Next Article in Journal
Genome Instability and γH2AX
Next Article in Special Issue
Chemoenzymatic Preparation and Biophysical Properties of Sulfated Quercetin Metabolites
Previous Article in Journal
Hsp90α Mediates BMI1 Expression in Breast Cancer Stem/Progenitor Cells through Facilitating Nuclear Translocation of c-Myc and EZH2
Previous Article in Special Issue
Bioaccessibility, Intestinal Permeability and Plasma Stability of Isorhamnetin Glycosides from Opuntia ficus-indica (L.)
Open AccessArticle

Quercetin Attenuates Manganese-Induced Neuroinflammation by Alleviating Oxidative Stress through Regulation of Apoptosis, iNOS/NF-κB and HO-1/Nrf2 Pathways

College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
Department of Pathology, College of Medicine, Yonsei University, Seoul 03722, Korea
Department of Pathology and Translational Genomics, School of Medicine, Samsung Medical Center, Seoul 06351, Korea
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2017, 18(9), 1989;
Received: 7 July 2017 / Revised: 29 August 2017 / Accepted: 13 September 2017 / Published: 15 September 2017
(This article belongs to the Special Issue Bioactive Phenolics and Polyphenols 2018)
Manganese (Mn) is an essential trace element required for the development of human body and acts as an enzyme co-factor or activator for various reactions of metabolism. While essential in trace amounts, excessive Mn exposure can result in toxic accumulations in human brain tissue and resulting extrapyramidal symptoms called manganism similar to idiopathic Parkinson’s disease (PD). Quercetin (QCT) has been demonstrated to play an important role in altering the progression of neurodegenerative diseases by protecting against oxidative stress. This study aimed to investigate the protective effect of QCT on Mn-induced neurotoxicity and the underlying mechanism in SK-N-MC human neuroblastoma cell line and Sprague-Dawley (SD) male rat brain. The results showed that Mn treatment significantly decreased the cell viability of SK-N-MC cell and increased the release of lactate dehydrogenase (LDH), which was attenuated by QCT pretreatment at 10 and 20 µg/mL. Compared to the Mn alone group, QCT pretreatment significantly attenuated Mn-induced oxidative stress, mitochondrial dysfunction and apoptosis. Meanwhile, QCT pretreatment markedly downregulated the NF-κB but upregulated the heme oxygenase-1 (HO-1) and Nrf2 proteins, compared to the Mn alone group. Our result showed the beneficial effect of QCT on hematological parameters against Mn in rat brain. QCT decrease reactive oxygen species (ROS) and protein carbonyl levels and increased Cu/Zn-superoxide dismutase (SOD) activity induced in Mn-treated rats. QCT administration caused a significant reduction in the Mn-induced neuroinflammation by inhibiting the expression of inflammatory markers such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). QCT lowered the Mn elevated levels of various downstream apoptotic markers, including Bax, cytochrome c, cleaved caspase-3 and polymerase-1 (PARP-1), while QCT treatment upregulated anti-apoptotic Bcl-2 proteins and prevented Mn-induced neurodegeneration. Furthermore, administration of QCT (25 and 50 mg/kg) to Mn-exposed rats showed improvement of histopathological alteration in comparison to Mn-treated rats. Moreover, administration of QCT to Mn-exposed rats showed significant reduction of 8-hydroxy-2’-deoxyguanosine (8-OHdG), Bax, activated caspase-3 and PARP-1 immunoreactivity. These results indicate that QCT could effectively inhibit Mn induced apoptosis and inflammatory response in SK-N-MC cells and SD rats, which may involve the activation of HO-1/Nrf2 and inhibition of NF-κB pathway. View Full-Text
Keywords: manganese; manganism; quercetin; oxidative stress; neuroinflammation; apoptosis manganese; manganism; quercetin; oxidative stress; neuroinflammation; apoptosis
Show Figures

Graphical abstract

MDPI and ACS Style

Bahar, E.; Kim, J.-Y.; Yoon, H. Quercetin Attenuates Manganese-Induced Neuroinflammation by Alleviating Oxidative Stress through Regulation of Apoptosis, iNOS/NF-κB and HO-1/Nrf2 Pathways. Int. J. Mol. Sci. 2017, 18, 1989.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop