Methylated DNA and microRNA in Body Fluids as Biomarkers for Cancer Detection
Abstract
:1. Introduction
2. Methylated DNA as Biomarker
2.1. Overview of DNA Methylation
2.2. Methods to Detect DNA Methylation
2.3. Detection of DNA Methylation in the Blood and Other Body Fluids
2.4. Standardization of Methylation Analysis
3. MiRNAs as Biomarkers
3.1. Overview of miRNAs
3.2. Methods to Detect miRNAs
3.3. Detection of miRNA in Bloods and Other Body Fluids
4. Conclusions and Perspectives
Acknowledgments
Conflict of Interest
References
- Berger, S.L.; Kouzarides, T.; Shiekhattar, R.; Shilatifard, A. An operational definition of epigenetics. Genes Dev 2009, 23, 781–783. [Google Scholar] [Green Version]
- Holliday, R. Epigenetics: A historical overview. Epigenetics 2006, 1, 76–80. [Google Scholar] [Green Version]
- Egger, G.; Liang, G.; Aparicio, A.; Jones, P.A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004, 429, 457–463. [Google Scholar] [Green Version]
- Baylin, S.B.; Herman, J.G. DNA hypermethylation in tumorigenesis: Epigenetics joins genetics. Trends Genet 2000, 16, 168–174. [Google Scholar] [Green Version]
- Jones, P.A.; Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet 2002, 3, 415–428. [Google Scholar] [Green Version]
- Belinsky, S.A. Gene-promoter hypermethylation as a biomarker in lung cancer. Nat. Rev. Cancer 2004, 4, 707–717. [Google Scholar] [Green Version]
- Deng, D.; Liu, Z.; Du, Y. Epigenetic alterations as cancer diagnostic, prognostic, and predictive biomarkers. Adv. Genet 2010, 71, 125–176. [Google Scholar] [Green Version]
- Jia, D.; Jurkowska, R.Z.; Zhang, X.; Jeltsch, A.; Cheng, X. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 2007, 449, 248–251. [Google Scholar] [Green Version]
- Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev 2002, 16, 6–21. [Google Scholar] [Green Version]
- Takai, D.; Jones, P.A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl. Acad. Sci. USA 2002, 99, 3740–3745. [Google Scholar] [Green Version]
- Van Vlodrop, I.J.H.; Niessen, H.E.C.; Derks, S.; Baldewijns, M.M.L.L.; van Criekinge, W.; Herman, J.G.; van Engeland, M. Analysis of promoter CpG island hypermethylation in cancer: Location, location, location! Clin. Cancer Res 2011, 17, 4225–4231. [Google Scholar] [Green Version]
- Rodriguez-Paredes, M.; Esteller, M. Cancer epigenetics reaches mainstream oncology. Nat. Med 2011, 17, 330–339. [Google Scholar] [Green Version]
- Walsh, C.P.; Chaillet, J.R.; Bestor, T.H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat. Genet 1998, 20, 116–117. [Google Scholar] [Green Version]
- Gaudet, F.; Hodgson, J.G.; Eden, A.; Jackson-Grusby, L.; Dausman, J.; Gray, J.W.; Leonhardt, H.; Jaenisch, R. Induction of tumors in mice by genomic hypomethylation. Science 2003, 300, 489–492. [Google Scholar] [Green Version]
- Esteller, M.; Almouzni, G. How epigenetics integrates nuclear functions. EMBO Rep 2005, 6, 624–628. [Google Scholar] [Green Version]
- Wang, Y.; Leung, F.C.C. An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics 2004, 20, 1170–1177. [Google Scholar] [Green Version]
- Suzuki, M.M.; Bird, A. DNA methylation landscapes: Provocative insights from epigenomics. Nat. Rev. Genet 2008, 9, 465–476. [Google Scholar] [Green Version]
- Prendergast, G.C.; Ziff, E.B. Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science 1991, 251, 186–189. [Google Scholar] [Green Version]
- Watt, F.; Molloy, P.L. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev 1988, 2, 1136–1143. [Google Scholar] [Green Version]
- Nan, X.; Ng, H.H.; Johnson, C.A.; Laherty, C.D.; Turner, B.M.; Eisenman, R.N.; Bird, A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998, 393, 386–389. [Google Scholar] [Green Version]
- Jones, P.L.; Veenstra, G.J.; Wade, P.A.; Vermaak, D.; Kass, S.U.; Landsberger, N.; Strouboulis, J.; Wolffe, A.P. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet 1998, 19, 187–191. [Google Scholar] [Green Version]
- Esteller, M. Epigenetics in cancer. N. Engl. J. Med 2008, 358, 1148–1159. [Google Scholar] [Green Version]
- Hernandez-Vargas, H.; Lambert, M.P.; Le Calvez-Kelm, F.; Gouysse, G.; McKay-Chopin, S.; Tavtigian, S.V.; Scoazec, J.Y.; Herceg, Z. Hepatocellular carcinoma displays distinct DNA methylation signatures with potential as clinical predictors. PLoS One 2010, 5, e9749. [Google Scholar] [Green Version]
- Martinez, R.; Martin-Subero, J.I.; Rohde, V.; Kirsch, M.; Alaminos, M.; Fernandez, A.F.; Ropero, S.; Schackert, G.; Esteller, M. A microarray-based DNA methylation study of glioblastoma multiforme. Epigenetics 2009, 4, 255–264. [Google Scholar] [Green Version]
- Rauch, T.A.; Zhong, X.; Wu, X.; Wang, M.; Kernstine, K.H.; Wang, Z.; Riggs, A.D.; Pfeifer, G.P. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc. Natl. Acad. Sci. USA 2008, 105, 252–257. [Google Scholar] [Green Version]
- Clark, S.J.; Harrison, J.; Paul, C.L.; Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res 1994, 22, 2990–2997. [Google Scholar] [Green Version]
- Gobel, G.; Auer, D.; Gaugg, I.; Schneitter, A.; Lesche, R.; Muller-Holzner, E.; Marth, C.; Daxenbichler, G. Prognostic significance of methylated RASSF1A and PITX2 genes in bloodand bone marrow plasma of breast cancer patients. Breast Cancer Res. Treat 2011, 130, 109–117. [Google Scholar] [Green Version]
- Sunami, E.; Shinozaki, M.; Higano, C.S.; Wollman, R.; Dorff, T.B.; Tucker, S.J.; Martinez, S.R.; Mizuno, R.; Singer, F.R.; Hoon, D.S. Multimarker circulating DNA assay for assessing blood of prostate cancer patients. Clin. Chem 2009, 55, 559–567. [Google Scholar] [Green Version]
- Lee, B.B.; Lee, E.J.; Jung, E.H.; Chun, H.K.; Chang, D.K.; Song, S.Y.; Park, J.; Kim, D.H. Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin. Cancer Res 2009, 15, 6185–6191. [Google Scholar] [Green Version]
- Nikolaidis, G.; Raji, O.Y.; Markopoulou, S.; Gosney, J.R.; Bryan, J.; Warburton, C.; Walshaw, M.; Sheard, J.; Field, J.K.; Liloglou, T. DNA methylation biomarkers offer improved diagnostic efficiency in lung cancer. Cancer Res 2012, 72, 5692–5701. [Google Scholar] [Green Version]
- Warnecke, P.M.; Stirzaker, C.; Song, J.; Grunau, C.; Melki, J.R.; Clark, S.J. Identification and resolution of artifacts in bisulfite sequencing. Methods 2002, 27, 101–107. [Google Scholar] [Green Version]
- Taylor, K.H.; Kramer, R.S.; Davis, J.W.; Guo, J.; Duff, D.J.; Xu, D.; Caldwell, C.W.; Shi, H. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res 2007, 67, 8511–8518. [Google Scholar] [Green Version]
- Bailey, V.J.; Easwaran, H.; Zhang, Y.; Griffiths, E.; Belinsky, S.A.; Herman, J.G.; Baylin, S.B.; Carraway, H.E.; Wang, T.H. MS-qFRET: A quantum dot-based method for analysis of DNA methylation. Genome Res 2009, 19, 1455–1461. [Google Scholar] [Green Version]
- Ehrich, M.; Turner, J.; Gibbs, P.; Lipton, L.; Giovanneti, M.; Cantor, C.; van den Boom, D. Cytosine methylation profiling of cancer cell lines. Proc. Natl. Acad. Sci. USA 2008, 105, 4844–4849. [Google Scholar] [Green Version]
- Ehrich, M.; Nelson, M.R.; Stanssens, P.; Zabeau, M.; Liloglou, T.; Xinarianos, G.; Cantor, C.R.; Field, J.K.; van den Boom, D. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl. Acad. Sci. USA 2005, 102, 15785–15790. [Google Scholar] [Green Version]
- Jeuken, J.W.; Cornelissen, S.J.; Vriezen, M.; Dekkers, M.M.; Errami, A.; Sijben, A.; Boots-Sprenger, S.H.; Wesseling, P. MS-MLPA: An attractive alternative laboratory assay for robust, reliable, and semiquantitative detection of MGMT promoter hypermethylation in gliomas. Lab. Invest 2007, 87, 1055–1065. [Google Scholar] [Green Version]
- Weber, M.; Davies, J.J.; Wittig, D.; Oakeley, E.J.; Haase, M.; Lam, W.L.; Schubeler, D. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet 2005, 37, 853–862. [Google Scholar] [Green Version]
- Mandel, P. Les acides nucleiques du plasma sanguin chez l’homme. CR Acad. Sci. Paris 1948, 142, 241–243. [Google Scholar] [Green Version]
- Zhu, W.; Qin, W.; Hewett, J.E.; Sauter, E.R. Quantitative evaluation of DNA hypermethylation in malignant and benign breast tissue and fluids. Int. J. Cancer 2010, 126, 474–482. [Google Scholar] [Green Version]
- Klein, P.M.; Lawrence, J.A. Lavage and nipple aspiration of breast ductal fluids: A source of biomarkers for environmental mutagenesis. Environ. Mol. Mutagen 2002, 39, 127–133. [Google Scholar] [Green Version]
- Cairns, P.; Esteller, M.; Herman, J.G.; Schoenberg, M.; Jeronimo, C.; Sanchez-Cespedes, M.; Chow, N.H.; Grasso, M.; Wu, L.; Westra, W.B.; et al. Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin. Cancer. Res 2001, 7, 2727–2730. [Google Scholar] [Green Version]
- Shi, H.; Wang, M.X.; Caldwell, C.W. CpG islands: Their potential as biomarkers for cancer. Expert Rev. Mol. Diagn 2007, 7, 519–531. [Google Scholar] [Green Version]
- Belinsky, S.A.; Nikula, K.J.; Palmisano, W.A.; Michels, R.; Saccomanno, G.; Gabrielson, E.; Baylin, S.B.; Herman, J.G. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc. Natl. Acad. Sci. USA 1998, 95, 11891–11896. [Google Scholar] [Green Version]
- Ahrendt, S.A.; Chow, J.T.; Xu, L.H.; Yang, S.C.; Eisenberger, C.F.; Esteller, M.; Herman, J.G.; Wu, L.; Decker, P.A.; Jen, J.; et al. Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J. Natl. Cancer Inst 1999, 91, 332–339. [Google Scholar] [Green Version]
- Silva, J.; Dominguez, G.; Villanueva, M.; Gonzalez, R.; Garcia, J.; Corbacho, C.; Provencio, M.; Espana, P.; Bonilla, F. Aberrant DNA methylation of the p16INK4a gene in plasma DNA of breast cancer patients. Br. J. Cancer 1999, 80, 1262–1264. [Google Scholar] [Green Version]
- Cassinotti, E.; Melson, J.; Liggett, T.; Melnikov, A.; Yi, Q.; Replogle, C.; Mobarhan, S.; Boni, L.; Segato, S.; Levenson, V. DNA methylation patterns in blood of patients with colorectal cancer and adenomatous colorectal polyps. Int. J. Cancer 2012, 131, 1153–1157. [Google Scholar] [Green Version]
- Radpour, R.; Barekati, Z.; Kohler, C.; Lv, Q.; Burki, N.; Diesch, C.; Bitzer, J.; Zheng, H.; Schmid, S.; Zhong, X.Y. Hypermethylation of tumor suppressor genes involved in critical regulatory pathways for developing a blood-based test in breast cancer. PLoS One 2011, 6, e16080. [Google Scholar] [Green Version]
- Lange, C.P.; Campan, M.; Hinoue, T.; Schmitz, R.F.; van der Meulen-de Jong, A.E.; Slingerland, H.; Kok, P.J.; van Dijk, C.M.; Weisenberger, D.J.; Shen, H.; et al. Genome-scale discovery of DNA-methylation biomarkers for blood-based detection of colorectal cancer. PLoS One 2012, 7, e50266. [Google Scholar] [Green Version]
- Shapiro, B.; Chakrabarty, M.; Cohn, E.M.; Leon, S.A. Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer 1983, 51, 2116–2120. [Google Scholar] [Green Version]
- Martinez-Galan, J.; Torres, B.; Del Moral, R.; Munoz-Gamez, J.A.; Martin-Oliva, D.; Villalobos, M.; Nunez, M.I.; Luna Jde, D.; Oliver, F.J.; Ruiz de Almodovar, J.M. Quantitative detection of methylated ESR1 and 14-3-3-sigma gene promoters in serum as candidate biomarkers for diagnosis of breast cancer and evaluation of treatment efficacy. Cancer Biol. Ther 2008, 7, 958–965. [Google Scholar] [Green Version]
- Ng, E.K.; Leung, C.P.; Shin, V.Y.; Wong, C.L.; Ma, E.S.; Jin, H.C.; Chu, K.M.; Kwong, A. Quantitative analysis and diagnostic significance of methylated SLC19A3 DNA in the plasma of breast and gastric cancer patients. PLoS One 2011, 6, e22233. [Google Scholar] [Green Version]
- Hoque, M.O.; Feng, Q.; Toure, P.; Dem, A.; Critchlow, C.W.; Hawes, S.E.; Wood, T.; Jeronimo, C.; Rosenbaum, E.; Stern, J.; et al. Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. J. Clin. Oncol 2006, 24, 4262–4269. [Google Scholar] [Green Version]
- Chimonidou, M.; Strati, A.; Malamos, N.; Georgoulias, V.; Lianidou, E.S. SOX17 promoter methylation in circulating tumor cells and matched cell-free DNA isolated from plasma of patients with breast cancer. Clin. Chem 2013, 59, 270–279. [Google Scholar] [Green Version]
- Kloten, V.; Becker, B.; Winner, K.; Schrauder, M.G.; Fasching, P.A.; Anzeneder, T.; Veeck, J.; Hartmann, A.; Knuchel, R.; Dahl, E. Promoter hypermethylation of the tumor-suppressor genes ITIH5, DKK3, and RASSF1A as novel biomarkers for blood-based breast cancer screening. Breast Cancer Res 2013, 15, R4. [Google Scholar] [Green Version]
- Ebert, M.P.; Model, F.; Mooney, S.; Hale, K.; Lograsso, J.; Tonnes-Priddy, L.; Hoffmann, J.; Csepregi, A.; Rocken, C.; Molnar, B.; et al. Aristaless-like homeobox-4 gene methylation is a potential marker for colorectal adenocarcinomas. Gastroenterology 2006, 131, 1418–1430. [Google Scholar] [Green Version]
- Miotto, E.; Sabbioni, S.; Veronese, A.; Calin, G.A.; Gullini, S.; Liboni, A.; Gramantieri, L.; Bolondi, L.; Ferrazzi, E.; Gafa, R.; et al. Frequent aberrant methylation of the CDH4 gene promoter in human colorectal and gastric cancer. Cancer Res 2004, 64, 8156–8159. [Google Scholar] [Green Version]
- Lofton-Day, C.; Model, F.; Devos, T.; Tetzner, R.; Distler, J.; Schuster, M.; Song, X.; Lesche, R.; Liebenberg, V.; Ebert, M.; et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin. Chem 2008, 54, 414–423. [Google Scholar] [Green Version]
- DeVos, T.; Tetzner, R.; Model, F.; Weiss, G.; Schuster, M.; Distler, J.; Steiger, K.V.; Grutzmann, R.; Pilarsky, C.; Habermann, J.K.; et al. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin. Chem 2009, 55, 1337–1346. [Google Scholar] [Green Version]
- Church, T.R.; Wandell, M.; Lofton-Day, C.; Mongin, S.J.; Burger, M.; Payne, S.R.; Castanos-Velez, E.; Blumenstein, B.A.; Rosch, T.; Osborn, N.; et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut 2013. [Google Scholar] [CrossRef]
- Kneip, C.; Schmidt, B.; Seegebarth, A.; Weickmann, S.; Fleischhacker, M.; Liebenberg, V.; Field, J.K.; Dietrich, D. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma. J. Thorac. Oncol 2011, 6, 1632–1638. [Google Scholar] [Green Version]
- Zhang, Y.; Wang, R.; Song, H.; Huang, G.; Yi, J.; Zheng, Y.; Wang, J.; Chen, L. Methylation of multiple genes as a candidate biomarker in non-small cell lung cancer. Cancer Lett 2011, 303, 21–28. [Google Scholar] [Green Version]
- Zhang, Y.; Miao, Y.; Yi, J.; Wang, R.; Chen, L. Frequent epigenetic inactivation of deleted in lung and esophageal cancer 1 gene by promoter methylation in non-small-cell lung cancer. Clin. Lung Cancer 2010, 11, 264–270. [Google Scholar] [Green Version]
- Schmiemann, V.; Bocking, A.; Kazimirek, M.; Onofre, A.S.; Gabbert, H.E.; Kappes, R.; Gerharz, C.D.; Grote, H.J. Methylation assay for the diagnosis of lung cancer on bronchial aspirates: A cohort study. Clin. Cancer Res 2005, 11, 7728–7734. [Google Scholar] [Green Version]
- Begum, S.; Brait, M.; Dasgupta, S.; Ostrow, K.L.; Zahurak, M.; Carvalho, A.L.; Califano, J.A.; Goodman, S.N.; Westra, W.H.; Hoque, M.O.; et al. An epigenetic marker panel for detection of lung cancer using cell-free serum DNA. Clin. Cancer Res 2011, 17, 4494–4503. [Google Scholar] [Green Version]
- Hsu, H.S.; Chen, T.P.; Hung, C.H.; Wen, C.K.; Lin, R.K.; Lee, H.C.; Wang, Y.C. Characterization of a multiple epigenetic marker panel for lung cancer detection and risk assessment in plasma. Cancer 2007, 110, 2019–2026. [Google Scholar] [Green Version]
- Zheng, Y.; Chen, L.; Li, J.; Yu, B.; Su, L.; Chen, X.; Yu, Y.; Yan, M.; Liu, B.; Zhu, Z. Hypermethylated DNA as potential biomarkers for gastric cancer diagnosis. Clin. Biochem 2011, 44, 1405–1411. [Google Scholar] [Green Version]
- Huang, Z.H.; Hu, Y.; Hua, D.; Wu, Y.Y.; Song, M.X.; Cheng, Z.H. Quantitative analysis of multiple methylated genes in plasma for the diagnosis and prognosis of hepatocellular carcinoma. Exp. Mol. Pathol 2011, 91, 702–707. [Google Scholar] [Green Version]
- Sun, F.K.; Fan, Y.C.; Zhao, J.; Zhang, F.; Gao, S.; Zhao, Z.H.; Sun, Q.; Wang, K. Detection of TFPI2 methylation in the serum of hepatocellular carcinoma patients. Dig. Dis. Sci 2012, 58, 1010–1015. [Google Scholar] [Green Version]
- Carvalho, A.L.; Jeronimo, C.; Kim, M.M.; Henrique, R.; Zhang, Z.; Hoque, M.O.; Chang, S.; Brait, M.; Nayak, C.S.; Jiang, W.W.; et al. Evaluation of promoter hypermethylation detection in body fluids as a screening/diagnosis tool for head and neck squamous cell carcinoma. Clin. Cancer Res 2008, 14, 97–107. [Google Scholar] [Green Version]
- Melnikov, A.; Scholtens, D.; Godwin, A.; Levenson, V. Differential methylation profile of ovarian cancer in tissues and plasma. J. Mol. Diagn 2009, 11, 60–65. [Google Scholar] [Green Version]
- Liggett, T.E.; Melnikov, A.; Yi, Q.; Replogle, C.; Hu, W.; Rotmensch, J.; Kamat, A.; Sood, A.K.; Levenson, V. Distinctive DNA methylation patterns of cell-free plasma DNA in women with malignant ovarian tumors. Gynecol. Oncol 2011, 120, 113–120. [Google Scholar] [Green Version]
- Melnikov, A.A.; Scholtens, D.; Talamonti, M.S.; Bentrem, D.J.; Levenson, V.V. Methylation profile of circulating plasma DNA in patients with pancreatic cancer. J. Surg. Oncol 2009, 99, 119–122. [Google Scholar] [Green Version]
- Park, J.K.; Ryu, J.K.; Yoon, W.J.; Lee, S.H.; Lee, G.Y.; Jeong, K.S.; Kim, Y.T.; Yoon, Y.B. The role of quantitative NPTX2 hypermethylation as a novel serum diagnostic marker in pancreatic cancer. Pancreas 2012, 41, 95–101. [Google Scholar] [Green Version]
- Jiao, L.; Zhu, J.; Hassan, M.M.; Evans, D.B.; Abbruzzese, J.L.; Li, D. K-ras mutation and p16 and preproenkephalin promoter hypermethylation in plasma DNA of pancreatic cancer patients: In relation to cigarette smoking. Pancreas 2007, 34, 55–62. [Google Scholar] [Green Version]
- Hauser, S.; Kogej, M.; Fechner, G.; VONP, J.; Vorreuther, R.; Lummen, G.; Muller, S.C.; Ellinger, J. Serum DNA hypermethylation in patients with bladder cancer: Results of a prospective multicenter study. Anticancer Res 2013, 33, 779–784. [Google Scholar] [Green Version]
- Ellinger, J.; El Kassem, N.; Heukamp, L.C.; Matthews, S.; Cubukluoz, F.; Kahl, P.; Perabo, F.G.; Muller, S.C.; von Ruecker, A.; Bastian, P.J. Hypermethylation of cell-free serum DNA indicates worse outcome in patients with bladder cancer. J. Urol 2008, 179, 346–352. [Google Scholar] [Green Version]
- Bastian, P.J.; Palapattu, G.S.; Yegnasubramanian, S.; Rogers, C.G.; Lin, X.; Mangold, L.A.; Trock, B.; Eisenberger, M.A.; Partin, A.W.; Nelson, W.G. CpG island hypermethylation profile in the serum of men with clinically localized and hormone refractory metastatic prostate cancer. J. Urol 2008, 179, 529–534, ; discussion 534–525.. [Google Scholar] [Green Version]
- Ellinger, J.; Bastian, P.J.; Jurgan, T.; Biermann, K.; Kahl, P.; Heukamp, L.C.; Wernert, N.; Muller, S.C.; von Ruecker, A. CpG island hypermethylation at multiple gene sites in diagnosis and prognosis of prostate cancer. Urology 2008, 71, 161–167. [Google Scholar] [Green Version]
- Leng, S.; Do, K.; Yingling, C.M.; Picchi, M.A.; Wolf, H.J.; Kennedy, T.C.; Feser, W.J.; Baron, A.E.; Franklin, W.A.; Brock, M.V.; et al. Defining a gene promoter methylation signature in sputum for lung cancer risk assessment. Clin. Cancer Res 2012, 18, 3387–3395. [Google Scholar] [Green Version]
- Belinsky, S.A.; Liechty, K.C.; Gentry, F.D.; Wolf, H.J.; Rogers, J.; Vu, K.; Haney, J.; Kennedy, T.C.; Hirsch, F.R.; Miller, Y.; et al. Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res 2006, 66, 3338–3344. [Google Scholar] [Green Version]
- Carvalho, A.L.; Henrique, R.; Jeronimo, C.; Nayak, C.S.; Reddy, A.N.; Hoque, M.O.; Chang, S.; Brait, M.; Jiang, W.W.; Kim, M.M.; et al. Detection of promoter hypermethylation in salivary rinses as a biomarker for head and neck squamous cell carcinoma surveillance. Clin. Cancer Res 2011, 17, 4782–4789. [Google Scholar] [Green Version]
- Payne, S.R.; Serth, J.; Schostak, M.; Kamradt, J.; Strauss, A.; Thelen, P.; Model, F.; Day, J.K.; Liebenberg, V.; Morotti, A.; et al. DNA methylation biomarkers of prostate cancer: Confirmation of candidates and evidence urine is the most sensitive body fluid for non-invasive detection. Prostate 2009, 69, 1257–1269. [Google Scholar] [Green Version]
- Roupret, M.; Hupertan, V.; Yates, D.R.; Catto, J.W.; Rehman, I.; Meuth, M.; Ricci, S.; Lacave, R.; Cancel-Tassin, G.; de la Taille, A.; et al. Molecular detection of localized prostate cancer using quantitative methylation-specific PCR on urinary cells obtained following prostate massage. Clin. Cancer Res 2007, 13, 1720–1725. [Google Scholar] [Green Version]
- Costa, V.L.; Henrique, R.; Danielsen, S.A.; Eknaes, M.; Patricio, P.; Morais, A.; Oliveira, J.; Lothe, R.A.; Teixeira, M.R.; Lind, G.E.; et al. TCF21 and PCDH17 methylation: An innovative panel of biomarkers for a simultaneous detection of urological cancers. Epigenetics 2011, 6, 1120–1130. [Google Scholar] [Green Version]
- Glockner, S.C.; Dhir, M.; Yi, J.M.; McGarvey, K.E.; Van Neste, L.; Louwagie, J.; Chan, T.A.; Kleeberger, W.; de Bruine, A.P.; Smits, K.M.; et al. Methylation of TFPI2 in stool DNA: A potential novel biomarker for the detection of colorectal cancer. Cancer Res 2009, 69, 4691–4699. [Google Scholar] [Green Version]
- Hellebrekers, D.M.; Lentjes, M.H.; van den Bosch, S.M.; Melotte, V.; Wouters, K.A.; Daenen, K.L.; Smits, K.M.; Akiyama, Y.; Yuasa, Y.; Sanduleanu, S.; et al. GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. Clin. Cancer Res 2009, 15, 3990–3997. [Google Scholar] [Green Version]
- Melotte, V.; Lentjes, M.H.; van den Bosch, S.M.; Hellebrekers, D.M.; de Hoon, J.P.; Wouters, K.A.; Daenen, K.L.; Partouns-Hendriks, I.E.; Stessels, F.; Louwagie, J.; et al. N-Myc downstream-regulated gene 4 (NDRG4): A candidate tumor suppressor gene and potential biomarker for colorectal cancer. J. Natl. Cancer Inst 2009, 101, 916–927. [Google Scholar] [Green Version]
- Chen, W.D.; Han, Z.J.; Skoletsky, J.; Olson, J.; Sah, J.; Myeroff, L.; Platzer, P.; Lu, S.; Dawson, D.; Willis, J.; et al. Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J. Natl. Cancer Inst 2005, 97, 1124–1132. [Google Scholar] [Green Version]
- Costa, V.L.; Henrique, R.; Danielsen, S.A.; Duarte-Pereira, S.; Eknaes, M.; Skotheim, R.I.; Rodrigues, A.; Magalhaes, J.S.; Oliveira, J.; Lothe, R.A.; et al. Three epigenetic biomarkers, GDF15, TMEFF2, and VIM, accurately predict bladder cancer from DNA-based analyses of urine samples. Clin. Cancer Res 2010, 16, 5842–5851. [Google Scholar] [Green Version]
- Zhao, Y.; Guo, S.; Sun, J.; Huang, Z.; Zhu, T.; Zhang, H.; Gu, J.; He, Y.; Wang, W.; Ma, K.; et al. Methylcap-seq reveals novel DNA methylation markers for the diagnosis and recurrence prediction of bladder cancer in a Chinese population. PLoS One 2012, 7, e35175. [Google Scholar] [Green Version]
- Reinert, T.; Modin, C.; Castano, F.M.; Lamy, P.; Wojdacz, T.K.; Hansen, L.L.; Wiuf, C.; Borre, M.; Dyrskjot, L.; Orntoft, T.F. Comprehensive genome methylation analysis in bladder cancer: Identification and validation of novel methylated genes and application of these as urinary tumor markers. Clin. Cancer Res 2011, 17, 5582–5592. [Google Scholar] [Green Version]
- Yu, J.; Zhu, T.; Wang, Z.; Zhang, H.; Qian, Z.; Xu, H.; Gao, B.; Wang, W.; Gu, L.; Meng, J.; et al. A novel set of DNA methylation markers in urine sediments for sensitive/specific detection of bladder cancer. Clin. Cancer Res 2007, 13, 7296–7304. [Google Scholar] [Green Version]
- Skvortsova, T.E.; Rykova, E.Y.; Tamkovich, S.N.; Bryzgunova, O.E.; Starikov, A.V.; Kuznetsova, N.P.; Vlassov, V.V.; Laktionov, P.P. Cell-free and cell-bound circulating DNA in breast tumours: DNA quantification and analysis of tumour-related gene methylation. Br. J. Cancer 2006, 94, 1492–1495. [Google Scholar] [Green Version]
- Hoque, M.O.; Begum, S.; Topaloglu, O.; Jeronimo, C.; Mambo, E.; Westra, W.H.; Califano, J.A.; Sidransky, D. Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res 2004, 64, 5511–5517. [Google Scholar] [Green Version]
- Goessl, C.; Krause, H.; Muller, M.; Heicappell, R.; Schrader, M.; Sachsinger, J.; Miller, K. Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res 2000, 60, 5941–5945. [Google Scholar] [Green Version]
- Goessl, C.; Muller, M.; Heicappell, R.; Krause, H.; Straub, B.; Schrader, M.; Miller, K. DNA-based detection of prostate cancer in urine after prostatic massage. Urology 2001, 58, 335–338. [Google Scholar] [Green Version]
- Jeronimo, C.; Usadel, H.; Henrique, R.; Silva, C.; Oliveira, J.; Lopes, C.; Sidransky, D. Quantitative GSTP1 hypermethylation in bodily fluids of patients with prostate cancer. Urology 2002, 60, 1131–1135. [Google Scholar] [Green Version]
- Kagan, J.; Srivastava, S.; Barker, P.E.; Belinsky, S.A.; Cairns, P. Towards clinical application of methylated DNA sequences as cancer biomarkers: A joint NCI’s EDRN and NIST workshop on standards, methods, assays, reagents and tools. Cancer Res 2007, 67, 4545–4549. [Google Scholar] [Green Version]
- Lagos-Quintana, M.; Rauhut, R.; Lendeckel, W.; Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 2001, 294, 853–858. [Google Scholar] [Green Version]
- Siomi, H.; Siomi, M.C. Posttranscriptional regulation of microRNA biogenesis in animals. Mol. Cell 2010, 38, 323–332. [Google Scholar] [Green Version]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small rnas with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [Green Version]
- Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat. Rev. Genet 2008, 9, 102–114. [Google Scholar] [Green Version]
- Plasterk, R.H. Micro rnas in animal development. Cell 2006, 124, 877–881. [Google Scholar] [Green Version]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [Green Version]
- He, L.; Hannon, G.J. MicroRNAs: Small rnas with a big role in gene regulation. Nat. Rev. Genet 2004, 5, 522–531. [Google Scholar] [Green Version]
- Esquela-Kerscher, A.; Slack, F.J. Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer 2006, 6, 259–269. [Google Scholar] [Green Version]
- Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 2006, 6, 857–866. [Google Scholar] [Green Version]
- Yu, S.L.; Chen, H.Y.; Chang, G.C.; Chen, C.Y.; Chen, H.W.; Singh, S.; Cheng, C.L.; Yu, C.J.; Lee, Y.C.; Chen, H.S.; et al. MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 2008, 13, 48–57. [Google Scholar] [Green Version]
- Liu, N.; Chen, N.Y.; Cui, R.X.; Li, W.F.; Li, Y.; Wei, R.R.; Zhang, M.Y.; Sun, Y.; Huang, B.J.; Chen, M.; et al. Prognostic value of a microRNA signature in nasopharyngeal carcinoma: A microRNA expression analysis. Lancet Oncol 2012, 13, 633–641. [Google Scholar] [Green Version]
- Rotkrua, P.; Shimada, S.; Mogushi, K.; Akiyama, Y.; Tanaka, H.; Yuasa, Y. Circulating microRNAs as biomarkers for early detection of diffuse-type gastric cancer using a mouse model. Br. J. Cancer 2013, 108, 932–940. [Google Scholar] [Green Version]
- Cho, W.C. MicroRNAs: Potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int. J. Biochem. Cell Biol 2010, 42, 1273–1281. [Google Scholar] [Green Version]
- Chen, C.; Ridzon, D.A.; Broomer, A.J.; Zhou, Z.; Lee, D.H.; Nguyen, J.T.; Barbisin, M.; Xu, N.L.; Mahuvakar, V.R.; Andersen, M.R.; et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005, 33, e179. [Google Scholar] [Green Version]
- Mestdagh, P.; Feys, T.; Bernard, N.; Guenther, S.; Chen, C.; Speleman, F.; Vandesompele, J. High-throughput stem-loop RT-qPCR mirna expression profiling using minute amounts of input RNA. Nucleic Acids Res 2008, 36, e143. [Google Scholar] [Green Version]
- Kroh, E.M.; Parkin, R.K.; Mitchell, P.S.; Tewari, M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 2010, 50, 298–30, 1.. [Google Scholar] [Green Version]
- Baker, M. MicroRNA profiling: Separating signal from noise. Nat Methods 2010, 7, 687–692. [Google Scholar] [Green Version]
- Mestdagh, P.; Van Vlierberghe, P.; De Weer, A.; Muth, D.; Westermann, F.; Speleman, F.; Vandesompele, J. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 2009, 10, R64. [Google Scholar] [Green Version]
- Gallo, A.; Tandon, M.; Alevizos, I.; Illei, G.G. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 2012, 7, e30679. [Google Scholar] [Green Version]
- Pritchard, C.C.; Kroh, E.; Wood, B.; Arroyo, J.D.; Dougherty, K.J.; Miyaji, M.M.; Tait, J.F.; Tewari, M. Blood cell origin of circulating microRNAs: A cautionary note for cancer biomarker studies. Cancer Prev. Res. (Phila) 2012, 5, 492–497. [Google Scholar] [Green Version]
- McDonald, J.S.; Milosevic, D.; Reddi, H.V.; Grebe, S.K.; Algeciras-Schimnich, A. Analysis of circulating microRNA: Preanalytical and analytical challenges. Clin. Chem 2011, 57, 833–840. [Google Scholar] [Green Version]
- Kirschner, M.B.; Kao, S.C.; Edelman, J.J.; Armstrong, N.J.; Vallely, M.P.; van Zandwijk, N.; Reid, G. Haemolysis during sample preparation alters microRNA content of plasma. PLoS One 2011, 6, e24145. [Google Scholar] [Green Version]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008, 18, 997–1006. [Google Scholar] [Green Version]
- Keller, A.; Leidinger, P.; Gislefoss, R.; Haugen, A.; Langseth, H.; Staehler, P.; Lenhof, H.P.; Meese, E. Stable serum mirna profiles as potential tool for non-invasive lung cancer diagnosis. RNA Biol 2011, 8, 506–516. [Google Scholar] [Green Version]
- Lawrie, C.H.; Gal, S.; Dunlop, H.M.; Pushkaran, B.; Liggins, A.P.; Pulford, K.; Banham, A.H.; Pezzella, F.; Boultwood, J.; Wainscoat, J.S.; et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Haematol 2008, 141, 672–675. [Google Scholar] [Green Version]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [Green Version]
- Gonzales, J.C.; Fink, L.M.; Goodman, O.B., Jr.; Symanowski, J.T.; Vogelzang, N.J.; Ward, D.C. Comparison of circulating microRNA 141 to circulating tumor cells, lactate dehydrogenase, and prostate-specific antigen for determining treatment response in patients with metastatic prostate cancer. Clin. Genitourin. Cancer 2011, 9, 39–45. [Google Scholar] [Green Version]
- Zhu, W.; Qin, W.; Atasoy, U.; Sauter, E.R. Circulating microRNAs in breast cancer and healthy subjects. BMC Res. Notes 2009, 2, 89. [Google Scholar] [Green Version]
- Heneghan, H.M.; Miller, N.; Lowery, A.J.; Sweeney, K.J.; Newell, J.; Kerin, M.J. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann. Surg 2010, 251, 499–505. [Google Scholar] [Green Version]
- Roth, C.; Rack, B.; Muller, V.; Janni, W.; Pantel, K.; Schwarzenbach, H. Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res 2010, 12, R90. [Google Scholar] [Green Version]
- Heneghan, H.M.; Miller, N.; Kelly, R.; Newell, J.; Kerin, M.J. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist 2010, 15, 673–682. [Google Scholar] [Green Version]
- Wu, Q.; Lu, Z.; Li, H.; Lu, J.; Guo, L.; Ge, Q. Next-generation sequencing of microRNAs for breast cancer detection. J. Biomed. Biotechnol 2011, 2011, 597145. [Google Scholar] [Green Version]
- Hu, Z.; Dong, J.; Wang, L.E.; Ma, H.; Liu, J.; Zhao, Y.; Tang, J.; Chen, X.; Dai, J.; Wei, Q.; et al. Serum microRNA profiling and breast cancer risk: The use of miR-484/191 as endogenous controls. Carcinogenesis 2012, 33, 828–834. [Google Scholar] [Green Version]
- Ng, E.K.; Chong, W.W.; Jin, H.; Lam, E.K.; Shin, V.Y.; Yu, J.; Poon, T.C.; Ng, S.S.; Sung, J.J. Differential expression of microRNAs in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut 2009, 58, 1375–1381. [Google Scholar] [Green Version]
- Huang, Z.; Huang, D.; Ni, S.; Peng, Z.; Sheng, W.; Du, X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int. J. Cancer 2010, 127, 118–126. [Google Scholar] [Green Version]
- Pu, X.X.; Huang, G.L.; Guo, H.Q.; Guo, C.C.; Li, H.; Ye, S.; Ling, S.; Jiang, L.; Tian, Y.; Lin, T.Y. Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J. Gastroenterol. Hepatol 2010, 25, 1674–1680. [Google Scholar] [Green Version]
- Wang, L.G.; Gu, J. Serum microRNA-29a is a promising novel marker for early detection of colorectal liver metastasis. Cancer Epidemiol 2012, 36, e61–e67. [Google Scholar] [Green Version]
- Cheng, H.; Zhang, L.; Cogdell, D.E.; Zheng, H.; Schetter, A.J.; Nykter, M.; Harris, C.C.; Chen, K.; Hamilton, S.R.; Zhang, W. Circulating plasma miR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One 2011, 6, e17745. [Google Scholar] [Green Version]
- Nugent, M.; Miller, N.; Kerin, M.J. Circulating miR-34a levels are reduced in colorectal cancer. J. Surg. Oncol 2012, 106, 947–952. [Google Scholar] [Green Version]
- Tsujiura, M.; Ichikawa, D.; Komatsu, S.; Shiozaki, A.; Takeshita, H.; Kosuga, T.; Konishi, H.; Morimura, R.; Deguchi, K.; Fujiwara, H.; et al. Circulating microRNAs in plasma of patients with gastric cancers. Br. J. Cancer 2010, 102, 1174–1179. [Google Scholar] [Green Version]
- Zhou, H.; Guo, J.M.; Lou, Y.R.; Zhang, X.J.; Zhong, F.D.; Jiang, Z.; Cheng, J.; Xiao, B.X. Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using microRNA as a marker. J. Mol. Med. (Berl) 2010, 88, 709–717. [Google Scholar] [Green Version]
- Liu, H.; Zhu, L.; Liu, B.; Yang, L.; Meng, X.; Zhang, W.; Ma, Y.; Xiao, H. Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett 2012, 316, 196–203. [Google Scholar] [Green Version]
- Tsai, K.W.; Liao, Y.L.; Wu, C.W.; Hu, L.Y.; Li, S.C.; Chan, W.C.; Ho, M.R.; Lai, C.H.; Kao, H.W.; Fang, W.L.; et al. Aberrant expression of miR-196a in gastric cancers and correlation with recurrence. Genes Chromosom. Cancer 2012, 51, 394–401. [Google Scholar] [Green Version]
- Valladares-Ayerbes, M.; Reboredo, M.; Medina-Villaamil, V.; Iglesias-Diaz, P.; Lorenzo-Patino, M.J.; Haz, M.; Santamarina, I.; Blanco, M.; Fernandez-Tajes, J.; Quindos, M.; et al. Circulating miR-200c as a diagnostic and prognostic biomarker for gastric cancer. J. Transl. Med 2012, 10, 186. [Google Scholar] [Green Version]
- Wang, M.; Gu, H.; Wang, S.; Qian, H.; Zhu, W.; Zhang, L.; Zhao, C.; Tao, Y.; Xu, W. Circulating miR-17-5p and miR-20a: Molecular markers for gastric cancer. Mol. Med. Rep 2012, 5, 1514–1520. [Google Scholar] [Green Version]
- Zheng, Y.; Cui, L.; Sun, W.; Zhou, H.; Yuan, X.; Huo, M.; Chen, J.; Lou, Y.; Guo, J. MicroRNA-21 is a new marker of circulating tumor cells in gastric cancer patients. Cancer Biomark 2011, 10, 71–77. [Google Scholar] [Green Version]
- Gorur, A.; Balci Fidanci, S.; Dogruer Unal, N.; Ayaz, L.; Akbayir, S.; Yildirim Yaroglu, H.; Dirlik, M.; Serin, M.S.; Tamer, L. Determination of plasma microRNA for early detection of gastric cancer. Mol. Biol. Rep 2012, 40, 2091–1096. [Google Scholar] [Green Version]
- Rabinowits, G.; Gercel-Taylor, C.; Day, J.M.; Taylor, D.D.; Kloecker, G.H. Exosomal microRNA: A diagnostic marker for lung cancer. Clin. Lung Cancer 2009, 10, 42–46. [Google Scholar] [Green Version]
- Hu, Z.; Chen, X.; Zhao, Y.; Tian, T.; Jin, G.; Shu, Y.; Chen, Y.; Xu, L.; Zen, K.; Zhang, C.; et al. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J. Clin. Oncol 2010, 28, 1721–1726. [Google Scholar] [Green Version]
- Heegaard, N.H.; Schetter, A.J.; Welsh, J.A.; Yoneda, M.; Bowman, E.D.; Harris, C.C. Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer. Int. J. Cancer 2012, 130, 1378–1386. [Google Scholar] [Green Version]
- Le, H.B.; Zhu, W.Y.; Chen, D.D.; He, J.Y.; Huang, Y.Y.; Liu, X.G.; Zhang, Y.K. Evaluation of dynamic change of serum miR-21 and miR-24 in pre- and post-operative lung carcinoma patients. Med. Oncol 2012, 29, 3190–3197. [Google Scholar] [Green Version]
- Wang, J.; Chen, J.; Chang, P.; LeBlanc, A.; Li, D.; Abbruzzesse, J.L.; Frazier, M.L.; Killary, A.M.; Sen, S. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev. Res. (Phila) 2009, 2, 807–813. [Google Scholar] [Green Version]
- Ho, A.S.; Huang, X.; Cao, H.; Christman-Skieller, C.; Bennewith, K.; Le, Q.T.; Koong, A.C. Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Transl. Oncol 2010, 3, 109–113. [Google Scholar] [Green Version]
- Li, A.; Omura, N.; Hong, S.M.; Vincent, A.; Walter, K.; Griffith, M.; Borges, M.; Goggins, M. Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res 2010, 70, 5226–5237. [Google Scholar] [Green Version]
- Morimura, R.; Komatsu, S.; Ichikawa, D.; Takeshita, H.; Tsujiura, M.; Nagata, H.; Konishi, H.; Shiozaki, A.; Ikoma, H.; Okamoto, K.; et al. Novel diagnostic value of circulating miR-18a in plasma of patients with pancreatic cancer. Br. J. Cancer 2011, 105, 1733–1740. [Google Scholar] [Green Version]
- Yamamoto, Y.; Kosaka, N.; Tanaka, M.; Koizumi, F.; Kanai, Y.; Mizutani, T.; Murakami, Y.; Kuroda, M.; Miyajima, A.; Kato, T.; et al. MicroRNA-500 as a potential diagnostic marker for hepatocellular carcinoma. Biomarkers 2009, 14, 529–538. [Google Scholar] [Green Version]
- Li, L.M.; Hu, Z.B.; Zhou, Z.X.; Chen, X.; Liu, F.Y.; Zhang, J.F.; Shen, H.B.; Zhang, C.Y.; Zen, K. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res 2010, 70, 9798–9807. [Google Scholar] [Green Version]
- Qi, P.; Cheng, S.Q.; Wang, H.; Li, N.; Chen, Y.F.; Gao, C.F. Serum microRNAs as biomarkers for hepatocellular carcinoma in Chinese patients with chronic hepatitis B virus infection. PLoS One 2011, 6, e28486. [Google Scholar] [Green Version]
- Liu, A.M.; Yao, T.J.; Wang, W.; Wong, K.F.; Lee, N.P.; Fan, S.T.; Poon, R.T.; Gao, C.; Luk, J.M. Circulating miR-15b and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: A retrospective cohort study. BMJ Open 2012, 2, e000825. [Google Scholar] [Green Version]
- Sukata, T.; Sumida, K.; Kushida, M.; Ogata, K.; Miyata, K.; Yabushita, S.; Uwagawa, S. Circulating microRNAs, possible indicators of progress of rat hepatocarcinogenesis from early stages. Toxicol. Lett 2011, 200, 46–52. [Google Scholar] [Green Version]
- Xu, J.; Wu, C.; Che, X.; Wang, L.; Yu, D.; Zhang, T.; Huang, L.; Li, H.; Tan, W.; Wang, C.; et al. Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol. Carcinog 2011, 50, 136–142. [Google Scholar] [Green Version]
- Hsu, C.M.; Lin, P.M.; Wang, Y.M.; Chen, Z.J.; Lin, S.F.; Yang, M.Y. Circulating miRNA is a novel marker for head and neck squamous cell carcinoma. Tumour. Biol 2012, 33, 1933–1942. [Google Scholar] [Green Version]
- Wong, T.S.; Ho, W.K.; Chan, J.Y.; Ng, R.W.; Wei, W.I. Mature miR-184 and squamous cell carcinoma of the tongue. Sci. World J 2009, 9, 130–132. [Google Scholar] [Green Version]
- Liu, C.J.; Kao, S.Y.; Tu, H.F.; Tsai, M.M.; Chang, K.W.; Lin, S.C. Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer. Oral Dis 2010, 16, 360–364. [Google Scholar] [Green Version]
- Lin, S.C.; Liu, C.J.; Lin, J.A.; Chiang, W.F.; Hung, P.S.; Chang, K.W. MiR-24 up-regulation in oral carcinoma: Positive association from clinical and in vitro analysis. Oral Oncol 2010, 46, 204–208. [Google Scholar] [Green Version]
- Hussein, F.K.; Nizar, B.; Mehdi, N.; Philippe, L.; Mohammad, F.K.; Rabih, B.; Eva, H.; Ahmad, D.; Nader, H.; Rim, E.D.; et al. Circulating miR-150 and miR-342 in plasma are novel potential biomarkers for acute myeloid leukemia. J. Transl. Med 2013, 11, 31. [Google Scholar] [Green Version]
- Jones, C.I.; Zabolotskaya, M.V.; King, A.J.; Stewart, H.J.; Horne, G.A.; Chevassut, T.J.; Newbury, S.F. Identification of circulating microRNAs as diagnostic biomarkers for use in multiple myeloma. Br. J. Cancer 2012, 107, 1987–1996. [Google Scholar] [Green Version]
- Lodes, M.J.; Caraballo, M.; Suciu, D.; Munro, S.; Kumar, A.; Anderson, B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One 2009, 4, e6229. [Google Scholar] [Green Version]
- Zheng, C.; Yinghao, S.; Li, J. MiR-221 expression affects invasion potential of human prostate carcinoma cell lines by targeting DVL2. Med. Oncol 2012, 29, 815–822. [Google Scholar] [Green Version]
- Yaman Agaoglu, F.; Kovancilar, M.; Dizdar, Y.; Darendeliler, E.; Holdenrieder, S.; Dalay, N.; Gezer, U. Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumour. Biol 2011, 32, 583–588. [Google Scholar] [Green Version]
- Moltzahn, F.; Olshen, A.B.; Baehner, L.; Peek, A.; Fong, L.; Stoppler, H.; Simko, J.; Hilton, J.F.; Carroll, P.; Blelloch, R. Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res 2011, 71, 550–560. [Google Scholar] [Green Version]
- Resnick, K.E.; Alder, H.; Hagan, J.P.; Richardson, D.L.; Croce, C.M.; Cohn, D.E. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol. Oncol 2009, 112, 55–59. [Google Scholar] [Green Version]
- Taylor, D.D.; Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol 2008, 110, 13–21. [Google Scholar] [Green Version]
- Kan, C.W.; Hahn, M.A.; Gard, G.B.; Maidens, J.; Huh, J.Y.; Marsh, D.J.; Howell, V.M. Elevated levels of circulating microRNA-200 family members correlate with serous epithelial ovarian cancer. BMC Cancer 2012, 12, 627. [Google Scholar] [Green Version]
- Skog, J.; Wurdinger, T.; van Rijn, S.; Meijer, D.H.; Gainche, L.; Sena-Esteves, M.; Curry, W.T., Jr.; Carter, B.S.; Krichevsky, A.M.; Breakefield, X.O. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol 2008, 10, 1470–1476. [Google Scholar] [Green Version]
- Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The microRNA spectrum in 12 body fluids. Clin. Chem 2010, 56, 1733–1741. [Google Scholar] [Green Version]
- Ge, Y.; Xiao, L.; Chen, X.; Peng, Y.; Sun, L.; Liu, F. Micrornas in peritoneal dialysis effluent are promising biomarkers for peritoneal fibrosis in peritoneal dialysis patients. Med. Hypotheses 2012, 78, 155–156. [Google Scholar] [Green Version]
- Yamada, Y.; Enokida, H.; Kojima, S.; Kawakami, K.; Chiyomaru, T.; Tatarano, S.; Yoshino, H.; Kawahara, K.; Nishiyama, K.; Seki, N.; et al. MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: Correlation with stage and grade, and comparison with urinary cytology. Cancer Sci 2011, 102, 522–529. [Google Scholar] [Green Version]
- Xing, L.; Todd, N.W.; Yu, L.; Fang, H.; Jiang, F. Early detection of squamous cell lung cancer in sputum by a panel of microrna markers. Mod. Pathol 2010, 23, 1157–1164. [Google Scholar] [Green Version]
- Park, N.J.; Zhou, H.; Elashoff, D.; Henson, B.S.; Kastratovic, D.A.; Abemayor, E.; Wong, D.T. Salivary microRNA: Discovery, characterization, and clinical utility for oral cancer detection. Clin. Cancer Res 2009, 15, 5473–5477. [Google Scholar] [Green Version]
- Han, H.S.; Yun, J.; Lim, S.N.; Han, J.H.; Lee, K.H.; Kim, S.T.; Kang, M.H.; Son, S.M.; Lee, Y.M.; Choi, S.Y.; et al. Downregulation of cell-free miR-198 as a diagnostic biomarker for lung adenocarcinoma-associated malignant pleural effusion. Int. J. Cancer 2013. [Google Scholar] [CrossRef]
- Cho, W.C. Circulating microRNAs as minimally invasive biomarkers for cancer theragnosis and prognosis. Front. Genet 2011, 2, 7. [Google Scholar] [Green Version]
- Meyer, S.U.; Pfaffl, M.W.; Ulbrich, S.E. Normalization strategies for microRNA profiling experiments: A “normal” way to a hidden layer of complexity? Biotechnol. Lett 2010, 32, 1777–1788. [Google Scholar] [Green Version]
- Sturgeon, C.M.; Hoffman, B.R.; Chan, D.W.; Ch’ng, S.L.; Hammond, E.; Hayes, D.F.; Liotta, L.A.; Petricoin, E.F.; Schmitt, M.; Semmes, O.J. National academy of clinical biochemistry laboratory medicine practice guidelines for use of tumor markers in clinical practice: Quality requirements. Clin. Chem 2008, 54, e1–e10. [Google Scholar] [Green Version]
Markers | Source | Sample number | Sensitivity | Specitivity | Technology | Ref. |
---|---|---|---|---|---|---|
Breast cancer | ||||||
ESR1,14–3-3-r | Serum | 274 | 81% | 88% | qMSP | [50] |
SLC19A3 | Plasma | 78 | 90% | 85% | qMSP | [51] |
GSTP1,RARB, RASSF1, APC | Plasma | 169 | 62% | 87% | qMSP | [52] |
SOX17 | Plasma | 139 | 37% | 98% | MSP | [53] |
DKK3, ITIH5 | Serum | 243 | 40% | 93% | MSP | [54] |
RASSF1A,DKK3, ITIH5 | Serum | 243 | 67% | 69% | MSP | [5] |
APC, BIN1, BMP6, BRCA1, CST6, ESR-b, GSTP1, P16, P21 and TIMP3 | Plasma | 126 | >90% | >90% | EpiTYPER | [47] |
Colorectal cancer | ||||||
ALX4 | Serum | 82 | 83% | 70% | qMSP | [55] |
CDH4 | Peripheral Blood | 63 | 70% | 100% | MSP | [56] |
NGFR | Plasma | 312 | 51% | 84% | qMSP | [57] |
SEPT9 | Plasma | 312 | 69% | 86% | qMSP | [57] |
TMEFF2 | Plasma | 312 | 65% | 69% | qMSP | [57] |
RUNX3 | Serum | 75 | 68% | 89% | MSP | [58] |
SEPT9 | Plasma | 1510 | 77% | 91% | qMSP | [59] |
MGMT | plasma | 583 | 39% | 96% | MSP | [29] |
RARβ2 | Plasma | 583 | 24% | 100% | MSP | [29] |
RASSF2A | Plasma | 583 | 58% | 100% | MSP | [29] |
Wif-1 | plasma | 583 | 74% | 98% | MSP | [29] |
Lung cancer(NSCLC) | ||||||
SHOX2 | Plasma | 411 | 60% | 90% | qMSP | [60] |
APC, RASSF1A, CDH13, KLK10 and DLEC1 | Plasma | 160 | 83% | 70% | MSP | [61] |
DLEC1 | Plasma | 128 | 36% | 98% | MSP | [62] |
RARβ2 | Plasma | 141 | 28% | 48% | MSP | [63] |
CDH1 | Serum | 106 | 62% | 70% | qMSP | [64] |
APC, AIM1, CDH1, DCC, MGMT, RASSF1A | Serum | 106 | 84% | 57% | qMSP | [64] |
CDH13 | Plasma | 99 | 33% | 83% | MSP | [65] |
Gastric cancer | ||||||
KCNA4, CYP26B1 | Serum | 92 | 91% | 92% | MSP | [66] |
Hepatocellular carcinoma | ||||||
APC, GSTP1, RASSF1A, SFRP1 | Plasma | 150 | 93% | 82% | MSRE-qPCR | [67] |
TFPI2 | Serum | 93 | 46% | 72% | MSP | [68] |
Head and neck squamous cell carcinoma | ||||||
CDH1, TIMP3, HIC1, PGP9.5 | Serum | 251 | 81 | 43 | qMSP | [69] |
Ovarian cancer | ||||||
BRCA1, HIC1, PAX5, PGR, THBS1 | Plasma | 66 | 85% | 61% | MethDet test | [70] |
RASSF1A, CALCA, EP300 | Plasma | 60 | 90% | 87% | MethDet test | [71] |
Pancreatic cancer | ||||||
CCND2, PLAU, SOCS1, THBS, VHL | Plasma | 60 | 76% | 59% | MethDet test | [72] |
NPTX2 | Plasma | 169 | 80% | 76% | qMSP | [73] |
p16 | Plasma | 83 | 24% | N/A | MSP | [74] |
Bladder cancer | ||||||
TIMP3, APC, RARB, TIG1, GSTP1, p14, p16, PTGS2, RASSF1A | Serum | 148 | 62% | 89% | MSRE-qPCR | [75] |
APC, GSTP1, TIG1 | Serum | 90 | 80% | 93% | qMSP | [76] |
Prostate cancer | ||||||
GSTP1, RASSF1, RARβ2 | Serum | 123 | 63% | N/A | MSP | [28] |
GSTP1, MDR1 | Serum | 227 | 32% | 100% | qMSP | [77] |
GSTP1, TIG1, PTGS2, RPRM | Serum | 210 | 47% | 93% | qMSP | [78] |
Markers | Source | Sample number | Sensitivity | Specitivity | Technology | Ref. |
---|---|---|---|---|---|---|
Lung cancer | ||||||
CDKN2A/p16, TERT, WT1, RASSF1 | Bronchial washings | 248 | 82% | 91% | qMSP | [30] |
DAPK, PAX5b, PAX5a, Dal1, GATA5, SULF2, CXCL14 | Sputum | 130 | 75% | 68% | Nest qMSP | [79] |
Non small cell lung cancer (NSCLC) | ||||||
CDH13 | Sputum | 190 | 27% | 75% | Nest MSP | [80] |
CDKN2A/p16 | Sputum | 190 | 40% | 73% | Nest MSP | [80] |
DAPK | Sputum | 190 | 43% | 67% | Nest MSP | [80] |
GATA4 | Sputum | 190 | 49% | 54% | Nest MSP | [80] |
IGFBP3 | Sputum | 190 | 25% | 54% | Nest MSP | [80] |
Head and neck squamous cell carcinoma (HNSCC) | ||||||
MINT31, MGMT, CCNA1, p16 | Salivary rinse | 391 | 35% | 90% | qMSP | [69] |
DAPK, DCC, MINT-31, TIMP-3, p16, MGMT, CCNA1 | Salivary | 61 | 54% | N/A | qMSP | [81] |
Prostate cancer | ||||||
GSTP1 | Urine | 192 | 81% | 94% | qMSP | [82] |
RASSF2 | Urine | 192 | 59% | 63% | qMSP | [82] |
HIST1H4K | Urine | 192 | 92% | 86% | qMSP | [82] |
TFAP2E | Urine | 192 | 100% | 18% | qMSP | [82] |
GSTP1, RASSF1A, ECDH1, APC, DAPK, MGMT, p14, p16 | Urine post massage | 95 | 93% | N/A | MSP | [83] |
PCDH17,TCF21 | Urine | 77 | 26% | 100% | qMSP | [84] |
Colorectal cancer | ||||||
TFPI2 | Stool | 197 | 76%–89% | 79%–93% | qMSP | [85] |
GATA4 | Stool | 58 | 71% | 93% | MSP | [86] |
NDRG4 | Stool | 58 | 77% | 100% | qMSP | [87] |
Vimentin exon-1 | Stool | 292 | 46% | 90% | MSP | [88] |
Bladder cancer | ||||||
PCDH17,TCF21 | Urine | 98 | 60% | 100% | qMSP | [84] |
GDF15 | Urine | 71 | 47% | 100% | qMSP | [89] |
HSPA2 | Urine | 71 | 59% | 100% | qMSP | [89] |
TMEFF2 | Urine | 71 | 63% | 100% | qMSP | [89] |
VIM | Urine | 71 | 78% | 100% | qMSP | [89] |
VIM, TMEFF2, GDF15, HSPA2 | Urine | 71 | 94% | 100% | qMSP | [89] |
VAX1, KCNV1, TAL1, PPOX1, CFTR | urine | 212 | 86% | 87% | MSP | [90] |
ZNF154, POU4F2, HOXA9, EOMES | Urine | 174 | 84% | 96% | MSP | [91] |
SALL3, CFTR, ABCC6, HPR1, RASSF1A, MT1A, RUNX3, ITGA4, BCL2, ALX4, MYOD1, DRM, CDH13, BMP3B, CCNA1, RPRM, MINT1, BRCA1 | urine sediments | 168 | 92% | 87% | MSP | [92] |
Renal cell cancer | ||||||
PCDH17, TCF21 | Urine | 98 | 32% | 100% | qMSP | [84] |
Disease | Expression level | Markers | Ref. |
---|---|---|---|
Breast cancer | Up-regulated | miR-155 | [126] |
miR-195 | [127] | ||
miR-10b, miR -34a | [128] | ||
let7a, miR-195 | [129] | ||
miR-29a, miR-21 | [130] | ||
miR-16, miR-25, miR-222, miR-324–3p | [131] | ||
Colorectal cancer | Up-regulated | miR-17–3p,miR-92 | [132] |
miR-29a, miR-92a | [133] | ||
miR-221 | [134] | ||
miR-29a | [135] | ||
miR-141 | [136] | ||
Down-regulated | miR-34a | [137] | |
Gastric cancer | Up-regulated | miR-17–5p, miR-21, miR-106a, miR-106b | [138] |
miR-106a, miR-17 | [139] | ||
miR-378 | [140] | ||
miR-196a | [141] | ||
miR-200c | [142] | ||
miR-17–5p,miR-20a | [143] | ||
miR-21 | [144] | ||
Down-regulated | let7a | [138] | |
miR-195–5p | [145] | ||
Non-small cell lung carcinoma (NSCLC) | Up-regulated | miR-25,miR-223 | [121] |
miR-17–3p, miR-21,miR-106a, miR-146, miR-155, miR-191, miR-192, miR-203, miR-205, miR-210,miR-212, miR-214 | [146] | ||
miR-1, miR-30d,miR-486, miR-499 | [147] | ||
miR-29c | [148] | ||
miR-21, miR-205, miR-30d, miR-24 | [149] | ||
Down-regulated | miR-146b, miR-221, let-7a, miR-155, miR-17–5p, miR-27a, miR-106a | [148] | |
Pancreatic cancer | Up-regulated | miR-21, miR-155, miR-196a | [150] |
miR-210 | [151] | ||
miR-200a,miR-200b | [152] | ||
miR-18a | [153] | ||
Hepatocellular carcinoma (HCC) | Up-regulated | miR-500 | [154] |
miR-375 | [155] | ||
miR-122 | [156] | ||
miR-15b, miR-21, miR-130b, miR-183 | [157] | ||
let-7a, let-7f, miR-98 | [158] | ||
miR-21, miR-122, miR-223 | [159] | ||
Head and neck squamous cell carcinoma (HNSCC) | Up-regulated | miR-21, miR-26b | [160] |
Oral squamous cell carcinoma (OSCC) | Up-regulated | miR-184 | [161] |
miR-31,miR-21 | [162] | ||
miR-24 | [163] | ||
Diffuse large B-cell lymphoma (DLBCL) | Up-regulated | miR-21,miR-155, miR-210 | [123] |
Acute myeloid/leukemia (AML), Acute lymphoblastic leukemia (ALL) | Up-regulated | let-7b, miR-523 | [164] |
Multiple myeloma | Up-regulated | miR-720 | [165] |
Down-regulated | miR-1308 | ||
Prostate cancer | Up-regulated | miR-141, miR-200b | [124] |
miR-16, miR-34b, miR-92a, miR-92b, miR-103, miR-107, miR-197, miR-328, miR-485–3p, miR-486–5p, miR-574–3p, miR-636, miR-640,miR-766, miR-885–5p | [166] | ||
miR-221 | [167] | ||
miR-21, miR-221 | [168] | ||
miR-93, miR-106a, miR-874, miR-1207–5p, miR-1274a | [169] | ||
Down-regulated | miR-145,miR-155 | [129] | |
miR-24, miR-26b, miR-30c, miR-223 | [169] | ||
Ovarian cancer | Up-regulated | miR-21, miR-92, miR-93, miR-126, miR-29a | [170] |
miR-21, miR-141, miR-200a, miR-200c, miR-200b, miR-203, miR-205, miR-214 | [171] | ||
Down-regulated | miR -155, miR- 127,miR 99b | [170] | |
Serous epithelial ovarian cancer (SEOC) | Up-regulated | miR200a, miR200b, miR200c | [172] |
Glioblastoma | Up-regulated | miR-21 | [173] |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ma, Y.; Wang, X.; Jin, H. Methylated DNA and microRNA in Body Fluids as Biomarkers for Cancer Detection. Int. J. Mol. Sci. 2013, 14, 10307-10331. https://doi.org/10.3390/ijms140510307
Ma Y, Wang X, Jin H. Methylated DNA and microRNA in Body Fluids as Biomarkers for Cancer Detection. International Journal of Molecular Sciences. 2013; 14(5):10307-10331. https://doi.org/10.3390/ijms140510307
Chicago/Turabian StyleMa, Yanning, Xian Wang, and Hongchuan Jin. 2013. "Methylated DNA and microRNA in Body Fluids as Biomarkers for Cancer Detection" International Journal of Molecular Sciences 14, no. 5: 10307-10331. https://doi.org/10.3390/ijms140510307
APA StyleMa, Y., Wang, X., & Jin, H. (2013). Methylated DNA and microRNA in Body Fluids as Biomarkers for Cancer Detection. International Journal of Molecular Sciences, 14(5), 10307-10331. https://doi.org/10.3390/ijms140510307