Opposite Genetic Effects of CMIP Polymorphisms on the Risk of Type 2 Diabetes and Obesity: A Family-Based Study in China
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Ascertainment of T2DM Status, Including T2DM, Prediabetes, and Normal Glucose Levels
4.3. Measurement and Calculation of Obesity-Related Phenotypes
4.4. Genotyping
4.5. Assessment of Covariates
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CMIP | C-maf-Inducing Protein |
T2DM | Type 2 diabetes mellitus |
BMI | Body mass index |
WC | Waist circumference |
HC | Hip circumference |
PBF | Percentage of body fat |
GWAS | Genome-wide association study |
NF-κB | Nuclear factor-κB |
Th2 | T-helper 2 |
SNP | Single nucleotide polymorphism |
WHR | Waist-to-hip ratio |
WHRadjBMI | Waist-to-hip ratio adjusted for body mass index |
OR | Odds ratio |
95% CI | 95% confidence interval |
SD | Standard deviation |
SE | Standard error |
CDKN2A/2B | Cyclin-Dependent Kinase Inhibitor 2A/2B |
KCNJ11 | Potassium Voltage-Gated Channel Subfamily J Member 11 |
TCF7L2 | Transcription Factor 7 Like 2 |
ELMO1 | Engulfment and Cell Motility 1 |
BCL11A | B Cell CLL/Lymphoma 11A |
DHEAS | Dihydroepiandrosterone sulphate |
ARL15 | ADP Ribosylation Factor Like GTPase 15 |
QPCTL | Glutaminyl-Peptide Cyclotransferase-Like |
CPEB4 | Cytoplasmic Polyadenylation Element Binding Protein 4 |
References
- Karaderi, T.; Drong, A.W.; Lindgren, C.M. Insights into the Genetic Susceptibility to Type 2 Diabetes from Genome-Wide Association Studies of Obesity-Related Traits. Curr. Diabetes Rep. 2015, 15, 83. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Amerian Diabetes Association. Standards of medical care in diabetes—2014. Diabetes Care 2014, 37 (Suppl. 1), S14–S80. [Google Scholar] [CrossRef]
- Frank, L.K.; Heraclides, A.; Danquah, I.; Bedu-Addo, G.; Mockenhaupt, F.P.; Schulze, M.B. Measures of general and central obesity and risk of type 2 diabetes in a Ghanaian population. Trop. Med. Int. Health 2013, 18, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Wang, C.; Li, Y.; Chen, J.; Yu, L.; Liu, X.; Li, J.; Cao, J.; Deng, Y.; Guo, D.; et al. Incidence of type 2 diabetes and number of events attributable to abdominal obesity in China: A cohort study. J. Diabetes 2016, 8, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, S.; Ahlbom, A.; Lichtenstein, P.; Andersson, T. Shared genetic influence of BMI, physical activity and type 2 diabetes: A twin study. Diabetologia 2013, 56, 1031–1035. [Google Scholar] [CrossRef] [PubMed]
- Mamtani, M.; Kulkarni, H.; Dyer, T.D.; Almasy, L.; Mahaney, M.C.; Duggirala, R.; Comuzzie, A.G.; Blangero, J.; Curran, J.E. Waist circumference is genetically correlated with incident type 2 diabetes in Mexican-American families. Diabet. Med. 2014, 31, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.H.; Park, K.S. Recent progress in genetic and epigenetic research on type 2 diabetes. Exp. Mol. Med. 2016, 48, e220. [Google Scholar] [CrossRef] [PubMed]
- Palmer, B.F.; Clegg, D.J. The sexual dimorphism of obesity. Mol. Cell. Endocrinol. 2015, 402, 113–319. [Google Scholar] [CrossRef] [PubMed]
- Kautzky-Willer, A.; Harreiter, J.; Pacini, G. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocr. Rev. 2016, 37, 278–316. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Zhang, M.; Luo, X.; Wang, C.; Yin, L.; Pang, C.; Feng, T.; Ren, Y.; Wang, B.; Zhang, L.; et al. Secular trends in the prevalence of type 2 diabetes in adults in China from 1995 to 2014: A meta-analysis. J. Diabetes 2017, 9, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Vega, T.; Gil, M.; Lozano, J. Age and sex differences in the incidence of diabetes mellitus in a population-based Spanish cohort. J. Diabetes 2015, 7, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Geer, E.B.; Shen, W. Gender differences in insulin resistance, body composition, and energy balance. Gender Med. 2009, 6 (Suppl. 1), 60–75. [Google Scholar] [CrossRef] [PubMed]
- Winkler, T.W.; Justice, A.E.; Graff, M.; Barata, L.; Feitosa, M.F.; Chu, S.; Czajkowski, J.; Esko, T.; Fall, T.; Kilpelainen, T.O.; et al. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study. PLoS Genet. 2015, 11, e1005378. [Google Scholar] [CrossRef] [PubMed]
- Heid, I.M.; Jackson, A.U.; Randall, J.C.; Winkler, T.W.; Qi, L.; Steinthorsdottir, V.; Thorleifsson, G.; Zillikens, M.C.; Speliotes, E.K.; Magi, R.; et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 2010, 42, 949–960. [Google Scholar] [CrossRef] [PubMed]
- Randall, J.C.; Winkler, T.W.; Kutalik, Z.; Berndt, S.I.; Jackson, A.U.; Monda, K.L.; Kilpelainen, T.O.; Esko, T.; Magi, R.; Li, S.; et al. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet. 2013, 9, e1003500. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Bakshi, A.; Zhu, Z.; Hemani, G.; Vinkhuyzen, A.A.; Nolte, I.M.; van Vliet-Ostaptchouk, J.V.; Snieder, H.; Esko, T.; Milani, L.; et al. Genome-wide genetic homogeneity between sexes and populations for human height and body mass index. Hum. Mol. Genet. 2015, 24, 7445–7449. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.; Valanciute, A.; Dahan, K.; Ory, V.; Pawlak, A.; Lang, P.; Guellaen, G.; Sahali, D. C-mip interacts physically with RelA and inhibits nuclear factor κB activity. Mol. Immunol. 2009, 46, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Grimbert, P.; Valanciute, A.; Audard, V.; Pawlak, A.; Le gouvelo, S.; Lang, P.; Niaudet, P.; Bensman, A.; Guellaen, G.; Sahali, D. Truncation of C-mip (Tc-mip), a new proximal signaling protein, induces c-maf Th2 transcription factor and cytoskeleton reorganization. J. Exp. Med. 2003, 198, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.A.; Scott, L.J.; Magi, R.; Marullo, L.; Gaulton, K.J.; Kaakinen, M.; Pervjakova, N.; Pers, T.H.; Johnson, A.D.; Eicher, J.D.; et al. An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes 2017, 66, 2888–2902. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Rasheed, A.; Tikkanen, E.; Lee, J.J.; Butterworth, A.S.; Howson, J.M.M.; Assimes, T.L.; Chowdhury, R.; Orho-Melander, M.; Damrauer, S.; et al. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat. Genet. 2017, 49, 1450–1457. [Google Scholar] [CrossRef] [PubMed]
- Shungin, D.; Winkler, T.W.; Croteau-Chonka, D.C.; Ferreira, T.; Locke, A.E.; Magi, R.; Strawbridge, R.J.; Pers, T.H.; Fischer, K.; Justice, A.E.; et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 2015, 518, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Kato, N.; Hwang, J.Y.; Guo, X.; Tabara, Y.; Li, H.; Dorajoo, R.; Yang, X.; Tsai, F.J.; Li, S.; et al. Genome-wide association studies in East Asians identify new loci for waist-hip ratio and waist circumference. Sci. Rep. 2016, 6, 17958. [Google Scholar] [CrossRef] [PubMed]
- Avery, C.L.; Freedman, B.I.; Kraja, A.T.; Borecki, I.B.; Miller, M.B.; Pankow, J.S.; Arnett, D.; Lewis, C.E.; Myers, R.H.; Hunt, S.C.; et al. Genotype-by-sex interaction in the aetiology of type 2 diabetes mellitus: Support for sex-specific quantitative trait loci in Hypertension Genetic Epidemiology Network participants. Diabetologia 2006, 49, 2329–2336. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Turki, A.; Al-Zaben, G.S.; Khirallah, M.; Marmouch, H.; Mahjoub, T.; Almawi, W.Y. Gender-dependent associations of CDKN2A/2B, KCNJ11, POLI, SLC30A8, and TCF7L2 variants with type 2 diabetes in (North African) Tunisian Arabs. Diabetes Res. Clin. Pract. 2014, 103, e40–e43. [Google Scholar] [CrossRef] [PubMed]
- Paladini, F.; Adinolfi, V.; Cocco, E.; Ciociola, E.; Tamburrano, G.; Cascino, I.; Lucantoni, F.; Morano, S.; Sorrentino, R. Gender-dependent association of type 2 diabetes with the vasoactive intestinal peptide receptor 1. Gene 2012, 493, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Ryoo, H.; Woo, J.; Kim, Y.; Lee, C. Heterogeneity of genetic associations of CDKAL1 and HHEX with susceptibility of type 2 diabetes mellitus by gender. Eur. J. Hum. Genet. EJHG 2011, 19, 672–675. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Yamada, Y.; Matsuo, H.; Segawa, T.; Watanabe, S.; Kato, K.; Yokoi, K.; Ichihara, S.; Metoki, N.; Yoshida, H.; et al. Gender differences in the association of gene polymorphisms with type 2 diabetes mellitus. Int. J. Mol. Med. 2007, 19, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Holzapfel, C.; Baumert, J.; Grallert, H.; Muller, A.M.; Thorand, B.; Khuseyinova, N.; Herder, C.; Meisinger, C.; Hauner, H.; Wichmann, H.E.; et al. Genetic variants in the USF1 gene are associated with low-density lipoprotein cholesterol levels and incident type 2 diabetes mellitus in women: Results from the MONICA/KORA Augsburg case-cohort study, 1984–2002. Eur. J. Endocrinol. 2008, 159, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Jiang, F.; Zhang, R.; Tang, S.; Chen, M.; Yan, J.; Sun, X.; Luo, Y.; Hu, C.; Jia, W. Association of Toll-like Receptor 4 Gene polymorphisms with susceptibility to type 2 diabetes mellitus in the Chinese population. J. Diabetes 2015, 7, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Xie, Z.; Lu, J.; Hao, Q.; Kang, M.; Chen, S.; Tang, W.; Ding, H.; Chen, Y.; Liu, C.; et al. TCF7L2 rs290481 T>C polymorphism is associated with an increased risk of type 2 diabetes mellitus and fasting plasma glucose level. Oncotarget 2017, 8, 77000–77008. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Wang, Z.; Wang, T.; Ma, Y.; Su, Y.; Ma, Q.; Wang, L.; Zhu, J. Association of TCF7L2 Genetic Polymorphisms with Type 2 Diabetes Mellitus in the Uygur Population of China. Int. J. Environ. Res. Public Health 2015, 12, 11797–11814. [Google Scholar] [CrossRef] [PubMed]
- Turki, A.; Mzoughi, S.; Mtitaoui, N.; Khairallah, M.; Marmouch, H.; Hammami, S.; Mahjoub, T.; Almawi, W.Y. Gender differences in the association of ELMO1 genetic variants with type 2 diabetes in Tunisian Arabs. J. Endocrinol. Investig. 2018, 41, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Orozco, G.; Ioannidis, J.P.; Morris, A.; Zeggini, E. Sex-specific differences in effect size estimates at established complex trait loci. Int. J. Epidemiol. 2012, 41, 1376–1382. [Google Scholar] [CrossRef] [PubMed]
- Go, M.J.; Hwang, J.Y.; Park, T.J.; Kim, Y.J.; Oh, J.H.; Kim, Y.J.; Han, B.G.; Kim, B.J. Genome-wide association study identifies two novel Loci with sex-specific effects for type 2 diabetes mellitus and glycemic traits in a Korean population. Diabetes Metab. J. 2014, 38, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Cheema, A.K.; Li, T.; Liuzzi, J.P.; Zarini, G.G.; Dorak, M.T.; Huffman, F.G. Genetic Associations of PPARGC1A with Type 2 Diabetes: Differences among Populations with African Origins. J. Diabetes Res. 2015, 2015, 921274. [Google Scholar] [CrossRef] [PubMed]
- Ober, C.; Loisel, D.A.; Gilad, Y. Sex-specific genetic architecture of human disease. Nat. Rev. Genet. 2008, 9, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Strawbridge, R.J.; Laumen, H.; Hamsten, A.; Breier, M.; Grallert, H.; Hauner, H.; Arner, P.; Dahlman, I. Effects of Genetic Loci Associated with Central Obesity on Adipocyte Lipolysis. PLoS ONE 2016, 11, e0153990. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.C.Y.; Graff, M.; Lu, Y.; Justice, A.E.; Mudgal, P.; Liu, C.T.; Young, K.; Yanek, L.R.; Feitosa, M.F.; Wojczynski, M.K.; et al. Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium. PLoS Genet. 2017, 13, e1006719. [Google Scholar] [CrossRef] [PubMed]
- Prins, B.P.; Kuchenbaecker, K.B.; Bao, Y.; Smart, M.; Zabaneh, D.; Fatemifar, G.; Luan, J.; Wareham, N.J.; Scott, R.A.; Perry, J.R.B.; et al. Genome-wide analysis of health-related biomarkers in the UK Household Longitudinal Study reveals novel associations. Sci. Rep. 2017, 7, 11008. [Google Scholar] [CrossRef] [PubMed]
- McGown, C.; Birerdinc, A.; Fau-Younossi, Z.M.; Younossi, Z.M. Adipose tissue as an endocrine organ. Clin. Liver Dis. 2014, 18, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, A.; Go, M.J.; Zhang, W.; Below, J.E.; Gaulton, K.J.; Ferreira, T.; Horikoshi, M.; Johnson, A.D.; Ng, M.C.; Prokopenko, I.; et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 2014, 46, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Burgdorf, K.S.; Gjesing, A.P.; Grarup, N.; Justesen, J.M.; Sandholt, C.H.; Witte, D.R.; Jorgensen, T.; Madsbad, S.; Hansen, T.; Pedersen, O. Association studies of novel obesity-related gene variants with quantitative metabolic phenotypes in a population-based sample of 6039 Danish individuals. Diabetologia 2012, 55, 105–113. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Van Vliet-Ostaptchouk, J.V.; den Hoed, M.; Luan, J.; Zhao, J.H.; Ong, K.K.; van der Most, P.J.; Wong, A.; Hardy, R.; Kuh, D.; van der Klauw, M.M.; et al. Pleiotropic effects of obesity-susceptibility loci on metabolic traits: A meta-analysis of up to 37,874 individuals. Diabetologia 2013, 56, 2134–2146. [Google Scholar] [CrossRef] [PubMed]
- De Pergola, G.; Silvestris, F. Obesity as a major risk factor for cancer. J. Obes. 2013, 2013, 291546. [Google Scholar] [CrossRef] [PubMed]
- Neves, A.L.; Coelho, J.; Couto, L.; Leite-Moreira, A.; Roncon-Albuquerque, R., Jr. Metabolic endotoxemia: A molecular link between obesity and cardiovascular risk. J. Mol. Endocrinol. 2013, 51, R51–R64. [Google Scholar] [CrossRef] [PubMed]
- Mojica, J.P.; Lee, Y.W.; Willis, J.H.; Kelly, J.K. Spatially and temporally varying selection on intrapopulation quantitative trait loci for a life history trade-off in Mimulus guttatus. Mol. Ecol. 2012, 21, 3718–3728. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, C.M.; Strader, L.C.; Pratt, J.G.; Maiese, D.; Hendershot, T.; Kwok, R.K.; Hammond, J.A.; Huggins, W.; Jackman, D.; Pan, H.; et al. The PhenX Toolkit: Get the most from your measures. Am. J. Epidemiol. 2011, 174, 253–260. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Normal | Prediabetes | T2DM | p-Value |
---|---|---|---|---|
(n = 899) | (n = 963) | (n = 1582) | ||
Age (years), mean (SD) | 57.5 ± 8.2 | 59.4 ± 7.8 | 59.3 ± 7.5 | 4.04 × 10−8 |
Male, % | 56.8 | 52.2 | 42.2 | 8.01 × 10−13 |
Hypertension, % | 53.3 | 59.8 | 61.7 | 1.88 × 10−4 |
Hyperlipidemia, % | 25.1 | 32.1 | 45.0 | <2.20 × 10−16 |
Smoking status | 5.00 × 10−5 | |||
Never smoker, % | 50.3 | 51.6 | 58.4 | |
Past smoker, % | 17.9 | 16.6 | 15.3 | |
Current smoker, % | 31.8 | 31.9 | 26.3 | |
Alcohol drinking | 3.90 × 10−16 | |||
Never drinker, % | 53.4 | 53.8 | 66.9 | |
Past drinker, % | 11.4 | 16.2 | 8.7 | |
Current drinker, % | 35.2 | 30.0 | 24.4 | |
Rs2925979, % | 0.261 | |||
TT genotype | 14.8 | 14.8 | 17.2 | |
TC genotype | 49.3 | 48.9 | 49.6 | |
CC genotype | 36.0 | 36.2 | 33.1 |
Phenotype | Total | Male | Female | ||||||
---|---|---|---|---|---|---|---|---|---|
(n = 1862) | (n = 1014) | (n = 848) | |||||||
Normal (n = 899) | Prediabetes (n = 963) | p-Value | Normal (n = 511) | Prediabetes (n = 503) | p-Value | Normal (n = 388) | Prediabetes (n = 460) | p-Value | |
BMI (kg/m2) | 25.4 (3.4) | 26.2 (3.5) | 7.10 × 10−7 * | 25.1 (3.2) | 25.6 (3.3) | 6.63 × 10−4 * | 25.9 (3.5) | 26.8 (3.7) | 5.48 × 10−4 * |
WC (cm) | 89.5 (9.5) | 91.4 (9.3) | 2.30 × 10−5 * | 90.2 (9.3) | 91.8 (9.4) | 8.45 × 10−4 * | 88.6 (9.6) | 90.9 (9.1) | 0.015 |
HC (cm) | 99.4 (7.5) | 100.4 (7.5) | 8.12 × 10−4 * | 98.9 (6.8) | 99.7 (7.0) | 0.005 * | 100.0 (8.3) | 101.2 (7.9) | 0.060 |
WHR | 0.90 (0.06) | 0.91 (0.05) | 0.009 | 0.91 (0.05) | 0.92 (0.05) | 0.025 | 0.89 (0.06) | 0.90 (0.05) | 0.220 |
WHRadjBMI | −0.20 (1.01) | −0.15 (0.98) | 0.472 | −0.18 (1.00) | −0.14 (1.01) | 0.618 | −0.23 (1.03) | −0.17 (0.95) | 0.656 |
PBF (%) | 26.7 (9.2) | 28.8 (9.6) | 1.01 × 10−6 * | 20.5 (5.5) | 21.5 (5.6) | 0.003 * | 34.5 (6.6) | 36.5 (6.5) | 1.57 × 10−4 * |
PBF of arms (%) | 22.9 (10.1) | 25.0 (10.8) | 2.33 × 10−6 * | 15.7 (4.3) | 16.2 (4.2) | 0.012 | 32.1 (7.7) | 34.3 (7.5) | 1.31 × 10−4 * |
PBF of legs (%) | 27.5 (8.9) | 29.3 (9.2) | 7.48 × 10−7 * | 20.6 (4.2) | 21.4 (4.4) | 5.44 × 10−4 * | 36.3 (4.7) | 37.5 (4.6) | 3.53 × 10−4 * |
PBF of trunk (%) | 26.7 (9.8) | 29.2 (10.1) | 7.39 × 10−7 * | 21.2 (7.1) | 22.6 (7.3) | 0.002 * | 33.7 (8.1) | 36.2 (7.7) | 1.01 × 10−4 * |
Total | Male | Female | p-Value for Sex Interaction | ||||
---|---|---|---|---|---|---|---|
(n = 3444) | (n = 1681) | (n = 1763) | |||||
OR (95%CI) | p-Value | OR (95%CI) | p-Value | OR (95%CI) | p-Value | ||
Model 1 | 1.15 (1.02~1.30) | 0.022 | 0.96 (0.79~1.17) | 0.705 | 1.29 (1.11~1.50) | 9.30 × 10−4 | 0.021 |
Model 2 | 1.17 (1.03~1.32) | 0.014 | 0.98 (0.80~1.20) | 0.809 | 1.34 (1.14~1.58) | 4.70 × 10−4 | 0.013 |
Phenotype | Total | Male | Female | p-Value for Sex Interaction | |||
---|---|---|---|---|---|---|---|
(n = 1862) | (n = 1014) | (n = 848) | |||||
β (SE) | p-Value | β (SE) | p-Value | β (SE) | p-Value | ||
BMI | −0.079 (0.034) | 0.019 | −0.015 (0.044) | 0.734 | −0.161 (0.052) | 0.002 * | 0.037 |
WC | −0.055 (0.035) | 0.111 | −0.005 (0.045) | 0.914 | −0.136 (0.052) | 0.010 | 0.083 |
HC | −0.073 (0.035) | 0.040 | −0.000 (0.046) | 0.995 | −0.175 (0.054) | 0.001 * | 0.016 |
WHR | −0.017 (0.036) | 0.623 | −0.011 (0.047) | 0.820 | −0.030 (0.053) | 0.571 | 0.963 |
WHRadjBMI | 0.034 (0.036) | 0.354 | 0.015 (0.049) | 0.765 | 0.050 (0.055) | 0.357 | 0.626 |
PBF | −0.067 (0.035) | 0.056 | −0.002 (0.046) | 0.974 | −0.149 (0.052) | 0.004 * | 0.035 |
PBF of arms | −0.045 (0.035) | 0.202 | 0.023 (0.046) | 0.622 | −0.130 (0.053) | 0.014 | 0.027 |
PBF of legs | −0.073 (0.035) | 0.039 | −0.010 (0.047) | 0.827 | −0.152 (0.053) | 0.004 * | 0.040 |
PBF of trunk | −0.077 (0.035) | 0.029 | −0.016 (0.046) | 0.730 | −0.153 (0.053) | 0.004 * | 0.054 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Wang, T.; Wu, Y.; Juan, J.; Qin, X.; Tang, X.; Wu, T.; Hu, Y. Opposite Genetic Effects of CMIP Polymorphisms on the Risk of Type 2 Diabetes and Obesity: A Family-Based Study in China. Int. J. Mol. Sci. 2018, 19, 1011. https://doi.org/10.3390/ijms19041011
Cao Y, Wang T, Wu Y, Juan J, Qin X, Tang X, Wu T, Hu Y. Opposite Genetic Effects of CMIP Polymorphisms on the Risk of Type 2 Diabetes and Obesity: A Family-Based Study in China. International Journal of Molecular Sciences. 2018; 19(4):1011. https://doi.org/10.3390/ijms19041011
Chicago/Turabian StyleCao, Yaying, Tao Wang, Yiqun Wu, Juan Juan, Xueying Qin, Xun Tang, Tao Wu, and Yonghua Hu. 2018. "Opposite Genetic Effects of CMIP Polymorphisms on the Risk of Type 2 Diabetes and Obesity: A Family-Based Study in China" International Journal of Molecular Sciences 19, no. 4: 1011. https://doi.org/10.3390/ijms19041011
APA StyleCao, Y., Wang, T., Wu, Y., Juan, J., Qin, X., Tang, X., Wu, T., & Hu, Y. (2018). Opposite Genetic Effects of CMIP Polymorphisms on the Risk of Type 2 Diabetes and Obesity: A Family-Based Study in China. International Journal of Molecular Sciences, 19(4), 1011. https://doi.org/10.3390/ijms19041011