Next Article in Journal
The Risk of Congenital Heart Anomalies Following Prenatal Exposure to Serotonin Reuptake Inhibitors—Is Pharmacogenetics the Key?
Next Article in Special Issue
Protein Kinases and Parkinson’s Disease
Previous Article in Journal
Vitamin C and Heart Health: A Review Based on Findings from Epidemiologic Studies
Previous Article in Special Issue
Cytoprotection against Hypoxic and/or MPP+ Injury: Effect of δ–Opioid Receptor Activation on Caspase 3

The Role of Cyclo(His-Pro) in Neurodegeneration

Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant’Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy
Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano ed Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Via Vanvitelli 32, 20129 Milano, Italy
Author to whom correspondence should be addressed.
Academic Editor: Katalin Prokai-Tatrai
Int. J. Mol. Sci. 2016, 17(8), 1332;
Received: 4 July 2016 / Revised: 4 August 2016 / Accepted: 8 August 2016 / Published: 12 August 2016
(This article belongs to the Special Issue Neuroprotective Strategies 2016)
Neurodegenerative diseases may have distinct genetic etiologies and pathological manifestations, yet share common cellular mechanisms underpinning neuronal damage and dysfunction. These cellular mechanisms include excitotoxicity, calcium dysregulation, oxidative damage, ER stress and neuroinflammation. Recent data have identified a dual role in these events for glial cells, such as microglia and astrocytes, which are able both to induce and to protect against damage induced by diverse stresses. Cyclo(His-Pro), a cyclic dipeptide derived from the hydrolytic removal of the amino-terminal pyroglutamic acid residue of the hypothalamic thyrotropin-releasing hormone, may be important in regulating the nature of the glial cell contribution. Cyclo(His-Pro) is ubiquitous in the central nervous system and is a key substrate of organic cation transporters, which are strongly linked to neuroprotection. The cyclic dipeptide can also cross the brain-blood-barrier and, once in the brain, can affect diverse inflammatory and stress responses by modifying the Nrf2-NF-κB signaling axis. For these reasons, cyclo(His-Pro) has striking potential for therapeutic application by both parenteral and oral administration routes and may represent an important new tool in counteracting neuroinflammation-based degenerative pathologies. In this review, we discuss the chemistry and biology of cyclo(His-Pro), how it may interact with the biological mechanisms driving neurodegenerative disease, such as amyotrophic lateral sclerosis, and thereby act to preserve or restore neuronal function. View Full-Text
Keywords: oxidative stress; endoplasmic reticulum stress; neuroinflammation oxidative stress; endoplasmic reticulum stress; neuroinflammation
Show Figures

Graphical abstract

MDPI and ACS Style

Grottelli, S.; Ferrari, I.; Pietrini, G.; Peirce, M.J.; Minelli, A.; Bellezza, I. The Role of Cyclo(His-Pro) in Neurodegeneration. Int. J. Mol. Sci. 2016, 17, 1332.

AMA Style

Grottelli S, Ferrari I, Pietrini G, Peirce MJ, Minelli A, Bellezza I. The Role of Cyclo(His-Pro) in Neurodegeneration. International Journal of Molecular Sciences. 2016; 17(8):1332.

Chicago/Turabian Style

Grottelli, Silvia, Ilaria Ferrari, Grazia Pietrini, Matthew J. Peirce, Alba Minelli, and Ilaria Bellezza. 2016. "The Role of Cyclo(His-Pro) in Neurodegeneration" International Journal of Molecular Sciences 17, no. 8: 1332.

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop