Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer
Abstract
:1. Introduction
2. Results
2.1. Expression of TRPV3 in Human NSCLCS and Correlation with Clinical Factors
2.2. Activation of TRPV3 Promotes Proliferation of Lung Cancer Cells
2.3. Inhibition of TRPV3 Induces Changes of [Ca2+]i in Lung Cancer Cells
2.4. Inhibition of TRPV3 Induces Cell Cycle Arrest at the G1/S Boundary in Lung Cancer Cells
3. Discussion
4. Materials and Methods
4.1. Patient Populations and Clinical Specimens
4.2. Immunohistochemistry (IHC) and Scoring
4.3. Cell Culture
4.4. Western Blot Analysis
4.5. Knockdown of TRPV3 Expression with Small Interfering RNA
4.6. Cell Viability Assay
4.7. Colony Formation Assay
4.8. Cell Cycle Analysis
4.9. Measurement of [Ca2+]i
4.10. Statistical Analysis
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893–2917. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef] [PubMed]
- Schiller, J.H.; Harrington, D.; Belani, C.P.; Langer, C.; Sandler, A.; Krook, J.; Zhu, J.; Johnson, D.H. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl. J. Med. 2002, 346, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Cufer, T.; Ovcaricek, T.; O’Brien, M.E. Systemic therapy of advanced non-small cell lung cancer: Major-developments of the last 5-years. Eur. J. Cancer 2013, 49, 1216–1225. [Google Scholar] [CrossRef] [PubMed]
- Sgambato, A.; Casaluce, F.; Maione, P.; Rossi, A.; Sacco, P.C.; Panzone, F.; Ciardiello, F.; Gridelli, C. Medical treatment of small cell lung cancer: State of the art and new development. Expert Opin. Pharmacother. 2013, 14, 2019–2031. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Ramse, I.S.; Kotecha, S.A.; Moran, M.M.; Chong, J.A.; Lawson, D.; Ge, P.; Lilly, J.; Silos-Santiago, I.; Xie, Y.; et al. TRPV3 is a calcium-permeable temperature sensitive cation channel. Nature 2002, 418, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, K.; Montell, C. TRP Channels. Annu. Rev. Biochem. 2007, 76, 387–417. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, Y.; Szallasi, A. Transient Receptor Potential (TRP) channels: A clinical perspective. Br. J. Pharmacol. 2014, 10, 2474–2507. [Google Scholar] [CrossRef] [PubMed]
- Adrian, T.; Billeter, M.D.; Jason, L.; Hellmann, A.B.; Hiram, C.; Polk, J. Transient receptor potential ion channels. Ann. Surg. 2014, 259, 229–235. [Google Scholar]
- Borbiro, I.; Lisztes, E.; Toth, B.I.; Czifra, G.; Olah, A.; Szollosi, A.G.; Szentandrassy, N.; Nanasi, P.P.; Peter, Z.; Paus, R.; et al. Activation of transient receptor potential vanilloid-3 inhibits human hair growth. J. Investig. Dermatol. 2011, 8, 1605–1614. [Google Scholar] [CrossRef] [PubMed]
- Reona, A.; Bing, W.; Tomoka, T.; Hiroshi, M.; Makiko, K.; Yasuyoshi, O.; Jingqi, Z.; Atsuko, M.; Makoto, S.; Yoshio, Y.; et al. The thermosensitive TRPV3 channel contributes to rapid wound healing in oral epithelia. FASEB J. 2015, 29, 182–192. [Google Scholar]
- Hoeft, B.; Linseisen, J.; Beckmann, L.; Muller-Decker, K.; Canzian, F.; Husing, A.; Kaaks, R.; Vogel, U. Polymorphisms in fatty-acid-metabolism-related genes are associated with colorectal cancer risk. Carcinogenesis 2010, 31, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Pitt, G.S. Calmodulin and CaMKII as molecular switches for cardiac ion channels. Cardiovasc. Res. 2007, 4, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Prevarskaya, N.; Skryma, R.; Bidaux, G.; Shuba, Y. Ion channels in death and differentiation of prostate cancer cells. Cell Death Differ. 2007, 14, 1295–1304. [Google Scholar] [CrossRef] [PubMed]
- Bodding, M. TRP proteins and cancer. Cell. Signal. 2007, 19, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Vanden-Abeele, F.; Shuba, Y.; Roudbaraki, M.; Lemonnier, L.; Vanoverberghe, K.; Mariot, P.; Skryma, R.; Prevarskaya, N. Store-operated Ca2+ channels in prostate cancer epithelial cells: Function, regulation, and role in carcinogenesis. Cell Calcium 2003, 33, 357–373. [Google Scholar] [CrossRef]
- Bodding, M.; Fecher-Trost, C.; Flockerzi, V. Store-operated Ca2+ current and TRPV6 channels in lymph node prostate cancer cells. J. Biol. Chem. 2003, 278, 50872–50879. [Google Scholar] [CrossRef] [PubMed]
- Domotor, A.; Peidl, Z.; Vincze, A.; Hunyady, B.; Szolcsanyi, J.; Kereskay, L.; Szekeres, G.; Mozsik, G. Immunohistochemical distribution of vanilloid receptor, calcitonin-gene related peptide and substance P in gastrointestinal mucosa of patients with different gastrointestinal disorders. Inflammopharmacology 2005, 13, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Thebault, S.; Flourakis, M.; Vanoverberghe, K.; Vandermoere, F.; Roudbaraki, M.; Lehen’kyi, V.; Slomianny, C.; Beck, B.; Mariot, P.; Bonnal, L. Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res. 2006, 66, 2038–2047. [Google Scholar] [CrossRef] [PubMed]
- Prawitt, D.; Enklaar, T.; Klemm, G.; Gartner, B.; Spangenberg, C.; Winterpacht, A.; Higgins, M.; Pelletier, J.; Zabel, B. Identification and charac-terization of mTR1, a novel gene with homology to melastatic (MLSN1) and the TRP gene family located in the BWS-WT2 critical region on chromosome 11p15.5 and showing allele-specific expression. Hum. Mol. Genet. 2000, 9, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Schworer, C.M.; Colbran, R.J.; Soderling, T.R. Reversible generation of a Ca2+-independent form of Ca2+ (calmodulin)-dependent protein kinase II by anautophosphorylation mechanism. J. Biol. Chem. 1986, 261, 8581–8584. [Google Scholar] [PubMed]
- Rusciano, M.R.; Salzano, M.; Monaco, S.; Sapio, M.R.; Illario, M.; de Falco, V.; Santoro, M.; Campiglia, P.; Pastore, L.; Fenzi, G.; et al. The Ca2+/calmodulin-dependent kinase II is activated in papillary thyroid carcinoma (PTC) and mediates cell proliferation stimulated by RET/PTC. Endocr. Relat. Cancer 2010, 1, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Monaco, S.; Illario, M.; Rusciano, M.R.; Gragnaniello, G.; di Spigna, G.; Leggiero, E.; Pastore, L.; Fenzi, G.; Rossi, G.; Vitale, M. Insulin stimulates fibroblast proliferation through calcium-calmodulin-dependent kinase II. Cell Cycle 2009, 13, 2024–2030. [Google Scholar] [CrossRef]
- Berridge, M.J. Calcium signalling and cell proliferation. Bioessays 1995, 17, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Zayzafoon, M. Calcium/calmodulin signaling controls osteoblast growth and differentiation. J. Cell. Biochem. 2006, 97, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Colomer, J.; Means, A.R. Physiological roles of the Ca2+/CaM-dependent protein kinase cascade in health and disease. Subcell. Biochem. 2007, 45, 169–214. [Google Scholar] [PubMed]
- Morris, T.A.; de Lorenzo, R.J.; Tombes, R.M. CaMK-II inhibition reduces cyclinD1 levels and enhances the association of p27kip1 with Cdk2 to cause G1 arrest in NIH 3T3 cells. Exp. Cell Res. 1998, 240, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Yam, C.H.; Fung, T.K.; Poon, R.Y. Cyclin A in cell cycle control and cancer. Cell. Mol. Life Sci. 2002, 59, 1317–1326. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.G.; Thompson, A.M. Cyclin D1 and breast cancer. Breast 2006, 15, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Ratschiller, D.; Heighway, J.; Gugger, M.; Kappeler, A.; Pirnia, F.; Schmid, R.A.; Borner, M.M.; Betticher, D.C. CyclinD1 over expression in bronchial epithelia of patients with lung cancer isassociated with smoking and predicts survival. J. Clin. Oncol. 2003, 21, 2085–2093. [Google Scholar] [CrossRef] [PubMed]
- Keum, J.S.; Kong, G.; Yang, S.C.; Shin, D.H.; Park, S.S. Cyclin D1 over expression is an indicator of poor prognosis in resectable non-small cell lung cancer. Br. J. Cancer 1999, 81, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Chu, I.M.; Hengst, L.; Slingerland, J.M. The Cdk inhibitor p27 in humancancer: Prognostic potential and relevance to anticancer therapy. Nat. Rev. Cancer 2008, 8, 253–267. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, S.S. The function of p27 KIP1 during tumor development. Exp. Mol. Med. 2009, 41, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Prevarskaya, N.; Zhang, L.; Barritt, G. TRP channels in cancer. Biochim. Biophys. Acta 2007, 8, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Monet, M.; Lehen’kyi, V.; Gackiere, F.; Firlej, V.; Vandenberghe, M.; Roud-baraki, M. Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance. Cancer Res. 2010, 3, 1225–1235. [Google Scholar] [CrossRef] [PubMed]
- Sung-Young, K.; Chansik, H.; Jinhong, W.; Euiyong, K.; Byung, J.K.; Kotdaji, H.; Nam-Hyuk, C.; In-Gyu, K.; Ju-Hong, J.; Insuk, S. Reciprocal positive regulation between TRPV6 and NUMB in PTEN-deficient prostate cancer cells. Biochem. Biophys. Res. Commun. 2014, 447, 192–196. [Google Scholar]
- Bidaux, G.; Flourakis, M.; Thebault, S.; Zholos, A.; Beck, B.; Gkika, D.; Roudbaraki, M.; Bonnal, J.L.; Mauroy, B.; Shuba, Y.; et al. Prostate cell differentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function. J. Clin. Investig. 2007, 117, 1647–1657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberati, S.; Morelli, M.B.; Nabissi, M.; Santoni, M.; Santoni, G. Oncogenic and anti-oncogenic effects of transient receptor potential channels. Curr. Top. Med. Chem. 2013, 13, 344–366. [Google Scholar] [CrossRef] [PubMed]
- Lehen’kyi, V.; Prevarskaya, N. Oncogenic TRP channels. Adv. Exp. Med. Biol. 2011, 704, 929–945. [Google Scholar] [PubMed]
- Monteith, G.R.; Davis, F.M.; Roberts-Thomson, S.J. Calcium channels and pumps in cancer: Changes and consequences. J. Biol. Chem. 2012, 287, 31666–31673. [Google Scholar] [CrossRef] [PubMed]
Features | Patients | TRPV3 Positive (%) | TRPV3 Negative (%) | p |
---|---|---|---|---|
Age (years) | ||||
<60 | 48 | 30 (62.5%) | 18 (37.5%) | 0.275 |
≥60 | 48 | 35 (72.9%) | 13 (27.1%) | |
Gender | ||||
Male | 55 | 38 (69.1%) | 17 (30.9%) | 0.737 |
Female | 41 | 27 (65.9%) | 14 (34.1%) | |
Smoke | ||||
Yes | 49 | 33 (67.3%) | 16 (32.7%) | 0.938 |
No | 47 | 32 (68.1%) | 15 (31.9%) | |
Histology | ||||
Adenocarcinoma | 56 | 35 (62.5%) | 21 (37.5%) | 0.197 |
Squamous Cell | 40 | 30 (75.0%) | 10 (25.0%) | |
Carcinoma differentiation | ||||
Well | 45 | 23 (51.1%) | 22 (48.9%) | 0.001 * |
Moderate-Poor | 51 | 42 (82.4%) | 9 (17.6%) | |
TNM stage | ||||
I/II | 61 | 35 (57.4%) | 26 (42.6%) | 0.004 * |
III/IV | 35 | 30 (85.7%) | 5 (14.3%) | |
Angiolymphatic invasion | ||||
No | 54 | 34 (63.0%) | 20 (37.0%) | 0.260 |
Yes | 42 | 31 (73.8%) | 11 (26.2%) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, Q.; Fan, K.; Li, B.; Li, H.; Qi, H.; Guo, J.; Cao, Y.; Sun, H. Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2016, 17, 437. https://doi.org/10.3390/ijms17040437
Li X, Zhang Q, Fan K, Li B, Li H, Qi H, Guo J, Cao Y, Sun H. Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer. International Journal of Molecular Sciences. 2016; 17(4):437. https://doi.org/10.3390/ijms17040437
Chicago/Turabian StyleLi, Xiaolei, Qianhui Zhang, Kai Fan, Baiyan Li, Huifeng Li, Hanping Qi, Jing Guo, Yonggang Cao, and Hongli Sun. 2016. "Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer" International Journal of Molecular Sciences 17, no. 4: 437. https://doi.org/10.3390/ijms17040437
APA StyleLi, X., Zhang, Q., Fan, K., Li, B., Li, H., Qi, H., Guo, J., Cao, Y., & Sun, H. (2016). Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer. International Journal of Molecular Sciences, 17(4), 437. https://doi.org/10.3390/ijms17040437