The Role of Vitamin D in Non-Scarring Alopecia
Abstract
:1. Introduction
2. Vitamin D in Alopecia Areata
3. Vitamin D in Female Pattern Hair Loss
4. Vitamin D in Telogen Effluvium
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mostafa, W.Z.; Hegazy, R.A. Vitamin D and the skin: Focus on a complex relationship: A review. J. Adv. Res. 2015, 6, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Veldurthy, V.; Wei, R.; Oz, L.; Dhawan, P.; Jeon, Y.H.; Christakos, S. Vitamin D, calcium homeostasis and aging. Bone Res. 2016, 4, 16041. [Google Scholar] [CrossRef] [PubMed]
- Lips, P.; van Schoor, N.M. The effect of vitamin D on bone and osteoporosis. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Lehman, B. Role of vitamin D3 pathway in healthy and diseased skin—Facts, contradictions and hypotheses. Exp. Dermatol. 2009, 18, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Rosen, Y.; Daich, J.; Soliman, I.; Brathwaite, E.; Shoenfeld, Y. Vitamin D and autoimmunity. Scand. J. Rheumatol. 2016, 45, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Soruri, A.; Gieseler, R.K.; Peters, J.H. 1,25-Dihydroxyvitamin D3 exerts opposing effects to IL-4 on MHC class-II antigen expression, accessory activity, and phagocytosis of human monocytes. Scand. J. Immunol. 1993, 38, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.T.; Nestel, F.P.; Bourdeau, V.; Nagai, Y.; Wang, Q.; Liao, J.; Tavera-Mendoza, L.; Lin, R.; Hanrahan, J.W.; Mader, S.; et al. Cutting Edge: 1,25-Dihydroxyvitamin D3 Is a Direct Inducer of Antimicrobial Peptide Gene Expression. J. Immunol. 2004, 173, 2909–2912. [Google Scholar] [CrossRef] [PubMed]
- Penna, G.; Adorini, L. 1α,25-Dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J. Immunol. 2000, 164, 2405–2411. [Google Scholar] [CrossRef] [PubMed]
- Hewison, M. An update on vitamin D and human immunity. Clin. Endocrinol. 2012, 76, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.H.; Chung, Y.; Dong, C.J. Vitamin D suppresses Th17 cytokine production by inducing C/EBP homologous protein (CHOP) expression. Biol. Chem. 2010, 285, 38751–38755. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Sims, G.P.; Chen, X.X.; Gu, Y.Y.; Chen, S.; Lipsky, P.E. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J. Immunol. 2007, 179, 1634–1647. [Google Scholar] [CrossRef] [PubMed]
- Aksu Cerman, A.; Solak Sarikaya, S.; Altunay Kivanc, I. Vitamin D deficiency in alopecia areata. Br. J. Dermatol. 2014, 170, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- D’Ovidio, R.; Vessio, M.; d’Ovidio, F.D. Reduced level of 25-hydroxyvitamin D in chronic/relapsing alopecia areata. Dermatoendocrinol 2013, 5, 271–273. [Google Scholar] [CrossRef] [PubMed]
- Arnson, Y.; Amital, H.; Shoenfeld, Y. Vitamin D and autoimmunity: New aetiological and therapeutic considerations. Ann. Rheum. Dis. 2007, 66, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Baeke, F.; Van Etten, E.; Gysemans, C.; Overbergh, L.; Chantal, M. Vitamin D signaling in immune-mediated disorders: Evolving insights and therapeutic opportunities. Mol. Asp. Med. 2008, 29, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Mahamid, M.; Abu-Elhija, O.; Samamra, M.; Mahamid, A.; Mahmud, N.W. Association between vitamin D levels and alopecia areata. Isr. Med. Assoc. J. 2014, 16, 367–370. [Google Scholar] [PubMed]
- Bikle, D.D.; Oda, Y.; Tu, C.L.; Jiang, Y. Novel mechanisms for the vitamin D receptor (VDR) in the skin and in skin cancer. J. Steroid Biochem. Mol. Biol. 2015, 148, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Van Etten, E.; Mathieu, C. Immunoregulation by 1,25-dihydroxyvitamin D3: Basic concepts. J. Steroid Biochem. Mol. Biol. 2005, 97, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Lee, J.W.; Kim, I.S.; Choi, S.Y.; Lim, Y.Y.; Kim, H.M.; Kim, B.J.; Kim, M.N. Successful treatment of alopecia areata with topical calcipotriol. Ann. Dermatol. 2012, 24, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Kuryłowicz, A.; Bednarczuk, T.; Nauman, J. The influence of vitamin D deficiency on cancers and autoimmune diseases development. J. Investig. Dermatol. 2002, 118, 11–16. [Google Scholar]
- Malloy, P.J.; Feldman, D. The role of vitamin D receptor mutations in the development of alopecia. Mol. Cell. Endocrinol. 2011, 347, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Demay, M.B.; MacDonald, P.N.; Skorija, K.; Dowd, D.R.; Cianferotti, L.; Cox, M. Role of the vitamin D receptor in hair follicle biology. J. Steroid Biochem. Mol. Biol. 2007, 103, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Amor, K.T.; Rashid, R.M.; Mirmirani, P. Does D matter? The role of vitamin D in hair disorders and hair follicle cycling. Dermatol. Online J. 2010, 16. [Google Scholar] [CrossRef]
- Shafeghati, Y.; Momenin, N.; Esfahani, T.; Reyniers, E.; Wuyts, W. Vitamin D-dependent rickets type II: Report of a novel mutation in the vitamin D receptor gene. Arch. Iran. Med. 2008, 11, 330–334. [Google Scholar] [PubMed]
- Bergman, R.; Schein-Goldshmid, R.; Hochberg, Z.; Ben-Izhak, O.; Sprecher, E. The alopecias associated with vitamin D-dependent rickets type IIA and with hairless gene mutations: A comparative clinical, histologic, and immunohistochemical study. Arch. Dermatol. 2005, 141, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D.; Elalieh, H.; Chang, S.; Xie, Z.; Sundberg, J.P. Development and progression of alopecia in the vitamin D receptor null mouse. J Cell. Physiol. 2006, 207, 340–353. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.; Djabali, K.; Chen, T.; Liu, Y.; Ioffreda, M.; Lyle, S.; Christiano, A.M.; Holick, M.; Cotsarelis, G. Atrichia caused by mutations in the vitamin D receptor gene is a phenocopy of generalized atrichia caused by mutations in the hairless gene. J. Investig. Dermatol. 2001, 117, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Sakai, Y.; Kishimoto, J.; Demay, M.B. Metabolic and cellular analysis of alopecia in vitamin D receptor knockout mice. J. Clin. Investig. 2001, 107, 961–966. [Google Scholar] [CrossRef] [PubMed]
- Mady, L.J.; Ajibade, D.V.; Hsaio, C.; Teichert, A.; Fong, C.; Wang, Y.; Christakos, S.; Bikle, D.D. The Transient Role for Calcium and Vitamin D during the Developmental Hair Follicle Cycle. J. Investig. Dermatol. 2016, 136, 1337–1345. [Google Scholar] [CrossRef] [PubMed]
- Alkhalifah, A. Alopecia areata update. Dermatol. Clin. 2013, 31, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Alkhalifah, A.; Alsantali, A.; Wang, E.; McElwee, K.J.; Shapiro, J. Alopecia areata update: Part I. Clinical picture, histopathology, and pathogenesis. J. Am. Acad. Dermatol. 2010, 62, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Jabbari, A.; Petukhova, L.; Cabral, R.; Clynes, R.; Christiano, A. Genetic basis of alopecia areata. A road map for translational research. Dermatol. Clin. 2013, 31, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, N.; Serarslan, G.; Gokce, C. Vitamin D concentrations are decreased in patients with alopecia areata. Vitam. Miner. 2012, 1, 105–109. [Google Scholar] [CrossRef]
- Bakry, O.A.; El Farargy, S.M.; El Shafiee, M.K.; Soliman, A. Serum Vitamin D in patients with alopecia areata. Indian Dermatol. Online J. 2016, 7, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Ghafoor, R.; Anwar, M.I. Vitamin D Deficiency in Alopecia Areata. Br. J. Dermatol. 2017, 27, 200–202. [Google Scholar]
- Darwish, N.M.M.; Marzok, H.F.; Gaballah, M.A.M.; Adbellatif, H.E. Serum level of vitamin D in patients with alopecia areata. Egypt. J. Basic Appl. Sci. 2017, 4, 9–14. [Google Scholar] [CrossRef]
- Attawa, E.M.; Kandil, A.H.; Elbalaat, W.; Samy, A.M. Assessment of Vitamin D Level in Patients of Alopecia Areata. J. Clin. Investig. Dermatol. 2016, 4, 4. [Google Scholar]
- Erpolat, S.; Sarifakioglu, E.; Ayyildiz, A. 25-hydroxyvitamin D status in patients with alopecia areata. Postepy Dermatol. Alergol. 2017, 34, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Bhat, Y.J.; Latif, I.; Malik, R.; Hassan, I.; Sheikh, G.; Lone, K.S.; Majeed, S.; Sajad, P. Vitamin D Level in Alopecia Areata. Indian J. Dermatol. 2017, 62, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Unal, M.; Gonulalan, G. Serum vitamin D level is related to disease severity in pediatric alopecia areata. J. Cosmet. Dermatol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, H.; Mahgoub, D.; Hegazy, R.; El-Komy, M.; Abdel Hay, R.; Hamid, M.A.; Hamdy, E. Serum ferritin and vitamin d in female hair loss: Do they play a role? Skin Pharmacol. Physiol. 2013, 26, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Banihashemi, M.; Nahidi, Y.; Meibodi, N.T.; Jarahi, L.; Dolatkhah, M. Serum Vitamin D3 Level in Patients with Female Pattern Hair Loss. Int. J. Trichol. 2016, 8, 116–120. [Google Scholar]
- Moneib, H.; Fathy, G.; Ouda, A. Possible association of female-pattern hair loss with alteration in serum 25-hydroxyvitamin D levels. Egypt. J. Dermatol. Venerol. 2014, 34, 15–20. [Google Scholar]
- Nayak, K.; Garg, A.; Mithra, P.; Manjrekar, P. Serum Vitamin D3 Levels and Diffuse Hair Fall among the Student Population in South India: A Case-Control Study. Int. J. Trichol. 2016, 8, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Karadag, A.S.; Ertugrul, D.T.; Tutal, E.; Akin, K.O. The role of anemia and Vitamin D levels in acute and chronic telogen effluvium. Turk. J. Med. Sci. 2011, 41, 827–833. [Google Scholar]
- Endemo-Online Converters. Available online: http://www.endmemo.com/medical/unitconvert/Vitamin__D.php (accessed on 22 November 2017).
- Fawzi, M.M.; Mahmoud, S.B.; Ahmed, S.F.; Shaker, O.G. Assessment of vitamin D receptors in alopecia areata and androgenetic alopecia. J. Cosmet. Dermatol. 2016, 15, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.Y.; Kim, S.Y.; Kim, H.M.; Li, K.S.; Kim, M.N.; Park, K.C.; Kim, B.J. Potential relationship between the canonical Wnt signalling pathway and expression of the vitamin D receptor in alopecia. Clin. Exp. Dermatol. 2014, 39, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Narang, T.; Daroach, M.; Kumaran, M.S. Efficacy and safety of topical calcipotriol in management of alopecia areata: A pilot study. Dermatol. Ther. 2017, 30, 3. [Google Scholar] [CrossRef] [PubMed]
- Çerman, A.A.; Solak, S.S.; Altunay, İ.; Küçükünal, N.A. Topical Calcipotriol Therapy for Mild-to-Moderate Alopecia Areata: A Retrospective Study. J. Drugs Dermatol. 2015, 14, 616–620. [Google Scholar] [PubMed]
- Olsen, E.A. Female pattern hair loss. J. Am. Acad. Dermatol. 2001, 45, S70–S80. [Google Scholar] [CrossRef] [PubMed]
- Ramos, P.M.; Miot, H.A. Female Pattern Hair Loss: A clinical and pathophysiological review. An. Bras. Dermatol. 2015, 90, 529–543. [Google Scholar] [CrossRef] [PubMed]
- Nashold, F.E.; Spach, K.M.; Spanier, J.A.; Hayes, C.E. Estrogen controls vitamin D3-mediated resistance to experimental autoimmune encephalomyelitis by controlling vitamin D3 metabolism and receptor expression. J. Immunol. 2009, 183, 3672–3678. [Google Scholar] [CrossRef] [PubMed]
- Malkud, S. Telogen Effluvium: A Review. J. Clin. Diagn. Res. 2015, 9. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Paus, R.; Costantino, R. Differential expression and activity of melanogenesis-related proteins during induced hair growth in mice. J. Investig. Dermatol. 1991, 96, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Sempos, C.T.; Durazo-Arvizu, R.A.; Binkley, N.; Jones, J.; Merkel, J.M.; Carter, G.D. Developing vitamin D dietary guidelines and the lack of 25-hydroxyvitamin D assay standardization: The ever-present past. J. Steroid Biochem. Mol. Biol. 2016, 164, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D.; Kiely, M.; Kinsella, M.; Durazo-Arvizu, R.A.; Tian, L.; Zhang, Y.; Lucey, A.; Flynn, A.; Gibney, M.J.; Vesper, H.W.; et al. Evaluation of Vitamin D Standardization Program protocols for standardizing serum 25-hydroxyvitamin D data: A case study of the program’s potential for national nutrition and health surveys. Am. J. Clin. Nutr. 2013, 97, 1235–1242. [Google Scholar] [CrossRef] [PubMed]
Authors | Study Subjects (Number and Age) | Severity of Alopecia | Serum Concentration of Vitamin D (25(OH)D) | ||
---|---|---|---|---|---|
Criteria for Vitamin D Status | Method of Serum 25(OH)D Measurement | Notable Findings | |||
Aksu Cerman et al., 2014 [12] | AA—86 patients V—44 patients C—58 healthy controls Mean age of: AA—32.21 ± 9.60 years V—33.64 ± 11.51 years C—32.55 ± 9.78 years | S1—71 patients S2—15 patients | D ≤ 20 ng/mL−1 | LC-MS/MS | Significantly higher prevalence of vitamin D deficiency in AA than in V and C (p = 0.003, p < 0.001 respectively). A significant negative correlation between AA severity and serum concentration of 25(OH)D (p < 0.001 r = −0.409). |
D’Ovidio R et al., 2013 [13] | AA—156 patients C—148 healthy controls Mean age of: AA—37.8 years C—34.5 years | AA multilocularis—49 patients Ophiasis—69 patients AT-AU—38 patients Minimal hair loss in all groups: 25% of scalp area | D < 20 ng/mL | CHL | Presence of serum 25(OH)D levels < 20 ng/mL significantly higher in AA vs. C (p < 0.025). In AA higher compensatory levels of PTH (r = −0.24, p < 0.01); |
Mahamid et al., 2014 [16] | AA—23 patients C—20 healthy controls Mean age of: AA—24.2 ± 12.3 years C—27 ± 11.26 years | Patchy AA—18 Extensive AA—5 | S—30–50 ng/mL I < 30 ng/mL D < 20 ng/mL | EIA | Serum 25(OH)D concentration significantly decreased in AA vs. C (p < 0.05); Serum 25(OH)D levels < 30ng/mL and CRP > 1 associated with AA occurrence (p = 0.02, p = 0.04, respectively). |
Yilmaz et al., 2012 [33] | AA—42 patients C—42 healthy controls Mean age of: AA—30.8 ± 8.2 years C—29.3 ± 7.4 years | S1—30 patients S2—6 patients S3—3 patients S4—2 patients S5—1 patient | 25(OH)D—insufficient concentration < 50 nmol/L 1,25(OH)2D—decreased concentrations ≤ 30 pg/mL | ELISA | Significantly lower concentration of 25(OH)D and 1,25(OH)2D in AA vs. C (p < 0.001, p < 0.001 respectively). No correlation between the levels of 25(OH)D and 1,25(OH)2D and disease severity, duration, nail involvement. |
Bakry et al., 2016 [34] | AA—60 patients C—60 healthy controls Mean age of: AA—20.70 ± 10.85 years C—23.71 ± 7.45 years | Mild—24 patients Moderate—20 patients Severe—16 patients | S > 75 nmol/L I—50–75 nmol/L D < 50 nmol/L | ELISA | Significantly lower levels of serum 25(OH)D in AA vs. C (p < 0.001). Significantly lower serum levels of 25(OH)D in severe AA vs. moderate and mild (p = 0.03, p = 0.002 respectively). |
Ghafoor et al., 2017 [35] | AA—30 patients C—30 healthy controls Mean age of: AA—23.77 ± 8.86 years C—24.03 ± 8.62 years | S1—4 patients S2—7 patients S3—12 patients S4—1 patient S5—6 patients | S—30 ng/dL I—20–29ng/dL D < 20 ng/dL | EIA | Significantly lower serum 25(OH)D levels in AA vs. C (p = 0.001). Lower serum 25(OH)D levels in patients with higher SALT Score. |
Darwish et al., 2017 [36] | AA—30 patients C—20 healthy controls Mean age of: AA—28.67 ± 10 years C—24.8 ± 6 years | S1 (mild)—10 patients S2 (moderate)—7 patients S3–S5 (severe)—13 patients | NA | ELISA | Significant decrease of serum 25(OH)D concentration in AA vs. C (p < 0.001). In AA significantly lower serum 25(OH)D level in males vs. females (p = 0.009). No correlation with SALT score. |
Attawa et al., 2016 [37] | AA—23 patients C—23 healthy controls Mean age of: AA—26.44 ± 10.87 years C—29.39 ± 8.10 years | S1—14 patients S2—3 patients S3–S5—6 patients | S > 30 ng/mL I—10–30 ng/mL D < 10 ng/mL | ELISA | Significantly lower serum 25(OH)D levels in AA vs. C (p = 0.01). Significant difference between vitamin D status and AA severity (p = 0.02). |
Erpolat et al., 2017 [38] | AA—41 patients C—32 healthy controls Mean age of: AA cases—32.8 ± 7.5 years C—32.7 ± 7.5 years | Single patch—15 patients Multiple patches—26 patients | S > 30 ng/mL I—20–30 ng/mL D < 20 ng/mL | HPLC | No significant difference in serum 25(OH) D levels between AA and control (p > 0.05). Vitamin D deficiency—93.8% patients with AA |
Bhat et al., 2017 [39] | AA—50 patients C—35 healthy controls Mean age of: AA cases—22.4 ± 8.6 years C—29.2 ± 7.6 years | S1—38 patients S2*—12 patients | D < 30ng/mL | CHL | Serum 25(OH)D levels significantly lower in AA vs. C (p < 0.001). A significant negative correlation between SALT score and serum vitamin D levels (p < 0.001; r = −0.730). |
Unal et al., 2017 [40] | AA—20 paediatric patients C—34 paediatric healthy controls Mean age of: AA M/F—12.4 ± 4.2/13.3 ± 4.4 years C—M/F 16.6 ± 0.8/16.5 ± 1.01 years | S1—6 patients S2—9 patients S3—5 patients | D ≤ 20ng/mL | NA | Vitamin D deficiency in both groups with no significant differences between the groups (p = 0.084). Significant inverse correlation between serum 25(OH)D levels and SALT score, disease duration and number of patches (p < 0.001, r = −0.831, p < 0.001, r = −0.997, p < 0.001 r = −0.989 respectively ). |
Rasheed et al., 2012 [41] | TE—42 patients FPHL—38 patients C—40 healthy controls Mean age of: TE and FPHL—29.8 ± 9.3 years C—30.8 ± 8.56 years | TE: Mild—22 patients Moderate—6 patients Severe—14 patients FPHL: Mild—15 patients Moderate—13 patients Severe—10 patients | S > 75 nmol/L I—25–75 nmol/L D < 25 nmol/L | Competitive enzyme immunoassay | Significantly lower serum 25(OH)D levels in TE and FPHL vs. C (p < 0.001). The highest serum 25(OH)D levels in mild vs. severe FPHL and TE (p = 0.035, p = 0.203 respectively). |
Banihashemi et al., 2016 [42] | FPHL—45 patients; C—45 healthy controls Mean age of: FPHL—29.11 ± 7.31 years C—28.82 ± 7.11 years | Ludwig I—28 patients Ludwig II—2 patients Ludwig III—2 patients | S > 30 ng/mL I—20–30 ng/mL D < 20 ng/mL | ELISA | Lower serum 25(OH)D levels in FPHL vs. C (p = 0.04). No significant correlation between serum 25(OH)D levels and duration or severity of FPHL (p = 0.77, p = 0.92 respectively). |
Moneib et al., 2014 [43] | FPHL—60 patients C—60 healthy controls Mean age of: FPHL—26.4 ± 4.51 years C—25.85 ± 4.49 years | Ludwig I—34 patients Ludwig II—22 patients Ludwig III—4 patients | S > 30 ng/mL I—21–29 ng/mL D < 20 ng/mL IN > 150ng/mL | RIA | Significantly lower mean serum 25(OH)D level in FPHL vs. C (p = 0.0001). Significant difference between serum 25(OH)D levels and Ludwig’s three degrees (p = 0.006). The highest serum 25(OH)D levels in Ludwig III. |
Nayak et al., 2016 [44] | Diffuse hair loss—22 patients C—22 healthy controls Mean age of the study population—20.89 years | NA | I—25–75 nmol/L D < 20–25 nmol/L | ELISA | Significantly lower serum 25(OH)D levels among cases vs. C (p = 0.007). |
Karadag et al., 2011 [45] | TE—63 patients C—50 healthy controls Mean age of: TE—29.0 ± 11.9 years C—28.4 ± 9.4 years | Acute TE—29 patients Chronic TE—34 patients | NA | RIA | Significantly higher serum 25(OH)D levels in TE patients vs. C (p < 0.01). Significantly increased risk for TE for patients with 25(OH)D levels in the highest quadrant vs. the lowest one (p < 0.0001). |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerkowicz, A.; Chyl-Surdacka, K.; Krasowska, D.; Chodorowska, G. The Role of Vitamin D in Non-Scarring Alopecia. Int. J. Mol. Sci. 2017, 18, 2653. https://doi.org/10.3390/ijms18122653
Gerkowicz A, Chyl-Surdacka K, Krasowska D, Chodorowska G. The Role of Vitamin D in Non-Scarring Alopecia. International Journal of Molecular Sciences. 2017; 18(12):2653. https://doi.org/10.3390/ijms18122653
Chicago/Turabian StyleGerkowicz, Agnieszka, Katarzyna Chyl-Surdacka, Dorota Krasowska, and Grażyna Chodorowska. 2017. "The Role of Vitamin D in Non-Scarring Alopecia" International Journal of Molecular Sciences 18, no. 12: 2653. https://doi.org/10.3390/ijms18122653