Expansion of Non-Native Brown Trout in South Europe May Be Inadvertently Driven by Stocking: Molecular and Social Survey in the North Iberian Narcea River
Abstract
:1. Introduction
2. Results
2.1. User’s Opinions about Salmonid Current Trends and Management Strategies
2.2. Non-Native Brown Trout Alleles in Hatchery Conditions
Hatchery | Year | N | q (*90) |
---|---|---|---|
I | 1997 | 50 | 0.518 |
I | 2005 | 28 | 0.143 |
I | 2012 | 53 | 0.27 |
E | 2004 | 28 | 0.422 |
N | 2005 | 40 | 0.6 |
N | 2012 | 158 | 0.41 |
F | 2008 | 61 | 0 |
Replica | q (90* Allele Frequency) | Size | Growth | |||||
---|---|---|---|---|---|---|---|---|
Non Carriers | Carriers | Comparison | Batch | Non Carriers | Carriers | |||
Replica 1 | Batch 1 | 0.36 | 19.25 | 19.14 | Bigger NC | Batch 1 | 2.75 | 2.06 |
Batch 2 | 0.30 | 22.0 | 21.20 | Bigger NC | Batch 2 | 3.80 | 3.6 | |
Batch 3 | 0.27 | 25.8 | 24.80 | Bigger NC | Tank | 8.00 | 8.62 | |
Tank | 0.26 | 33.8 | 33.42 | N. S. | Total | 14.55 | 14.28 | |
Replica 2 | Batch 1 | 0.50 | 20.2 | 20.20 | N. S. | Batch 1 | 0.80 | 1.55 |
Batch 2 | 0.31 | 21.0 | 21.75 | Bigger C | Batch 2 | 2.90 | 2.95 | |
Batch 3 | 0.36 | 23.9 | 24.70 | Bigger C | Tank | 11.40 | 12.00 | |
Tank | 0.44 | 35.3 | 36.70 | Bigger C | Total | 15.10 | 16.00 |
2.3. Non-Native Brown Trout Alleles in the Wild
Marker/Stock | I | N | F | E | High Narcea |
---|---|---|---|---|---|
SSOSL417 | 13 | 11 | 12 | 5 | 26 |
Ssa197 | 9 | 8 | 15 | 4 | 16 |
SSOSL85 | 12 | 6 | 13 | 6 | 15 |
SSOSL311 | 14 | 10 | 11 | 4 | 15 |
SS4 | 7 | 7 | 13 | 3 | 19 |
BFRO 002 | 4 | 4 | 3 | 3 | 4 |
LDH-C1* | 2 | 2 | 1 | 2 | 2 |
Na mean | 8.71 (4.61) | 6.85 (3.18) | 9.71 (5.44) | 3.85 (1.34) | 13.86 (8.35) |
AR | 5.41 | 4.24 | 4.73 | 2.55 | 5.72 |
He | 0.76 (0.16) | 0.72 (0.14) | 0.66 (0.33) | 0.57 (0.13) | 0.68 (0.33) |
Ho | 0.70 (0.23) | 0.57 (0.18) | 0.59 (0.29) | 0.82 (0.25) | 0.59 (0.31) |
FST/P-val | I | N | F | E | High Narcea |
---|---|---|---|---|---|
I | / | *** | *** | *** | *** |
N | 0.056 | / | *** | *** | *** |
F | 0.153 | 0.149 | / | *** | *** |
E | 0.142 | 0.189 | 0.263 | / | *** |
High Narcea | 0.152 | 0.133 | 0.01 | 0.246 | / |
Hatchery | N | Success | Mean q |
---|---|---|---|
F | 27 | 5.90 | 0 |
I | 12 | 2.61 | 0.339 |
N | 2 | 0.44 | 0.448 |
E | 0 | 0 | 0.422 |
Total | 41 | 8.95 | 0.375 |
3. Discussion
4. Materials and Methods
4.1. The Case Study: River and Population Management
4.2. Stakeholders’ Surveys: Methodology
4.3. Identification of Individuals from Non-Native Lineages
4.4. Evolution of the Non-Native Allele in Hatchery Conditions
4.5. Assessment of Stocking Success in the High Narcea
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Perry, W.L.; Lodge, D.M.; Feder, J.L. Importance of hybridization between indigenous and nonindigenous freshwater species: An overlooked threat to north american biodiversity. Syst. Biol. 2001, 51, 255–275. [Google Scholar] [CrossRef] [PubMed]
- Levin, P.S.; Zabel, R.V.; Williams, J.G. The road to extinction is paved with good intentions: Negative association of fish hatcheries with threatened salmonids. Proc. R. Soc. B 2001, 268, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Utter, F. Population genetics, conservation and evolution in salmonids and other widely cultured fishes: Some perspectives over six decades. J. Fish Biol. 2004, 65, 323–324. [Google Scholar] [CrossRef]
- Santos, N.P.; Fontaínhas-Fernandes, A.A.; Faria, R.; Torrescastro, L.F.; Anjos, M.R.; Cortes, R.M.V.; Alexandrino, P. Genetic evidence for limited introgression between wild and stocked individuals in Portuguese brown trout, Salmo trutta population. Folia Zool. 2006, 5, 433–443. [Google Scholar]
- Moran, P.; Pendas, A.M.; Garcia-Vazquez, E.; Izquierdo, J.I. Failure of stocking policy of hatchery reared brown trout, Salmo trutta L., in Asturias, Spain, detected using LDH-5* as a genetic marker. J. Fish Biol. 1991, 39, 117–121. [Google Scholar] [CrossRef]
- Garcia-Marin, J.L.; Sanz, N.; Pla, C. Proportions of native and introduced brown trout in adjacent fished and unfished spanish rivers. Conserv. Biol. 1998, 12, 313–319. [Google Scholar] [CrossRef]
- Machordom, A.; García-Marín, J.L.; Sanz, N.; Almodóvar, A.; Plá, C. Allozyme diversity in brown trout (Salmo trutta) from central Spain: Genetic consequences of restocking. Freshwater Biol. 1999, 17, 707–717. [Google Scholar] [CrossRef]
- Sanz, N.; Cortey, M.; Pla, C.; Garcia-Marin, J.L. Hatchery introgression blurs ancient hybridization between brown trout (Salmo trutta) lineages as indicated by complementary allozymes and mtDNA markers. Biol. Conserv. 2006, 130, 278–289. [Google Scholar] [CrossRef]
- Izquierdo, J.I.; Castillo, A.G.F.; Ayllon, F.; de la Hoz, J.; Garcia-Vazquez, E. Stock transfers in Spanish brown trout populations: A long-term assessment. Environ. Biol. Fish. 2006, 75, 153–157. [Google Scholar] [CrossRef]
- Horreo, J.L.; Garcia-Vazquez, E. Foreign brown trout in protected landscapes as a consequence of connectivity. Fish. Manag. Ecol. 2012, 18, 431–436. [Google Scholar] [CrossRef]
- Gleick, P.H. Global freshwater resources: Soft-path solutions for the 21st century. Science 2003, 302, 1524–1528. [Google Scholar] [CrossRef] [PubMed]
- Collares-Pereira, M.J.; Cowx, I.G. The role of catchment scale environmental management in freshwater fish conservation. Fish. Manag. Ecol. 2004, 11, 303–312. [Google Scholar] [CrossRef]
- Costello, C.; Ovando, D.; Hilborn, R.; Gaines, S.D.; Deschenes, O.; Lester, S.E. Status and solutions for the world’s unassessed fisheries. Science 2012, 338, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Campos, J.L.; Posada, D.; Caballero, A.; Moran, P. Spatio-temporal genetic variability in sea trout (Salmo trutta) populations from north-western Spain. Freshwater Biol. 2007, 52, 510–524. [Google Scholar] [CrossRef]
- Horreo, J.L.; Machado-Schiaffino, G.; Griffiths, A.M.; Stevens, J.R.; Garcia-Vazquez, E. Atlantic salmon at risk: Apparent rapid declines in effective population size in southern european populations. Trans. Am. Fish. Soc. 2011, 140, 605–610. [Google Scholar] [CrossRef]
- Horreo, J.L.; Turrero, P.; Perez, J.; Garcia-Vazquez, E. Long-term species balance in sympatric populations: Implications for Atlantic salmon and brown trout. Front. Biogeogr. 2014, 6, 111–118. [Google Scholar]
- Rannala, B.; Mountain, J.L. Detecting immigration by using multilocus genotypes. Proc. Natl. Acad. Sci. USA 1997, 94, 9197–9221. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.M.; Ruzzante, D.E.; Nielsen, E.E.; Mensberg, K.L.D. Microsatellite and mitochondrial DNA polypmorphism reveals life-history dependent interbreeding between hatchery and wild brown trout (Salmo trutta L.). Mol. Ecol. 2000, 9, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Poteaux, C.; Bonhomme, F.; Berrebi, P. Differences between nuclear and mitochondrial introgressions of brown trout populations from a restocked main river and its unrestocked tributary. Biol. J. Linn. Soc. 1998, 63, 379–392. [Google Scholar] [CrossRef]
- Henry, T.; Ferguson, A. Kinetic studies on the lactate dehydrogenase (LDH-5) isozymes of brown trout, Salmo trutta L. Comp. Biochem. Phys. B 1985, 82, 95–98. [Google Scholar] [CrossRef]
- Christie, M.R.; Ford, M.J.; Blouin, M.S. On the reproductive success of early generation hatchery fish in the wild. Evol. Appl. 2014, 7, 883–896. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, B.; Jonsson, N. Cultured Atlantic salmon in nature: A review of their ecology and interaction with wild fish. ICES J. Mar. Sci. 2006, 63, 1162–1181. [Google Scholar] [CrossRef]
- Horreo, J.L.; Machado-Schiaffino, G.; Griffiths, A.; Bright, D.; Stevens, J.; Garcia-Vazquez, E. Identification of differential broodstock contribution affecting genetic variability in hatchery stocks of Atlantic salmon (Salmo salar). Aquaculture 2008, 280, 89–93. [Google Scholar] [CrossRef]
- Crona, B.; Bodin, Ö. What you know is who you know? Communication patterns among resource users as a prerequisite for co-management. Ecol. Soc. 2006, 11, 7. [Google Scholar]
- Pikitch, E.K.; Santora, C.; Babcock, E.A.; Bakun, A.; Bonfil, R.; Conover, D.O.; Dayton, P.; Doukakis, P.; Fluharty, D.; Heneman, B.; et al. Ecosystem-based fishery management. Science 2004, 305, 346–347. [Google Scholar] [CrossRef] [PubMed]
- Juanes, F.; Gephard, S.; de la Hoz, J.; Moran, P.; Dopico, E.; Horreo, J.L.; Garcia-Vazquez, E. Restoration of native Atlantic salmon runs in northern Spain: do cost outweigh benefits? Knowl. Manag. Aquat. Ecosyst. 2012, 402, 22. [Google Scholar] [CrossRef]
- McMeel, O.M.; Hoey, E.M.; Ferguson, A. Partial nucleotide sequences, and routine typing by polymerase chain reaction-restriction fragment length polymorphism, of the brown trout (Salmo trutta) lactate dehydrogenase, LDH-C1*90 and *100 alleles. Mol. Ecol. 2001, 10, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Estoup, A.; Largiadèr, C.R.; Perrot, E.; Chourrout, D. Rapid one-tube DNA extraction for reliable PCR detection of fish polymorphic marker and transgenes. Mol. Mar. Biol. Biotechnol. 1996, 5, 295–298. [Google Scholar]
- Horreo, J.L.; Martinez, J.L.; Ayllon, F.; Pola, I.G.; Monteoliva, J.A.; Héland, M.; Garcia-Vazquez, E. Impact of habitat fragmentation on the genetics of populations in dendritic landscapes. Freshwater Biol. 2011, 56, 2567–2579. [Google Scholar] [CrossRef]
- Excoffier, L.; Laval, G.; Schneider, S. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. Online 2005, 1, 47–50. [Google Scholar]
- Piry, S.; Alapetite, A.; Cornuet, J.M.; Paetkau, D.; Baudouin, L.; Estoup, A. GENECLASS2: A software for genetic assignment and first-generation migrant detection. J. Hered. 2004, 95, 536–539. [Google Scholar] [CrossRef] [PubMed]
- Baudouin, L.; Lebrun, P. An operational bayesian approach for the identification of sexually reproduced cross-fertilized populations using molecular markers. In Proceedings of the International Symposium on Molecular Markers for Characterizing Genotypes and Identifying Cultivars in Horticulture, Montpellier, France, 6–8 March 2000; pp. 81–93.
- Paetkau, D.; Slade, R.; Burden, M.; Estoup, A. Genetic assignment methods for the direct, real-time estimation of migration rate: A simulation-based exploration of accuracy and power. Mol. Ecol. 2004, 13, 55–65. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horreo, J.L.; Abad, D.; Dopico, E.; Oberlin, M.; Garcia-Vazquez, E. Expansion of Non-Native Brown Trout in South Europe May Be Inadvertently Driven by Stocking: Molecular and Social Survey in the North Iberian Narcea River. Int. J. Mol. Sci. 2015, 16, 15546-15559. https://doi.org/10.3390/ijms160715546
Horreo JL, Abad D, Dopico E, Oberlin M, Garcia-Vazquez E. Expansion of Non-Native Brown Trout in South Europe May Be Inadvertently Driven by Stocking: Molecular and Social Survey in the North Iberian Narcea River. International Journal of Molecular Sciences. 2015; 16(7):15546-15559. https://doi.org/10.3390/ijms160715546
Chicago/Turabian StyleHorreo, Jose L., David Abad, Eduardo Dopico, Maud Oberlin, and Eva Garcia-Vazquez. 2015. "Expansion of Non-Native Brown Trout in South Europe May Be Inadvertently Driven by Stocking: Molecular and Social Survey in the North Iberian Narcea River" International Journal of Molecular Sciences 16, no. 7: 15546-15559. https://doi.org/10.3390/ijms160715546
APA StyleHorreo, J. L., Abad, D., Dopico, E., Oberlin, M., & Garcia-Vazquez, E. (2015). Expansion of Non-Native Brown Trout in South Europe May Be Inadvertently Driven by Stocking: Molecular and Social Survey in the North Iberian Narcea River. International Journal of Molecular Sciences, 16(7), 15546-15559. https://doi.org/10.3390/ijms160715546