Next Article in Journal
Differential Activity of Plasma and Vacuolar Membrane Transporters Contributes to Genotypic Differences in Salinity Tolerance in a Halophyte Species, Chenopodium quinoa
Next Article in Special Issue
Molecular Interaction of a New Antibacterial Polymer with a Supported Lipid Bilayer Measured by an in situ Label-Free Optical Technique
Previous Article in Journal
Excitation and Adaptation in Bacteria–a Model Signal Transduction System that Controls Taxis and Spatial Pattern Formation
Previous Article in Special Issue
The Use of Chitosan to Enhance Photodynamic Inactivation against Candida albicans and Its Drug-Resistant Clinical Isolates
Article Menu

Export Article

Open AccessArticle
Int. J. Mol. Sci. 2013, 14(5), 9249-9266;

Biodegradable Polycaprolactone-Titania Nanocomposites: Preparation, Characterization and Antimicrobial Properties

Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
Instituto de Catálisis y Petroleoquímica, (ICP-CSIC), C/Marie Curie 2, 28049 Madrid, Spain
These authors contributed equally to this work.
Authors to whom correspondence should be addressed.
Received: 27 March 2013 / Revised: 11 April 2013 / Accepted: 16 April 2013 / Published: 29 April 2013
(This article belongs to the Special Issue Antimicrobial Polymers)
Full-Text   |   PDF [792 KB, uploaded 19 June 2014]


Nanocomposites obtained from the incorporation of synthesized TiO2 nanoparticles (≈10 nm average primary particle size) in different amounts, ranging from 0.5 to 5 wt.%, into a biodegradable polycaprolactone matrix are achieved via a straightforward and commercial melting processing. The resulting nanocomposites have been structurally and thermally characterized by transmission electron microscopy (TEM), wide/small angle X-ray diffraction (WAXS/SAXS, respectively) and differential scanning calorimetry (DSC). TEM evaluation provides evidence of an excellent nanometric dispersion of the oxide component in the polymeric matrix, with aggregates having an average size well below 100 nm. Presence of these TiO2 nanoparticles induces a nucleant effect during polymer crystallization. Moreover, the antimicrobial activity of nanocomposites has been tested using both UV and visible light against Gram-negative Escherichia coli bacteria and Gram-positive Staphylococcus aureus. The bactericidal behavior has been explained through the analysis of the material optical properties, with a key role played by the creation of new electronic states within the polymer-based nanocomposites. View Full-Text
Keywords: titania; polycaprolactone; nanocomposites; thermal properties; antimicrobial titania; polycaprolactone; nanocomposites; thermal properties; antimicrobial
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Share & Cite This Article

MDPI and ACS Style

Muñoz-Bonilla, A.; Cerrada, M.L.; Fernández-García, M.; Kubacka, A.; Ferrer, M.; Fernández-García, M. Biodegradable Polycaprolactone-Titania Nanocomposites: Preparation, Characterization and Antimicrobial Properties. Int. J. Mol. Sci. 2013, 14, 9249-9266.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top