Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration
Abstract
:1. Introduction
2. Results
2.1. Surface Morphology of Bio-Oss®
2.2. Surface Composition Assay
Substrate | Ca% | C% | N% | O% | P% | S% |
---|---|---|---|---|---|---|
Bio-Oss® | 18.55 | 16.96 | – | 51.38 | 12.59 | 0.52 |
Heparinized Bio-Oss® | 18.29 | 14.11 | 1.23 | 52.95 | 11.78 | 1.64 |
Heparinized rhBMP-2- Bio-Oss® (BMP-2/Bio-Oss®) | 18.07 | 14.26 | 2.25 | 52.63 | 12.03 | 0.76 |
2.3. Release of rhBMP-2
2.4. Micro-Computed Tomography (μCT)
Group | 4 Weeks | 8 Weeks | p-Value |
---|---|---|---|
Control | 4.06 ± 1.37 (6) | 8.12 ± 2.11 ‡ (6) | 0.003 |
Bio-Oss® | 10.86 ± 1.54 * (6) | 17.90 ± 2.50 *,‡ (6) | 0.000 |
BMP-2/Bio-Oss® | 21.21 ± 4.28 *,† (6) | 32.03 ± 4.54 *,†,‡ (6) | 0.002 |
p-value | 0.011 | 0.000 | – |
2.5. Histological Observations
2.6. Histometric Analysis
Group | 4 Weeks | 8 Weeks | p-Value |
---|---|---|---|
Control | 7.83 ± 3.92 (6) | 13.82 ± 3.21 ‡ (6) | 0.016 |
Bio-Oss® | 20.91 ± 6.40 * (6) | 38.52 ± 5.01 *,‡ (6) | 0.000 |
BMP-2/Bio-Oss® | 29.28 ± 6.29 *,† (6) | 58.67 ± 7.95 *,†,‡ (6) | 0.000 |
p-value | 0.002 | 0.000 |
Group | 4 Weeks | 8 Weeks | p-Value |
---|---|---|---|
Control | 4.13 ± 2.50 (6) | 7.49 ± 1.92 ‡ (6) | 0.026 |
Bio-Oss® | 9.43 ± 3.34 * (6) | 17.76 ± 1.66 *,‡ (6) | 0.000 |
BMP-2/Bio-Oss® | 16.50 ± 2.57 *,† (6) | 29.20 ± 4.68 *,†,‡ (6) | 0.000 |
p-value | 0.000 | 0.000 |
3. Discussion
4. Experimental Section
4.1. Immobilization of rhBMP-2 on Bio-Oss®
4.2. Assessment of the Morphological Characteristics of Bio-Oss®
4.3. X-ray Photoelectron Microscopy (XPS)
4.4. Release Profiles of rhBMP-2
4.5. Animals and Surgery
4.6. Micro-Computed Tomographic Analysis
4.7. Histologic Specimen Fabrication and Histometric Measurements
4.8. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rocchietta, I.; Fontana, F.; Simion, M. Clinical outcomes of vertical bone augmentation to enable dental implant placement: A systematic review. J. Clin. Periodontal. 2008, 5, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Blokhuis, T.J.; Arts, J.J. Bioactive and osteoinductive bone graft substitutes: Definitions, facts and myths. Injury 2011, 42, S26–S29. [Google Scholar] [CrossRef] [PubMed]
- Nkenke, E.; Weisbach, V.; Winckler, E.; Kessler, P.; Schultze-Mosgau, S.; Wiltfang, J.; Neukam, F.W. Morbidity of harvesting of bone grafts from the iliac crest for preprosthetic augmentation procedures: A prospective study. Int. J. Oral Maxillofac. Surg. 2004, 33, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, Z.; Li, S.; Bai, Y.; Xu, H. Osteoconduction of different sizes of anorganic bone particles in a model of guided bone regeneration. Br. J. Oral Maxillofac. Surg. 2011, 49, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Grusovin, M.G.; Kwan, S.; Worthington, H.V.; Coulthard, P. Interventions for replacing missing teeth: Bone augmentation techniques for dental implant treatment. Cochrane Database Syst. Rev. 2008, 16, CD003607. [Google Scholar]
- Amerio, P.; Vianale, G.; Reale, M.; Muraro, R.; Tulli, A.; Piattelli, A. The effect of deproteinized bovine bone on osteoblast growth factors and proinflammatory cytokine production. Clin. Oral Implant. Res. 2010, 21, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Scarano, A.; Degidi, M.; Iezzi, G.; Pecora, G.; Piattelli, M.; Orsini, G.; Caputi, S.; Perrotti, V.; Mangano, C.; Piattelli, A. Maxillary sinus augmentation with different biomaterials: A comparative histologic and histomorphometric study in man. Implant. Dent. 2006, 15, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Turhani, D.; Weißenböck, M.; Watzinger, E.; Yerit, K.; Cvikl, B.; Ewers, R.; Thurnher, D. In vitro study of adherent mandibular osteoblast-like cells on carrier materials. Int. J. Oral Maxillofac. Surg. 2005, 34, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Ripamonti, U.; Reddi, A.H. Periodontal regeneration: Potential role of bone morphogenetic proteins. J. Periodont. Res. 1994, 29, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Urist, M.R. Bone: Formation by autoinduction. Science 1965, 150, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T.; Kinoshita, A.; Takahashi, K.; Oda, S.; Ishikawa, I. Bone regeneration by recombinant human bone morphogenetic protein-2 in rat mandibular defects. An experimental model of defect filling. J. Periodontol. 1999, 70, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Govender, S.; Csimma, C.; Genant, H.K.; Valentin-Opran, A.; Amit, Y.; Arbel, R.; Aro, H.; Atar, D.; Bishay, M.; Borner, M.G.; et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibia fractures: A prospective, controlled, randomized study of four hundred and fifty patients. J. Bone Jt. Surg. Am. Vol. 2002, 84, 2123–2134. [Google Scholar]
- Jung, R.E.; Windisch, S.I.; Eggenschwiler, A.M.; Thoma, D.S.; Weber, F.E.; Hammerle, C.H. A randomized-controlled clinical trial evaluating clinical and radiological outcomes after 3 and 5 years of dental implants placed in bone regenerated by means of GBR techniques with or without the addition of BMP-2. Clin. Oral Implant. Res. 2009, 20, 660–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, D.R.; Jovanovic, S.A.; Wikesjo, U.M.; Wozney, J.M.; Bernard, G.W. Hyaluronan supports recombinant human bone morphogenetic protein-2 induced bone reconstruction of advanced alveolar ridge defects in dogs. A pilot study. J. Periodontol. 2001, 72, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Sigurdsson, T.J.; Nygaard, L.; Tatakis, D.N.; Fu, E.; Turek, T.J.; Jin, L.; Wozney, J.M.; Wikesjö, U.M. Periodontal repair in dogs: Evaluation of rhBMP-2 carriers. Int. J. Periodontics Restor. Dent. 1996, 16, 524–537. [Google Scholar]
- Barboza, E.P.; Duarte, M.E.; Geolás, L.; Sorensen, R.G.; Riedel, G.E.; Wikesjö, U.M. Ridge augmentation following implantation of recombinant human bone morphogenetic protein-2 in the dog. J. Periodontol. 2000, 71, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Toyoda, H.; Namikawa, T.; Hoshino, M.; Terai, H.; Miyamoto, S.; Takaoka, K. Optimized use of a biodegradable polymer as a carrier material for the local delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2). Biomaterials 2006, 27, 2035–2041. [Google Scholar] [CrossRef] [PubMed]
- Jeon, O.; Song, S.J.; Yang, H.S.; Bhang, S.H.; Kang, S.W.; Sung, M.A.; Lee, J.H.; Kim, B.S. Long-term delivery enhances in vivo osteogenic efficacy of bone morphogenetic protein-2 compared to short-term delivery. Biochem. Biophys. Res. Commun. 2008, 369, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Sasisekharan, R.; Ernst, S.; Venkataraman, G. On the regulation of fibroblast growth factor activity by heparin-like glycosaminoglycan. Angiogenesis 1997, 1, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Zhao, Y.; Sun, W.; Chen, B.; Zhang, J.; Zhao, W.; Xiao, Z.; Dai, J. The effect of crosslinking heparin to demineralized bone matrix on mechanical strength and specific binding to human bone morphogenetic protein-2. Biomaterials 2008, 29, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Kübler, A.; Neugebauer, J.; Oh, J.H.; Scheer, M.; Zöller, J.E. Growth and proliferation of human osteoblasts on different bone graft substitutes: An in vitro study. Implant Dent. 2004, 13, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Jung, R.E.; Glauser, R.; Schärer, P.; Hämmerle, C.H.; Sailer, H.F.; Weber, F.E. Effect of rhBMP-2 on guided bone regeneration in humans. Clin. Oral Implant. Res. 2003, 14, 556–568. [Google Scholar] [CrossRef]
- Hänseler, P.; Ehrbar, M.; Kruse, A.; Fischer, E.; Schibli, R.; Ghayor, C.; Weber, F.E. Delivery of BMP-2 by two clinically available apatite materials: In vitro and in vivo comparison. J. Biomed. Mater. Res. A 2015, 103, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Uludag, H.; DʼAugusta, D.; Palmer, R.; Timony, G.; Wozney, J. Characterization of rhBMP-2 pharmacokinetics implanted with biomaterial carriers in the rat ectopic model. J. Biomed. Mater. Res. 1999, 46, 193–202. [Google Scholar] [CrossRef]
- Cho, T.J.; Gerstenfeld, L.C.; Einhorn, T.A. Differential temporal expression of members of the transforming growth factor β superfamily during murine fracture healing. J. Bone Miner. Res. 2002, 17, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Haidar, Z.S.; Hamdy, R.C.; Tabrizian, M. Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part A: Current challenges in BMP delivery. Biotechnol. Lett. 2009, 31, 1817–1824. [Google Scholar] [CrossRef] [PubMed]
- Haidar, Z.S.; Hamdy, R.C.; Tabrizian, M. Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part B: Delivery systems for BMPs in orthopedic and craniofacial tissue engineering. Biotechnol. Lett. 2009, 31, 1825–1835. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.B.; Kim, S.E.; Song, S.K.; Yun, M.J.; Shim, J.S.; Lee, J.Y.; Shin, S.W. The effect of immobilization of heparin and bone morphogenic protein-2 to bovine bone substitute on osteoblast-like cell’s function. J. Adv. Prosthodontics 2011, 3, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Katagiri, T.; Toyoda, H.; Takada, T.; Yanai, T.; Fukuda, T.; Chung, U.I.; Koike, T.; Takaoka, K.; Kamijo, R. Heparin potentiates the in vivo ectopic bone formation induced by bone morphogenetic protein-2. J. Biol. Chem. 2006, 281, 23246–23253. [Google Scholar] [CrossRef] [PubMed]
- Bhakta, G.; Rai, B.; Lim, Z.X.; Hui, J.H.; Stein, G.S.; van Wijnen, A.J.; Nurcombe, V.; Prestwich, G.D.; Cool, S.M. Hyaluronic acid-based hydrogels functionalized with heparin that support controlled release of bioactive BMP-2. Biomaterials 2012, 33, 6113–6122. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.E.; Song, S.H.; Yun, Y.P.; Choi, B.J.; Kwon, I.K.; Bae, M.S.; Moon, H.J.; Kwon, Y.D. The effect of immobilization of heparin and bone morphogenic protein-2 (BMP-2) to titanium surfaces on inflammation and osteoblast function. Biomaterials 2011, 32, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Kodama, T.; Goto, T.; Miyazaki, T.; Takahashi, T. Bone formation on apatite-coated titanium incorporated with bone morphogenetic protein and heparin. Int. J. Oral Maxillofac. Implant. 2008, 23, 1013–1019. [Google Scholar]
- Jo, J.Y.; Jeong, S.I.; Shin, Y.M.; Kang, S.S.; Kim, S.E.; Jeong, C.M.; Huh, J.B. Sequential delivery of BMP-2 and BMP-7 for bone regeneration using a heparinized collagen membrane. Int. J. Oral Maxillofac. Surg. 2015, 44, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.E.; Kim, C.S.; Yun, Y.P.; Yang, D.H.; Park, K.; Kim, S.E.; Jeong, C.M.; Huh, J.B. Improving osteoblast functions and bone formation upon BMP-2 immobilization on titanium modified with heparin. Carbohydr. Polym. 2014, 19, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.E.; Yun, Y.P.; Lee, J.Y.; Shim, J.S.; Park, K.; Huh, J.B. Co-delivery of platelet-derived growth factor (PDGF-BB) and bone morphogenic protein (BMP-2) coated onto heparinized titanium for improving osteoblast function and osteointegration. J. Tissue Eng. Regen. Med. 2013. [Google Scholar] [CrossRef] [PubMed]
- Jung, R.E.; Weber, F.E.; Thoma, D.S.; Ehrbar, M.; Cochran, D.L.; Hammerle, C.H. Bone morphogenetic protein-2 enhances bone formation when delivered by a synthetic matrix containing hydroxyapatite/tricalciumphosphate. Clin. Oral Implant. Res. 2008, 19, 188–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatakis, D.N.; Koh, A.; Jin, L.; Wozney, J.M.; Rohrer, M.D.; Wikesjo, U.M. Peri-implant bone regeneration using recombinant human bone morphogenetic protein-2 in a canine model: A dose-response study. J. Periodontal Res. 2002, 37, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.W.; Chen, C.H.; Tsai, C.L.; Lin, I.H.; Hsiue, G.H. Heterobifunctional poly(ethylene glycol)-tethered bone morphogenetic protein-2-stimulated bone marrow mesenchymal stromal cell differentiation and osteogenesis. Tissue Eng. 2007, 13, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huh, J.-B.; Yang, J.-J.; Choi, K.-H.; Bae, J.H.; Lee, J.-Y.; Kim, S.-E.; Shin, S.-W. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration. Int. J. Mol. Sci. 2015, 16, 16034-16052. https://doi.org/10.3390/ijms160716034
Huh J-B, Yang J-J, Choi K-H, Bae JH, Lee J-Y, Kim S-E, Shin S-W. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration. International Journal of Molecular Sciences. 2015; 16(7):16034-16052. https://doi.org/10.3390/ijms160716034
Chicago/Turabian StyleHuh, Jung-Bo, June-Jip Yang, Kyung-Hee Choi, Ji Hyeon Bae, Jeong-Yeol Lee, Sung-Eun Kim, and Sang-Wan Shin. 2015. "Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration" International Journal of Molecular Sciences 16, no. 7: 16034-16052. https://doi.org/10.3390/ijms160716034