrol. 2010, 21, 460–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mladinov, D.; Liu, Y.; Mattson, D.L.; Liang, M. MicroRNAs contribute to the maintenance of cell-type-specific physiological characteristics: MiR-192 targets Na+/K+-ATPase β1. Nucleic Acids Res. 2013, 41, 1273–1283. [Google Scholar] [CrossRef] [PubMed]
- Elvira-Matelot, E.; Zhou, X.; Farman, N.; Beaurain, G.; Henrion-Caude, A.; Hadchouel, J.; Jeunemaitre, X. Regulation of WNK1 Expression by miR-192 and Aldosterone. J. Am. Soc. Nephrol. 2010, 21, 1724–1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, D.-H.; Yue, P.; Pan, C.; Sun, P.; Wang, W.-H. MicroRNA 802 stimulates ROMK channels by suppressing caveolin-1. J. Am. Soc. Nephrol. 2011, 22, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Renigunta, V.; Himmerkus, N.; Zhang, J.; Renigunta, A.; Bleich, M.; Hou, J. Claudin-14 regulates renal Ca++ transport in response to CaSR signalling via a novel microRNA pathway. EMBO J. 2012, 31, 1999–2012. [Google Scholar] [CrossRef] [PubMed]
- Böttinger, E.P. TGF-beta in renal injury and disease. Semin. Nephrol. 2007, 27, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Derynck, R. Essential role of TGF-β signaling in glucose-induced cell hypertrophy. Dev. Cell 2009, 17, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Rüster, C.; Wolf, G. Angiotensin II as a morphogenic cytokine stimulating renal fibrogenesis. J. Am. Soc. Nephrol. 2011, 22, 1189–1199. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Liu, G.-S.; Dusting, G.J.; Chan, E.C. NADPH oxidase-dependent redox signaling in TGF-β-mediated fibrotic responses. Redox Biol. 2014, 2, 267–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, A.B. Molecular and cell biology of TGF-β. Miner. Electrolyte Metab. 1998, 24, 111–119. [Google Scholar] [CrossRef] [PubMed]
- LeBleu, V.S.; Taduri, G.; O’Connell, J.; Teng, Y.; Cooke, V.G.; Woda, C.; Sugimoto, H.; Kalluri, R. Origin and Function of Myofibroblasts in Kidney Fibrosis. Nat. Med. 2013, 19, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Jenkins, R.H.; Bennagi, R.; Krupa, A.; Phillips, A.O.; Bowen, T.; Fraser, D.J. Post-Transcriptional Regulation of Transforming Growth Factor Beta-1 by MicroRNA-744. PLoS ONE 2011, 6, e25044. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Koh, P.; Winbanks, C.; Coughlan, M.T.; McClelland, A.; Watson, A.; Jandeleit-Dahm, K.; Burns, W.C.; Thomas, M.C.; Cooper, M.E.; et al. miR-200a Prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes 2011, 60, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Herman-Edelstein, M.; Koh, P.; Burns, W.; Jandeleit-Dahm, K.; Watson, A.; Saleem, M.; Goodall, G.J.; Twigg, S.M.; Cooper, M.E.; et al. E-Cadherin Expression Is Regulated by miR-192/215 by a Mechanism That Is Independent of the Profibrotic Effects of Transforming Growth Factor-β. Diabetes 2010, 59, 1794–1802. [Google Scholar] [CrossRef] [PubMed]
- Chung, A.C.K.; Huang, X.R.; Meng, X.; Lan, H.Y. miR-192 mediates TGF-β/Smad3-driven renal fibrosis. J. Am. Soc. Nephrol. 2010, 21, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Zhang, J.; Wang, M.; Lanting, L.; Yuan, H.; Rossi, J.J.; Natarajan, R. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc. Natl. Acad. Sci. USA 2007, 104, 3432–3437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Zhang, D.; Liu, F.; Xiang, X.; Ling, G.; Xiao, L.; Liu, Y.; Zhu, X.; Zhan, M.; Yang, Y.; et al. Low-dose paclitaxel ameliorates fibrosis in the remnant kidney model by down-regulating miR-192. J. Pathol. 2011, 225, 364–377. [Google Scholar] [CrossRef] [PubMed]
- Krupa, A.; Jenkins, R.; Luo, D.D.; Lewis, A.; Phillips, A.; Fraser, D. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J. Am. Soc. Nephrol. 2010, 21, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Maurer, B.; Stanczyk, J.; Jüngel, A.; Akhmetshina, A.; Trenkmann, M.; Brock, M.; Kowal-Bielecka, O.; Gay, R.E.; Michel, B.A.; Distler, J.H.W.; et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 2010, 62, 1733–1743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Taylor, N.E.; Lu, L.; Usa, K.; Cowley, A.W.; Ferreri, N.R.; Yeo, N.C.; Liang, M. Renal medullary microRNAs in Dahl salt-sensitive rats: MiR-29b regulates several collagens and related genes. Hypertension 2010, 55, 974–982. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, Y.; Minto, A.W.; Wang, J.; Shi, Q.; Li, X.; Quigg, R.J. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2008, 22, 4126–4135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muth, M.; Theophile, K.; Hussein, K.; Jacobi, C.; Kreipe, H.; Bock, O. Hypoxia-induced down-regulation of microRNA-449a/b impairs control over targeted SERPINE1 (PAI-1) mRNA—A mechanism involved in SERPINE1 (PAI-1) overexpression. J. Transl. Med. 2010, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Wang, Y.; Wang, W.; Chang, B.H.J.; Danesh, F.R. MicroRNA-29c Is a Signature MicroRNA under High Glucose Conditions That Targets Sprouty Homolog 1, and Its in Vivo Knockdown Prevents Progression of Diabetic Nephropathy. J. Biol. Chem. 2011, 286, 11837–11848. [Google Scholar] [CrossRef] [PubMed]
- Kolavennu, V.; Zeng, L.; Peng, H.; Wang, Y.; Danesh, F.R. Targeting of RhoA/ROCK signaling ameliorates progression of diabetic nephropathy independent of glucose control. Diabetes 2008, 57, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Wang, L.; Putta, S.; Wang, M.; Yuan, H.; Sun, G.; Lanting, L.; Todorov, I.; Rossi, J.J.; Natarajan, R. Post-transcriptional Up-regulation of Tsc-22 by Ybx1, a Target of miR-216a, Mediates TGF-β-induced Collagen Expression in Kidney Cells. J. Biol. Chem. 2010, 285, 34004–34015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, M.; Arce, L.; Wang, M.; Putta, S.; Lanting, L.; Natarajan, R. A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. Kidney Int. 2011, 80, 358–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, N.; Das, F.; Mariappan, M.M.; Mandal, C.C.; Ghosh-Choudhury, N.; Kasinath, B.S.; Choudhury, G.G. MicroRNA-21 Orchestrates High Glucose-induced Signals to TOR Complex 1, Resulting in Renal Cell Pathology in Diabetes. J. Biol. Chem. 2011, 286, 25586–25603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nassirpour, R.; Raj, D.; Townsend, R.; Argyropoulos, C. MicroRNA biomarkers in clinical renal disease: From diabetic nephropathy renal transplantation and beyond. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2016, 98, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Ghai, V.; Wang, K. Recent progress toward the use of circulating microRNAs as clinical biomarkers. Arch. Toxicol. 2016, 90, 2959–2978. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B. Blood pressure as a cardiovascular risk factor: Prevention and treatment. JAMA 1996, 275, 1571–1576. [Google Scholar] [CrossRef] [PubMed]
- Schmieder, R.E.; Messerli, F.H. Hypertension and the heart. J. Hum. Hypertens. 2000, 14, 597–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchet, O.; Celle, S.; Roche, F.; Bartha, R.; Montero-Odasso, M.; Allali, G.; Annweiler, C. Blood pressure levels and brain volume reduction: A systematic review and meta-analysis. J. Hypertens. 2013, 31, 1502–1516. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; de Ferranti, S.; Després, J.-P.; Fullerton, H.J.; Howard, V.J.; Huffman, M.D.; et al. Heart Disease and Stroke Statistics—2015 Update: A Report From the American Heart Association. Circulation 2015, 131, e29–e322. [Google Scholar] [CrossRef] [PubMed]
- Saran, R.; Robinson, B.; Abbott, K.C.; Agodoa, L.Y.C.; Albertus, P.; Ayanian, J.; Balkrishnan, R.; Bragg-Gresham, J.; Cao, J.; Chen, J.L.T.; et al. US Renal Data System 2016 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2017, 69, A7–A8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominiczak, A.F.; Bohr, D.F. Nitric Oxide and Its Putative Role in Hypertension. Hypertension 1995, 25, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Song, X.; Zhang, J.; Zhao, L.; Shi, Y.; Li, Z.; Liu, J.; Liu, N.; Yan, Y.; Xiao, Y.; et al. Protection of Human Umbilical Vein Endothelial Cells against Oxidative Stress by MicroRNA-210. Oxid. Med. Cell. Longev. 2017, 2017, 3565613. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-X.; Zeng, D.-Y.; Li, R.-T.; Pang, R.-P.; Yang, H.; Hu, Y.-L.; Zhang, Q.; Jiang, Y.; Huang, L.-Y.; Tang, Y.-B.; et al. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension 1979 2012, 60, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Boettger, T.; Beetz, N.; Kostin, S.; Schneider, J.; Krüger, M.; Hein, L.; Braun, T. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J. Clin. Invest. 2009, 119, 2634–2647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowley, S.D.; Coffman, T.M. Recent advances involving the renin-angiotensin system. Exp. Cell Res. 2012, 318, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, G.; Zhu, G.; Liu, H.; Guo, R.; Qi, F.; Zou, J. MicroRNA-155 inhibits angiotensin II-induced vascular smooth muscle cell proliferation. J. Renin-Angiotensin-Aldosterone Syst. JRAAS 2014, 15, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeppesen, P.L.; Christensen, G.L.; Schneider, M.; Nossent, A.Y.; Jensen, H.B.; Andersen, D.C.; Eskildsen, T.; Gammeltoft, S.; Hansen, J.L.; Sheikh, S.P. Angiotensin II Type 1 Receptor Signalling Regulates MicroRNA Differentially in Cardiac Fibroblasts and Myocytes. Br. J. Pharmacol. 2011, 164, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Kemp, J.R.; Unal, H.; Desnoyer, R.; Yue, H.; Bhatnagar, A.; Karnik, S.S. Angiotensin II-regulated microRNA 483-3p directly targets multiple components of the renin-angiotensin system. J. Mol. Cell. Cardiol. 2014, 75, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Law, M.R.; Morris, J.K.; Wald, N.J. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: Meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ 2009, 338, b1665. [Google Scholar] [CrossRef] [PubMed]
- 2014 Evidence-Based Guideline for the Management of High Blood Pressure in Adults. The JAMA Network. Available online: https://jamanetwork.com/journals/jama/fullarticle/1791497 (accessed on 26 February 2018).
- Macconi, D.; Tomasoni, S.; Romagnani, P.; Trionfini, P.; Sangalli, F.; Mazzinghi, B.; Rizzo, P.; Lazzeri, E.; Abbate, M.; Remuzzi, G.; et al. MicroRNA-324-3p promotes renal fibrosis and is a target of ACE inhibition. J. Am. Soc. Nephrol. 2012, 23, 1496–1505. [Google Scholar] [CrossRef] [PubMed]
- BPH/2J. Mouse Strain Datasheet—003005. Available online: https://www.jax.org/strain/003005 (accessed on 8 February 2018).
- Jackson, K.L.; Marques, F.Z.; Watson, A.M.D.; Palma-Rigo, K.; Nguyen-Huu, T.-P.; Morris, B.J.; Charchar, F.J.; Davern, P.J.; Head, G.A. A novel interaction between sympathetic overactivity and aberrant regulation of renin by miR-181a in BPH/2J genetically hypertensive mice. Hypertension 2013, 62, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Marques, F.Z.; Campain, A.E.; Tomaszewski, M.; Zukowska-Szczechowska, E.; Yang, Y.H.J.; Charchar, F.J.; Morris, B.J. Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension 2011, 58, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
- Moreno, C.; Williams, J.M.; Lu, L.; Liang, M.; Lazar, J.; Jacob, H.J.; Cowley, A.W.; Roman, R.J. Narrowing a region on rat chromosome 13 that protects against hypertension in Dahl SS-13BN congenic strains. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H1530–H1535. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Kwan, B.C.-H.; Lai, F.M.-M.; Choi, P.C.-L.; Chow, K.-M.; Li, P.K.-T.; Szeto, C.-C. Intrarenal expression of miRNAs in patients with hypertensive nephrosclerosis. Am. J. Hypertens. 2010, 23, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Savin, V.J.; Sharma, R.; Sharma, M.; McCarthy, E.T.; Swan, S.K.; Ellis, E.; Lovell, H.; Warady, B.; Gunwar, S.; Chonko, A.M.; et al. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N. Engl. J. Med. 1996, 334, 878–883. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, E.T.; Sharma, M.; Savin, V.J. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. CJASN 2010, 5, 2115–2121. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zheng, C.; Fan, Y.; Zeng, C.; Chen, Z.; Qin, W.; Zhang, C.; Zhang, W.; Wang, X.; Zhu, X.; et al. Downregulation of microRNA-30 facilitates podocyte injury and is prevented by glucocorticoids. J. Am. Soc. Nephrol. JASN 2014, 25, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Armelloni, S.; Zennaro, C.; Wei, C.; Corbelli, A.; Ikehata, M.; Berra, S.; Giardino, L.; Mattinzoli, D.; Watanabe, S.; et al. BDNF repairs podocyte damage by microRNA-mediated increase of actin polymerization. J. Pathol. 2015, 235, 731–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Zhang, W.; Chen, H.-M.; Liu, C.; Wu, J.; Shi, S.; Liu, Z.-H. Plasma microRNA-186 and proteinuria in focal segmental glomerulosclerosis. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2015, 65, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Kwan, B.C.-H.; Lai, F.M.-M.; Chow, K.-M.; Li, P.K.-T.; Szeto, C.-C. Urinary sediment miRNA levels in adult nephrotic syndrome. Clin. Chim. Acta Int. J. Clin. Chem. 2013, 418, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, C.; Chen, H.; Li, L.; Tu, Y.; Liu, C.; Shi, S.; Zen, K.; Liu, Z. Evaluation of microRNAs miR-196a, miR-30a-5P, and miR-490 as biomarkers of disease activity among patients with FSGS. Clin. J. Am. Soc. Nephrol. 2014, 9, 1545–1552. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Chen, J.; Li, W.; Chen, Y.; Sui, W.; Zhang, Y.; Dai, Y. Genome-wide analysis of microRNAs expression profiling in patients with primary IgA nephropathy. Genome 2013, 56, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Serino, G.; Sallustio, F.; Curci, C.; Cox, S.N.; Pesce, F.; De Palma, G.; Schena, F.P. Role of let-7b in the regulation of N-acetylgalactosaminyltransferase 2 in IgA nephropathy. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2015, 30, 1132–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serino, G.; Sallustio, F.; Cox, S.N.; Pesce, F.; Schena, F.P. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J. Am. Soc. Nephrol. 2012, 23, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Kwan, B.C.-H.; Lai, F.M.-M.; Chow, K.-M.; Li, P.K.-T.; Szeto, C.-C. Elevated Levels of miR-146a and miR-155 in Kidney Biopsy and Urine from Patients with IgA Nephropathy. Dis. Mark. 2011, 30, 171–179. [Google Scholar] [CrossRef]
- Zheng, Y.; Josefowicz, S.Z.; Kas, A.; Chu, T.-T.; Gavin, M.A.; Rudensky, A.Y. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 2007, 445, 936–940. [Google Scholar] [CrossRef] [PubMed]
- Kohlhaas, S.; Garden, O.A.; Scudamore, C.; Turner, M.; Okkenhaug, K.; Vigorito, E. Cutting edge: The Foxp3 target miR-155 contributes to the development of regulatory T cells. J. Immunol. 2009, 182, 2578–2582. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Peng, Y.; Liu, F.; Lei, H. Is IgA nephropathy induced by abnormalities of CD4+CD25+Treg cells in the tonsils? Med. Hypotheses 2007, 69, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Vinuesa, C.G.; Rigby, R.J.; Yu, D. Logic and Extent of miRNA-Mediated Control of Autoimmune Gene Expression. Int. Rev. Immunol. 2009, 28, 112–138. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.J.; Hochberg, D.; Rand, W.M.; Thorley-Lawson, D.A. EBV and systemic lupus erythematosus: A new perspective. J. Immunol. 1950 2005, 174, 6599–6607. [Google Scholar] [CrossRef]
- Gatto, G.; Rossi, A.; Rossi, D.; Kroening, S.; Bonatti, S.; Mallardo, M. Epstein–Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-κB pathway. Nucleic Acids Res. 2008, 36, 6608–6619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramkissoon, S.H.; Mainwaring, L.A.; Ogasawara, Y.; Keyvanfar, K.; McCoy, J.P.; Sloand, E.M.; Kajigaya, S.; Young, N.S. Hematopoietic-specific microRNA expression in human cells. Leuk. Res. 2006, 30, 643–647. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, R.M.; Kahn, D.; Gibson, W.S.J.; Round, J.L.; Scholz, R.L.; Chaudhuri, A.A.; Kahn, M.E.; Rao, D.S.; Baltimore, D. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 2010, 33, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Ichii, O.; Otsuka, S.; Sasaki, N.; Namiki, Y.; Hashimoto, Y.; Kon, Y. Altered expression of microRNA miR-146a correlates with the development of chronic renal inflammation. Kidney Int. 2012, 81, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Kwan, B.C.-H.; Lai, F.M.-M.; Tam, L.-S.; Li, E.K.-M.; Chow, K.-M.; Wang, G.; Li, P.K.-T.; Szeto, C.-C. Glomerular and tubulointerstitial miR-638, miR-198 and miR-146a expression in lupus nephritis. Nephrol. Carlton Vic 2012, 17, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Costa-Reis, P.; Russo, P.A.; Zhang, Z.; Colonna, L.; Maurer, K.; Gallucci, S.; Schulz, S.W.; Kiani, A.N.; Petri, M.; Sullivan, K.E. The Role of MicroRNAs and Human Epidermal Growth Factor Receptor 2 in Proliferative Lupus Nephritis. Arthritis Rheumatol. 2015, 67, 2415–2426. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, T.; Sato, F.; Terasawa, K.; Tsuchiya, S.; Toi, M.; Tsujimoto, G.; Shimizu, K. Trastuzumab Produces Therapeutic Actions by Upregulating miR-26a and miR-30b in Breast Cancer Cells. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.; Harris, S.; Venning, M.; Brenchley, P. Investigating the microRNA signature of ANCA associated vasculitis. In La Press Medicale; Elsevise: New York, NY, USA, 2013; Volume 42, pp. 756–757. [Google Scholar]
- Krebs, C.F.; Kapffer, S.; Paust, H.-J.; Schmidt, T.; Bennstein, S.B.; Peters, A.; Stege, G.; Brix, S.R.; Meyer-Schwesinger, C.; Müller, R.-U.; et al. MicroRNA-155 drives TH17 immune response and tissue injury in experimental crescentic GN. J. Am. Soc. Nephrol. 2013, 24, 1955–1965. [Google Scholar] [CrossRef] [PubMed]
- Unanue, E.; Dixon, F.J. Experimental glomerulonephritis. IV. participation of complement in nephrotoxic nephritis. J. Exp. Med. 1964, 119, 965–982. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, S. Nephrotoxic Nephritis and Glomerulonephritis: Animal Model Versus Human Disease. Br. J. Biomed. Sci. 2014, 71, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Blobe, G.C.; Schiemann, W.P.; Lodish, H.F. Role of transforming growth factor beta in human disease. N. Engl. J. Med. 2000, 342, 1350–1358. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Li, Y.; Qu, S.; Luo, H.; Zhou, Y.; Wang, Y.; Zhao, H.; You, Y.; Xiao, X.; Zuo, X. MicroRNA expression abnormalities in limited cutaneous scleroderma and diffuse cutaneous scleroderma. J. Clin. Immunol. 2012, 32, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Luo, H.; Li, Y.; Zhou, Y.; Jiang, Y.; Chai, J.; Xiao, X.; You, Y.; Zuo, X. MicroRNA-21 in scleroderma fibrosis and its function in TGF-β-regulated fibrosis-related genes expression. J. Clin. Immunol. 2013, 33, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Brors, B.; Srivastava, P.K.; Bott, A.; Boehn, S.N.; Groene, H.-J.; Gretz, N. Microarray-based approach identifies microRNAs and their target functional patterns in polycystic kidney disease. BMC Genomics 2008, 9, 624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, P.; Qin, S.; Ho, J.; Zhou, J.; Kreidberg, J.A. Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease. BMC Syst. Biol. 2011, 5, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajarnis, S.; Lakhia, R.; Patel, V. MicroRNAs and Polycystic Kidney Disease. In Polycystic Kidney Disease; Li, X., Ed.; Codon Publications: Brisbane, Australia, 2015; ISBN 978-0-9944381-0-2. [Google Scholar]
- Gomez, I.G.; MacKenna, D.A.; Johnson, B.G.; Kaimal, V.; Roach, A.M.; Ren, S.; Nakagawa, N.; Xin, C.; Newitt, R.; Pandya, S.; et al. Anti–microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J. Clin. Invest. 2015, 125, 141–156. [Google Scholar] [CrossRef] [PubMed]
- A Study of RG-012 in Subjects With Alport Syndrome. Available online: https://clinicaltrials.gov/ct2/show/NCT03373786 (accessed on 9 February 2018).
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrader, C.; Schielke, A.; Ellerbroek, L.; Johne, R. PCR inhibitors—Occurrence, properties and removal. J. Appl. Microbiol. 2012, 113, 1014–1026. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.C.; Laperriere, G.; Germain, H. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: From variable nonsense to publication quality data. Sci. Rep. 2017, 7, 2409. [Google Scholar] [CrossRef] [PubMed]
- Linsen, S.E.V.; de Wit, E.; Janssens, G.; Heater, S.; Chapman, L.; Parkin, R.K.; Fritz, B.; Wyman, S.K.; de Bruijn, E.; Voest, E.E.; Kuersten, S.; Tewari, M.; Cuppen, E. Limitations and possibilities of small RNA digital gene expression profiling. Nat. Methods 2009, 6, 474–476. [Google Scholar] [CrossRef] [PubMed]
- Hafner, M.; Renwick, N.; Brown, M.; Mihailović, A.; Holoch, D.; Lin, C.; Pena, J.T.G.; Nusbaum, J.D.; Morozov, P.; Ludwig, J.; et al. RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. RNA 2011, 17, 1697–1712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayaprakash, A.D.; Jabado, O.; Brown, B.D.; Sachidanandam, R. Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res. 2011, 39, e141. [Google Scholar] [CrossRef] [PubMed]
- Baran-Gale, J.; Kurtz, C.L.; Erdos, M.R.; Sison, C.; Young, A.; Fannin, E.E.; Chines, P.S.; Sethupathy, P. Addressing Bias in Small RNA Library Preparation for Sequencing: A New Protocol Recovers MicroRNAs that Evade Capture by Current Methods. Front. Genet. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Dard-Dascot, C.; Naquin, D.; d’Aubenton-Carafa, Y.; Alix, K.; Thermes, C.; van Dijk, E. Systematic comparison of small RNA library preparation protocols for next-generation sequencing. BMC Genomics 2018, 19, 118. [Google Scholar] [CrossRef] [PubMed]
- Sorefan, K.; Pais, H.; Hall, A.E.; Kozomara, A.; Griffiths-Jones, S.; Moulton, V.; Dalmay, T. Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence 2012, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lee, J.E.; Riemondy, K.; Anderson, E.M.; Yi, R. High-efficiency RNA cloning enables accurate quantification of miRNA expression by deep sequencing. Genome Biol. 2013, 14, R109. [Google Scholar] [CrossRef] [PubMed]
- Argyropoulos, C.; Etheridge, A.; Sakhanenko, N.; Galas, D. Modeling bias and variation in the stochastic processes of small RNA sequencing. Nucleic Acids Res. 2017, 45, e104. [Google Scholar] [CrossRef] [PubMed]
- Git, A.; Dvinge, H.; Salmon-Divon, M.; Osborne, M.; Kutter, C.; Hadfield, J.; Bertone, P.; Caldas, C. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 2010, 16, 991–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, F.; Tsuchiya, S.; Terasawa, K.; Tsujimoto, G. Intra-platform repeatability and inter-platform comparability of microRNA microarray technology. PLoS ONE 2009, 4, e5540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redshaw, N.; Wilkes, T.; Whale, A.; Cowen, S.; Huggett, J.; Foy, C.A. A comparison of miRNA isolation and RT-qPCR technologies and their effects on quantification accuracy and repeatability. BioTechniques 2013, 54, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Feala, J.D.; Cortes, J.; Duxbury, P.M.; McCulloch, A.D.; Piermarocchi, C.; Paternostro, G. Statistical properties and robustness of biological controller-target networks. PLoS ONE 2012, 7, e29374. [Google Scholar] [CrossRef] [PubMed]
- Riba, A.; Bosia, C.; Baroudi, M.E.; Ollino, L.; Caselle, M. A Combination of Transcriptional and MicroRNA Regulation Improves the Stability of the Relative Concentrations of Target Genes. PLoS Comput. Biol. 2014, 10, e1003490. [Google Scholar] [CrossRef] [PubMed]
- Argyropoulos, C.; Wang, K.; Bernardo, J.; Ellis, D.; Orchard, T.; Galas, D.; Johnson, J.P. Urinary MicroRNA Profiling Predicts the Development of Microalbuminuria in Patients with Type 1 Diabetes. J. Clin. Med. 2015, 4, 1498–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Conklin, D.S.; Mittal, V. High-throughput selection of effective RNAi probes for gene silencing. Genome Res. 2003, 13, 2333–2340. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, S.; Benter, I.F. Nonviral delivery of synthetic siRNAs in vivo. J. Clin. Invest. 2007, 117, 3623–3632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera-Carrillo, E.; Liu, Y.P.; Berkhout, B. Improving miRNA Delivery by Optimizing miRNA Expression Cassettes in Diverse Virus Vectors. Hum. Gene Ther. Methods 2017, 28, 177–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, J.S.; Saltzman, W.M. High loading efficiency and tunable release of plasmid DNA encapsulated in submicron particles fabricated from PLGA conjugated with poly-l-lysine. J. Control. Release Off. J. Control. Release Soc. 2008, 129, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Trang, P.; Wiggins, J.F.; Daige, C.L.; Cho, C.; Omotola, M.; Brown, D.; Weidhaas, J.B.; Bader, A.G.; Slack, F.J. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol. Ther. J. Am. Soc. Gene Ther. 2011, 19, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Sun, Y.; Hu, L.; Zheng, H.; Ji, P.; Pecot, C.V.; Zhao, Y.; Reynolds, S.; Cheng, H.; Rupaimoole, R.; et al. Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell 2013, 23, 186–199. [Google Scholar] [CrossRef] [PubMed]
- MacDiarmid, J.A.; Mugridge, N.B.; Weiss, J.C.; Phillips, L.; Burn, A.L.; Paulin, R.P.; Haasdyk, J.E.; Dickson, K.-A.; Brahmbhatt, V.N.; Pattison, S.T.; et al. Bacterially Derived 400 nm Particles for Encapsulation and Cancer Cell Targeting of Chemotherapeutics. Cancer Cell 2007, 11, 431–445. [Google Scholar] [CrossRef] [PubMed]
- MesomiR 1: A Phase I Study of TargomiRs as 2nd or 3rd Line Treatment for Patients With Recurrent MPM and NSCLC. Available online: https://clinicaltrials.gov/ct2/show/NCT02369198 (accessed on 27 February 2018).
- Aigner, A. Delivery Systems for the Direct Application of siRNAs to Induce RNA Interference (RNAi) In Vivo. Available online: https://www.hindawi.com/journals/bmri/2006/071659/ref/ (accessed on 1 June 2018).
- Hollins, A.J.; Omidi, Y.; Benter, I.F.; Akhtar, S. Toxicogenomics of drug delivery systems: Exploiting delivery system-induced changes in target gene expression to enhance siRNA activity. J. Drug Target. 2007, 15, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Takei, Y.; Kadomatsu, K.; Yuzawa, Y.; Matsuo, S.; Muramatsu, T. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res. 2004, 64, 3365–3370. [Google Scholar] [CrossRef] [PubMed]
- Minakuchi, Y.; Takeshita, F.; Kosaka, N.; Sasaki, H.; Yamamoto, Y.; Kouno, M.; Honma, K.; Nagahara, S.; Hanai, K.; Sano, A.; et al. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res. 2004, 32, e109. [Google Scholar] [CrossRef] [PubMed]
- Hu-Lieskovan, S.; Heidel, J.D.; Bartlett, D.W.; Davis, M.E.; Triche, T.J. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 2005, 65, 8984–8992. [Google Scholar] [CrossRef] [PubMed]
- Safety, Tolerability and Pharmacokinetic Study of MRG-201 in Healthy Volunteers. Available online: https://clinicaltrials.gov/ct2/show/NCT02603224 (accessed on 13 February 2018).
Source/Reference | Study Sample/miRNA Detection Method | Target/Aim | Results |
---|---|---|---|
Mouse [6] | Embryonic, Renal tissue, | Conditional Dicer deletion in the nephron progenitor cells | ↓ number and ↑ apoptosis of the nephron progenitor cells |
Microarray-based method | ↑ expression of mmu-miR-10a, mmu-miR-17-5p, and mmu-miR-106b | ||
Mouse [8] | Embryonic, Renal tissues on paraffin, Real Time-PCR (RT-PCR) | Conditional Dicer deletion in the ureteric bud | Disruption of ciliogenesis in the ureteric bud, Small and cystic kidneys with hydronephrosis, mmu-miR-30b expression in the nephron progenitor cells |
Mouse [9] | Embryonic, Renal tissue on paraffin sections, RT-PCR | Deletion of the mmu-miR-17~92 cluster in the nephron progenitor cells | Pre-natal: Preservation of the nephron progenitor cells but impaired proliferation |
Post-natal: ↓ nephron number, Albuminuria by 6 weeks, Podocyte effacement and Focal Segmental Glomerulosclerosis by 3 months | |||
Mouse [10] | Embryonic, Renal tissue, Microarray-based method | Conditional deletion of Dicer in the maturing renal tubules | Pre-natal: Down-regulation of mmu-miR-200b/c, Upregulation of Pkd1 |
Post-natal: Tubular and glomerular cyst formation | |||
Mouse [11] | Embryonic, Renal tissue on paraffin, RT-PCR | Conditional deletion of Dicer in the podocytes | Post-natal: Proteinuria by 2 weeks of birth, Glomerular and tubular injury by 4 weeks |
↓ expression of slit diaphragm proteins | |||
↑ glomerular expression of mmu-miR-23b, mmu-miR-24, and mmu-miR-26a | |||
Mouse [13] | Embryonic and after birth, Renal tissue, RT-PCR | Conditional deletion of Drosha in 1. Pre-natal period, 2. Post-natal in 2-3 months old mice | Collapsing glomerulopathy was seen in the pre-as as well as post-natal inactivation of Drosha |
Source/Reference | Study Sample/miRNA Detection Method | Target/Aim | Results |
---|---|---|---|
Mouse [14] | Embryonic, Renal tissue on Paraffin, RT-qPCR | Conditional deletion of Dicer in the renal renin-producing cells | Severe depletion of Juxta-Glomerular cells (JG) cells, Absent mmu-miR-145a-5p in JG cells, ↓ Blood pressure (BP) in the dicer knockout mice, ↓ Kidney size, Renal vascular abnormalities, and strip fibrosis |
Mouse [15] | Adult digested pooled renal tissue, RT qPCR | mmu-miR-192-5p suppression by antagomir injections | ↑ Urine output in mice that were fed a high Na diet |
↑ Na+/K+ ATPase β-1 subunit | |||
Mouse [16] | Adult, microdissected renal tissue, RT-PCR, and microarray method | Effects of aldosterone on the expression of mmu-miR-192-5p and WNK1 | Stimuli that ↑ aldosterone was associated with ↓ mmu-miR-192-5p and ↑ WNK1 expression |
Mouse [17] | Adult homogenized renal tissue, RT-PCR | Effects of high K diet on mmu-miR-802 in the cortical collecting duct | ↑ mmu-miR-802, ↓ Caveolin-1 which suppresses ROMK |
Mouse [18] | Adult, Renal tissue-immunomagnetic separation method to isolate the thick ascending limb cells from the mouse kidney, RT-PCR | Effects of mmu-miR-9-5p and mmu-miR-374 on claudin 14, gene expression in the thick ascending limb of the loop of Henle | mmu-miR-9-5p and mmu-miR-374 suppress claudin-14 |
Source/Reference | Study Sample/miRNA Detection Method | Target/Aim | Results |
---|---|---|---|
Human [25] | Proximal Tubule HK-2 cell culture, RT-PCR | Identify miRNAs that post-transcriptionally modify TGF-β1 | hsa-miR-744-5p post-transcriptionally inhibits expression of the TGF-β1 ligand |
Rat [26] | Proximal tubular epithelial cell culture, RT-PCR | rno-miR-200a-5p expression and its role as translation repressor of TGF-β signaling | rno-miR-200a-5p decreased TGF-β2 expression |
Rat and Human [27] | Rat kidney tubular epithelial and mesangial cell lines, human immortalized podocytes, RT-PCR | To assess the expression of miRNAs in renal tissue exposed to TGF-β | ↓ rno-miR-192-5p and rno-miR-215-5p expression |
To study the role of miRNAs in E-Cadherin expression | ↓ E-Cadherin expression via suppression of Zinc finger E-box-binding homeobox 2 (ZEB2) mRNA by rno-miR-192-5p and rno-miR-215-5p | ||
↑ expression of extra cellular matrix proteins | |||
Human [31] | Formalin-fixed renal tissue in patients with diabetic nephropathy, RT-PCR | Association of hsa-miR-192-5p expression in the kidney biopsy with the severity of diabetic nephropathy | hsa-miR-192-5p expression inversely related to tubulointerstitial fibrosis and low eGFR |
Human and Mouse [32] | Skin biopsy samples of the patients with systemic sclerosis (SSc), bleomycin-induced skin fibrosis mouse model, RT-PCR | To investigate the role of miRNA as posttranscriptional regulators of profibrotic genes in systemic sclerosis | ↓ hsa-miR-29a-5p in SSc patients was associated with ↑ profibrotic proteins |
↑ mmu-miR-29a-5p in bleomycin-induced fibrosis | |||
Rat [33] | Adult, Renal medulla, microarray-based method, and RT-PCR | Expression of miRNAs in the renal medulla of rats that spontaneously develop hypertension when exposed to a high salt diet | Up-regulation of mmu-miR-29b-5p prevents hypertension associated medullary interstitial fibrosis |
Human and Mouse [34] | Cultured human and mouse mesangial cells, microarray-based method, and qPCR | miRNA profile in the cells exposed to high glucose and TGF-β | ↑ miRNA-377 relative to controls |
miRNA-377 ↑ fibronectin protein indirectly | |||
Human [35] | Primary human fibroblasts culture and transplant recipient kidney biopsy samples (formalin-fixed and paraffin-embedded) that had chronic allograft nephropathy, Microarray-based method | To study the role of hypoxia in the miRNA expression profile | Hypoxia caused ↓ hsa-miRNA-449a-5p and ↑ SERPINE1 gene expression. SERPINE1 protein was demonstrated in areas of renal fibrosis in the kidney biopsy |
Source/Reference | Study Sample/miRNA Detection Method | Target/Aim | Results |
---|---|---|---|
Mouse [36] | Conditionally immortalized mouse podocytes, real-time PCR, and microarray-based method | miRNA expression profile in a diabetic mouse model as well as in mouse podocytes exposed to hyperglycemia. | mmu-miR-29c-5p elevated in mouse models relative to controls. |
↑ mmu-miR-29c-5p in podocytes exposed to hyperglycemia | |||
To identify the target of miRNA in these models | mmu-miR-29c-5p inhibits Spry1 gene and thus promotes apoptosis | ||
mmu-miR-29c-5p activates Rho kinase, which ↑ apoptosis and fibronectin deposition by inhibiting the Spry1 | |||
Human [31] | Human proximal convoluted tubule cell line culture, kidney biopsy samples of patients with established diabetic nephropathy, microarray-based method | To study the expression profile of miRNA in a PCT cell culture under high glucose conditions, miR expression profiling in pooled RNA from formalin-fixed, paraffin-embedded tissue from renal biopsies | TGF-β treatment ↓ hsa-miRNA-192-5p in vitro. ↓ hsa-miRNA-192-5p expression on kidney biopsy was associated with ↑ tubulo-interstitial fibrosis |
Mouse [38] | Mouse kidney cell culture, Diabetic mouse, real-time PCR | To study the processes that result in TGF-β mediated development of diabetic nephropathy | TGF-β ↑ mmu-miR-216a-5p and collagen type I α1 |
Mouse [39] | Diabetic mouse model. | Interaction between TGF-β and miRNAs in the development of diabetic nephropathy | mmu-miR-192-5p and mmu-miR-200b/c-5p ↑ TGF-β1 |
TGF-β1 exposure lead to ↑ mmu-miR-200b/c | |||
mmu-miR-192-5p expression lead to ↑ mmu-miR-200b/c-5p | |||
Primary mouse mesangial cell culture, real-time PCR | miR-192 ↑ TGF-β1 promotor activity and ↓ TGF-β1 repressor activity | ||
TGF-β1 ↑ Col1α2 and α4 activity causing ECM accumulation | |||
Mouse [40] | Renal cortical tissue from a diabetic mouse model, rat mesangial cell culture, human mesangial cell culture, real-time PCR | miRNA profile of mouse cortical cells and rat and human cultured mesangial cells exposed to a high glucose environment | ↑ mmu-miR-21-5p expression in mice cortical tissue |
↑ miR-21-5p inhibited PTEN expression with an increase in the PI3/Akt pathway, leading to renal cell hypertrophy and fibronectin expression in human and rat mesangial cell culture |
Source/Reference | Study Sample/miRNA Detection Method | Target/Aim | Results |
---|---|---|---|
Human [49] | Human umbilical vein endothelial cells (HUVECs), qRT-PCR | Role of hsa-miR-210-5p in HUVECs under oxidative stress | hsa-miR-210-5p prevented deleterious effect of the reactive oxygen species |
Human [50] | HUVECs, Discarded human internal mammary arteries, qRT-PCR | Association of hsa-miR-155-5p with endothelial nitric oxide synthase(eNOS) activity | ↑ hsa-miR-155-5p caused ↓ eNOS activity |
Simvastatin ↓ hsa-miR-155-5p and restored endothelium-dependent vasorelaxation | |||
Mouse [51] | Various mouse tissues derived at various developmental stages, microarray-based method | Role of mmu-miR-143-5p and mmu-miR-145-5p in development of vascular smooth muscle cells | Vascular smooth muscle cells (VSCM) deficient in mmu-miR-143-5p and mmu-miR-145-5p did not respond to vasocontractile stimuli but had ↑ synthetic activity |
Mouse [53] | Primary cultured VSMC from mice aorta, RT-PCR | Effect of mmu-miR-155-5p on Angiotensin II mediated VSMC proliferation | mmu-miR-155-5p antagonized the ANG II induced ↑ in VSMC viability |
Human [54] | Cultured human cells (HEK293N) | Role of ANG II mediated miRNA regulation | ↑ hsa-miR-29b-5p, hsa-miR-129-3p, hsa-miR-132-5p and hsa-miR-212-5p |
Human, mouse, and rat [55] | Human, mice and rat cell cultures, microarray-based method | To study the Angiotensin 1 receptor (AT1R) regulated miRNA expression is VSMCs of various species | miR-483-3P expression ↓ angiotensinogen and angiotensin-converting enzyme (ACE) |
Rat [58] | Microdissected glomeruli from Munich Wistar Frometer (MWF) rats, RT-PCR, and microarray-based method | miRNA expression profile | ACEi suppress rno-miR-324-3p and attenuates the development of hypertensive nephropathy |
Mice [60] | Genetically hypertensive mice (BPH/2J), renal tissue | Role of renal angiotensin system and sympathetic nervous system in hypertension | mmu-miR-181a-5p suppression potentiates sympathetic nervous system-mediated increase in renin production in BPH/2J mice during the active periods |
Human [61] | Renal biopsies of patients with hypertension who underwent nephrectomy for non-invasive renal cancer, microarray-based method, and qPCR | miRNA profile of patients with hypertensive nephrosclerosis | hsa-miR-181a inversely regulated the Ren1 mRNA |
Source/Reference | Study Sample/miRNA Detection Method | Target/Aim | Results |
---|---|---|---|
Human and rat [66] | Kidney biopsy samples from patients with FSGS, Human podocyte culture, Rat renal tissue, RT-qPCR | To study the effect of TGF-B, and Puromycin on hsa-miR-30 and rno-miR-30 | hsa-miR-30-5p expression ameliorated TGF-B mediated podocyte damage |
Puromycin caused decreased rno-miR-30a in rats, replacement of this miR resulted in resolution of proteinuria and podocyte injury in rats | |||
Mouse, Zebra fish [67] | Mouse podocyte cell line, Zebra fish | To study the effects of brain derived neuropathic factor (BDNF) on podocyte miRNA expression profile and integrity | BDNF ↑ mmu-miR-132-5p and ↓ mmu-miR-134-5p and thus ↑ podocyte cell growth and repairs damage |
Human [68] | Plasma samples of patients with proteinuria due to various etiologies, quantitative reverse transcription-polymerase chain reaction | Plasma miRNA profiles of patients with proteinuria due to FSGS (in relapse as well as in remission) | Patients with FSGS exhibit ↑ hsa-miR-125b-5p, hsa-miR-186-5p and hsa-miR-193a-3p |
↓ hsa-miR-125b-5p and hsa-miR-186-5p in patients in remission | |||
Human [69] | Urine from patients with various glomerular diseases including FSGS | To assess urinary miRNA profile in patients with various types of glomerulonephritis (GN) | hsa-miR-200c-5p present in patients who had focal segmental glomerulosclerosis |
Human [70] | Pooled urine from patients who had either active FSGS or were in complete remission, qRT-PCR | Urinary miRNA profile in patients with FSGS | ↑ hsa-miR-196a-5p, hsa-miR-30a-5p and hsa-miR-490-5p in urine were associated with FSGS disease activity |
Urinary hsa-miR-30a-5p was a weak predictor of steroid responsiveness in patients with active FSGS |
Source/Reference | Study Sample/miRNA Detection Method | Target/Aim | Results |
---|---|---|---|
Human [71] | Genome-wide association study of miRNA expression profile in kidney biopsies of patients with IgA nephropathy compared to renal cell cancer, RT-qPCR | To identify miRNAs that may play a role in IgA nephropathy | In IgA nephropathy patients: |
↑ hsa-miR-133a-5p, hsa-miR-133b-5p, and hsa-miR-486-5p | |||
↓ hsa-miR-220 family, hsa-let-7a-5p, hsa-miR-628-5p, hsa-miR-195-5p, and hsa-miR-125b-5p | |||
Human [72] | Peripheral blood mononuclear cells from patients with IgA nephropathy, RT-PCR | To study the association of hsa-miR-let-7b-5p with GLANT2 enzyme activity in patients with IgA nephropathy | ↑ hsa-miR-let-7b-5p associated with ↓ GLANT2 levels |
Human [73] | Peripheral blood mononuclear cells from patients with IgA nephropathy, Microarray-based method | To study the miRNAs that potentially target C1GALT1 | ↑ hsa-miR-148b-5p associated with ↓ C1GALT1 mRNA |
↑ hsa-miR-148b-5p associated with ↑ galactose-deficient IgA1 | |||
Human [74] | Kidney biopsy and urine specimens, RT-PCR | To study the renal and urinary miRNA expression profile in patients with IgA nephropathy | ↑ hsa-miR-146a-5p and hsa-miR-155-5p |
These miRNAs were inversely related to GFR and positively related to proteinuria |
Source/Reference | Study Sample/miRNA Detection Method | Target/Aim | Results |
---|---|---|---|
Mouse [83] | Paraffin-embedded kidney tissue, Microarray-based technique, and RT-PCR | To assess miRNA expression profile in a mouse model that spontaneously develops inflammation with age | ↑ mmu-miR-146a-5p associated with increased kidney biopsy inflammatory score |
Human [84] | Kidney biopsies of patients with lupus nephritis | To identify the miRNA expression profile in patients with lupus nephritis compared to healthy controls | In kidney biopsies of patients with lupus nephritis: |
↑ hsa-miR-146a-5p and hsa-miR-198-5p in the glomerular lesions | |||
↑ miR-638 in tubulointerstitial lesions | |||
↑ Interstitial hsa-miR-638-5p associated with proteinuria and disease activity score | |||
↑ Glomerular hsa-miR-146a-5p associated with eGFR and disease activity score | |||
Human [85] | Paraffin-embedded kidney biopsy samples from pediatric patients, Human mesangial cell culture, Next generation sequencing, RT-qPCR | miRNA expression profile in the renal biopsy samples | ↓ hsa-miR-26a-5p and hsa-miR-30b-5p in renal biopsy specimens of patients with lupus nephritis |
To study the role of hsa-miR-26a-5p and hsa-miR-30b-5p in human epidermal growth factor receptor 2 (HER2) regulation | Trastuzumab (HER-2 antagonist) exposure of the human mesangial cell line caused ↑ hsa-miR-26a-5p and hsa-miR-30b-5p | ||
IFNα → ↑ HER-2 expression in human mesangial cell line |
Source/Reference | Study Sample/miRNA Detection Method | Target/Aim | Results |
---|---|---|---|
Human [88] | Pooled plasma from patients with MPO and PR3 + ANCA vasculitis, RT-qPCR | To study the expression profile of miRNAs in patients with ANCA vasculitis | ↑ hsa-let-7f-5p, hsa-miR-424-5p |
↓ hsa-miR-106b, hsa-miR-9-5p, hsa-miR-125a-50, and hsa-miR-15b-5p | |||
Human and Mouse [89] | Renal tissue from patients with ANCA vasculitis, A mouse model of ANCA vasculitis, RT-qPCR | To study the role of miR-155 in T cell-mediated inflammation in a mouse model of ANCA vasculitis as well as humans with ANCA vasculitis | ↑ hsa-miR-155-5p expression in crescents found in kidney biopsies of patients with ANCA vasculitis |
↑ mmu-miR-155-5p expression in crescents found in kidney biopsies of a mouse model of ANCA vasculitis | |||
Less severe lesions in mmu-miR-155-5p knockout mice |
Source/Reference | Study Sample/miRNA Detection Method | Target/Aim | Results |
---|---|---|---|
Human [93] | Skin samples from patients with Scleroderma and normal controls, RT-qPCR | miRNA expression profile in patients with scleroderma compared to normal controls | ↑ hsa-miR-21-5p in skin tissue as well as fibroblasts of patients with scleroderma |
Source/Reference | Study Sample/miRNA Detection Method | Target/Aim | Results |
---|---|---|---|
Rat [94] | Adult Rat model of PKD, kidney tissues, RT-qPCR | miRNA expression profiles in a rat model of PKD | Differential expression of rno-miRs-10a-5p, rno-miR-30a-5p, rno-miR-96-5p, rno-miR-126-5p, rno-miR-182-5p, rno-miR-200a-5p, rno-miR-204-5p, rno-miR-429-5p and rno-miR-488-5p |
Source/Reference | Study Sample/miRNA Detection Method | Target/Aim | Results |
---|---|---|---|
Mouse [97] | Adult mouse model of Alport syndrome, kidney tissue, qPCR | To study the role of mmu-miR-21-5p inhibition in a mouse model of Alport syndrome | Anti-miR-21 oligonucleotides protect against kidney failure and increase survival in this mouse model |
Viral Vectors | |
Pathogenic genes are removed from the virus and are replaced by the miRNA gene. This modified virus makes a double-stranded miRNA mimic which associates with Ago proteins and forms the miRNA silencing complex. Adenovirus, adeno-associated virus, retrovirus, and lentivirus have been used as miRNA vectors. This approach is limited by low vector titers, high immunogenicity, the ability to work only in dividing cells, and clinical safety issues [119]. | |
Nano-particles | |
Poly-Particles | Polylactic-co-glycolic acid (PLGA) particles are small polymers that have been used to deliver siRNAs, miRNAs and viral vectors [120]. They are non-toxic and have been used in clinical medicine for a long time. There is often poor loading of siRNAs and miRNAs although techniques are being developed to solve this problem [120]. |
Natural lipid emulsion | Natural lipid emulsions have been used to replace tumor suppressor genes in lung cancer. These particles are uncharged, do not make aggregates in the liver and are not scavenged by macrophages [121]. Questionable delivery of the siRNAs to the target site is an issue with this technique. |
Cationic Lipid-based nano-liposomes | 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) nano-liposomes have been found to be highly effective in delivering miRNAs [122]. |
Bacterial mini-cells | Bacterial mini-cells that are produced by inactivating genes involved in bacterial growth have been used to deliver chemotherapeutic agents [123]. A phase 1 study is currently ongoing to deliver miR-16 family miRNAs, which suppress tumor growth in malignant pleural mesothelioma and non-small cell lung cancer, using this technique [124]. |
Cationic polymers | Low molecular weight with a branched structure polyethyleneimine has been used for siRNA delivery [125]. |
Polyamidoamines | Initially designed for delivery of plasmids, polyamidoamines polymers have been used for siRNA delivery. These molecules can be designed precisely to the desired sizes and molecular weights [126]. |
Collagen-based molecules | Atelocollagen is a calf dermis derived type 1 collagen which has been used to deliver siRNA locally [127] as well as systematically [128]. |
Cyclodextrin polycation | siRNA, when complexed with cyclodextrin polycation delivery system, was shown to effectively silence the intended oncogene [129]. |
Molecule | Therapeutic Agent/Mode of Action | Pharm* Company | Targeted Disease | Trial Description | Trial Results |
---|---|---|---|---|---|
RG-012 | miR-21/Inhibits | Regulus/Genzyme | Alport Syndrome | Phase 1, Open-label, Multi-center study of the subjects with Alport syndrome, n = 10 | Ongoing, Estimated completion date December 2018 |
MRG-201 | miR-29/Promotes | Mirage | Scar tissue formation in skin, intended uses in Scleroderma, Diabetic nephropathy, and pulmonary fibrosis | Phase 1, Double-Blind, Placebo-Controlled, Single and Multiple Dose-Escalation Study to investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics activity of MRG-201 following local intradermal injection in normal healthy volunteers, n = 54 | Reduced fibrosis in humans who received MRG-201 |
RG-125/AZD4076 | miR-103/107 | AstraZeneca/Regulus | Type 2 diabetes and non-alcoholic steatohepatitis | Phase I/IIa to investigate the effect on whole-body insulin sensitivity, liver fat content, safety, and tolerability | Discontinued—June 2017 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaffi, S.K.; Galas, D.; Etheridge, A.; Argyropoulos, C. Role of MicroRNAs in Renal Parenchymal Diseases—A New Dimension. Int. J. Mol. Sci. 2018, 19, 1797. https://doi.org/10.3390/ijms19061797
Shaffi SK, Galas D, Etheridge A, Argyropoulos C. Role of MicroRNAs in Renal Parenchymal Diseases—A New Dimension. International Journal of Molecular Sciences. 2018; 19(6):1797. https://doi.org/10.3390/ijms19061797
Chicago/Turabian StyleShaffi, Saeed Kamran, David Galas, Alton Etheridge, and Christos Argyropoulos. 2018. "Role of MicroRNAs in Renal Parenchymal Diseases—A New Dimension" International Journal of Molecular Sciences 19, no. 6: 1797. https://doi.org/10.3390/ijms19061797
APA StyleShaffi, S. K., Galas, D., Etheridge, A., & Argyropoulos, C. (2018). Role of MicroRNAs in Renal Parenchymal Diseases—A New Dimension. International Journal of Molecular Sciences, 19(6), 1797. https://doi.org/10.3390/ijms19061797