A Functional Variant of NEDD4L Is Associated with Obesity and Related Phenotypes in a Han Population of Southern China
Abstract
:1. Introduction
2. Results and Discussion
2.1. Association Analysis of Genetic Variants in NEDD4L with Overweight/Obesity
2.2. Analysis of Obesity Related Phenotypes and Genotypes at Genetic Variants in NEDD4L
3. Experimental Section
3.1. Ethics Statement
3.2. Subjects
3.3. Measurements
3.4. SNP Selection and Genotyping
3.5. Statistical Analyses
4. Conclusions
Supplementary Information
ijms-14-07433-s001.docAcknowledgments
Conflict of Interest
References
- Li, N.; Wang, H.; Yang, J.; Zhou, L.; Hong, J.; Guo, Y.; Luo, W.; Chang, J. Genetic variation of NEDD4L is associated with essential hypertension in female Kazakh general population: A case-control study. BMC Med. Genet 2009, 10, 130, :1–130:10.. [Google Scholar] [Green Version]
- Russo, C.J.; Melista, E.; Cui, J.; DeStefano, A.L.; Bakris, G.L.; Manolis, A.J.; Gavras, H.; Baldwin, C.T. Association of NEDD4L ubiquitin ligase with essential hypertension. Hypertension 2005, 46, 488–491. [Google Scholar] [Green Version]
- Luo, F.; Wang, Y.; Wang, X.; Sun, K.; Zhou, X.; Hui, R. A functional variant of NEDD4L is associated with hypertension, antihypertensive response, and orthostatic hypotension. Hypertension 2009, 54, 796–801. [Google Scholar] [Green Version]
- Wen, H.; Lin, R.; Jiao, Y.; Wang, F.; Wang, S.; Lu, D.; Qian, J.; Jin, L.; Wang, X. Two polymorphisms in NEDD4L gene and essential hypertension in Chinese Hans—A population-based case-control study. Clin. Exp. Hypertens 2008, 30, 87–94. [Google Scholar] [Green Version]
- Araki, N.; Umemura, M.; Miyagi, Y.; Yabana, M.; Miki, Y.; Tamura, K.; Uchino, K.; Aoki, R.; Goshima, Y.; Umemura, S.; et al. Expression, transcription, and possible antagonistic interaction of the human Nedd4L gene variant: Implications for essential hypertension. Hypertension 2008, 51, 773–777. [Google Scholar] [Green Version]
- Dahlberg, J.; Nilsson, L.O.; von Wowern, F.; Melander, O. Polymorphism in NEDD4L is associated with increased salt sensitivity, reduced levels of P-renin and increased levels of Nt-proANP. PLoS One 2007, 2, e432. [Google Scholar] [Green Version]
- Butterworth, M.B. Regulation of the epithelial sodium channel (ENaC) by membrane trafficking. Biochim. Biophys. Acta 2010, 1802, 1166–1177. [Google Scholar] [Green Version]
- Flores, S.Y.; Debonneville, C.; Staub, O. The role of Nedd4/Nedd4-like dependant ubiquitylation in epithelial transport processes. Pflugers. Arch 2003, 446, 334–338. [Google Scholar] [Green Version]
- Rotin, D.; Schild, L. ENaC and its regulatory proteins as drug targets for blood pressure control. Curr. Drug Targets 2008, 9, 709–716. [Google Scholar] [Green Version]
- Wang, H.M.; Li, N.F.; Yao, X.G.; Hong, J.; Luo, W.L.; Chang, J.H. Association of the rs4149601 polymorphism of NEDD4L gene with obesity in Xinjiang Kazakh population. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2010, 27, 668–671. [Google Scholar] [Green Version]
- Kotsis, V.; Stabouli, S.; Papakatsika, S.; Rizos, Z.; Parati, G. Mechanisms of obesity-induced hypertension. Hypertens. Res 2010, 33, 386–393. [Google Scholar] [Green Version]
- Franco, V.; Oparil, S. Salt sensitivity, a determinant of blood pressure, cardiovascular disease and survival. J. Am. Coll. Nutr 2006, 25, 247S–255S. [Google Scholar] [Green Version]
- Bianchi, G.; Manunta, P. Adducin, renal intermediate phenotypes, and hypertension. Hypertension 2004, 44, 394–395. [Google Scholar] [Green Version]
- Hollenberg, N.K. Genes, hypertension, and intermediate phenotypes. Curr. Opin. Cardiol 1996, 11, 457–463. [Google Scholar] [Green Version]
- Wang, H.; Hong, J.; Luo, W.; Chang, J.; Yao, X.; Li, N. Relationship between rs3865418 polymorphism of neural precursor cell expressed developmentally downregulated 4 like gene and obesity in Kazakh general population. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2011, 33, 533–537. [Google Scholar] [Green Version]
- Qi, L.; Heredia, J.E.; Altarejos, J.Y.; Screaton, R.; Goebel, N.; Niessen, S.; Macleod, I.X.; Liew, C.W.; Kulkarni, R.N.; Bain, J.; et al. TRB3 links the E3 ubiquitin ligase COP1 to lipid metabolism. Science 2006, 312, 1763–1766. [Google Scholar] [Green Version]
- Tarpey, P.S.; Raymond, F.L.; O’Meara, S.; Edkins, S.; Teague, J.; Butler, A.; Dicks, E.; Stevens, C.; Tofts, C.; Avis, T.; et al. Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor. Am. J. Hum. Genet 2007, 80, 345–352. [Google Scholar] [Green Version]
- Yang, B.; Kumar, S. Nedd4 and Nedd4–2: Closely related ubiquitin-protein ligases with distinct physiological functions. Cell. Death Differ 2010, 17, 68–77. [Google Scholar] [Green Version]
- Molero, J.C.; Turner, N.; Thien, C.B.; Langdon, W.Y.; James, D.E.; Cooney, G.J. Genetic ablation of the c-Cbl ubiquitin ligase domain results in increased energy expenditure and improved insulin action. Diabetes 2006, 55, 3411–3417. [Google Scholar] [Green Version]
- Zillikens, M.C.; van Meurs, J.B.; Rivadeneira, F.; Amin, N.; Hofman, A.; Oostra, B.A.; Sijbrands, E.J.; Witteman, J.C.; Pols, H.A.; van Duijn, C.M.; et al. SIRT1 genetic variation is related to BMI and risk of obesity. Diabetes 2009, 58, 2828–2834. [Google Scholar] [Green Version]
- Itani, O.A.; Campbell, J.R.; Herrero, J.; Snyder, P.M.; Thomas, C.P. Alternate promoters and variable splicing lead to hNedd4–2 isoforms with a C2 domain and varying number of WW domains. Am. J. Physiol. Renal Physiol 2003, 285, F916–F929. [Google Scholar] [Green Version]
- Dunn, D.M.; Ishigami, T.; Pankow, J.; von Niederhausern, A.; Alder, J.; Hunt, S.C.; Leppert, M.F.; Lalouel, J.M.; Weiss, R.B. Common variant of human NEDD4L activates a cryptic splice site to form a frameshifted transcript. J. Hum. Genet 2002, 47, 665–676. [Google Scholar] [Green Version]
- Kamynina, E.; Tauxe, C.; Staub, O. Distinct characteristics of two human Nedd4 proteins with respect to epithelial Na+ channel regulation. Am. J. Physiol. Renal Physiol 2001, 281, F469–F477. [Google Scholar] [Green Version]
- Fava, C.; von Wowern, F.; Berglund, G.; Carlson, J.; Hedblad, B.; Rosberg, L.; Burri, P.; Almgren, P.; Melander, O. 24-h ambulatory blood pressure is linked to chromosome 18q21–22 and genetic variation of NEDD4L associates with cross-sectional and longitudinal blood pressure in Swedes. Kidney Int 2006, 70, 562–569. [Google Scholar] [Green Version]
- Itani, O.A.; Stokes, J.B.; Thomas, C.P. Nedd4–2 isoforms differentially associate with ENaC and regulate its activity. Am. J. Physiol. Renal Physiol 2005, 289, F334–F346. [Google Scholar] [Green Version]
- Kuratomi, G.; Komuro, A.; Goto, K.; Shinozaki, M.; Miyazawa, K.; Miyazono, K.; Imamura, T. NEDD4–2 (neural precursor cell expressed, developmentally down-regulated 4–2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor. Biochem. J 2005, 386, 461–470. [Google Scholar] [Green Version]
- Narasimhan, S.D.; Yen, K.; Bansal, A.; Kwon, E.S.; Padmanabhan, S.; Tissenbaum, H.A. PDP-1 links the TGF-beta and IIS pathways to regulate longevity, development, and metabolism. PLoS Genet 2011, 7, e1001377. [Google Scholar] [Green Version]
- Hubacek, J.A.; Kuthanova, L.; Bohuslavova, R.; Adamkova, V.; Lanska, V.; Meitinger, T.; Pfeufer, A. INSIG2 promoter variant, obesity markers and lipid parameters—No association in a large Slavonic Caucasian population sample. Folia Biol. (Praha) 2010, 56, 131–134. [Google Scholar] [Green Version]
- Vogel, C.I.; Boes, T.; Reinehr, T.; Roth, C.L.; Scherag, S.; Scherag, A.; Hebebrand, J.; Hinney, A. Common variants near MC4R: Exploring gender effects in overweight and obese children and adolescents participating in a lifestyle intervention. Obes. Facts 2011, 4, 67–75. [Google Scholar] [Green Version]
- Yang, X.X.; He, X.Q.; Li, F.X.; Wu, Y.S.; Gao, Y.; Li, M. Risk-Association of DNA Methyltransferases Polymorphisms with Gastric Cancer in the Southern Chinese Population. Int. J. Mol. Sci 2012, 13, 8364–8378. [Google Scholar] [Green Version]
- Li, F.X.; Yang, X.X.; He, X.Q.; Hu, N.Y.; Wu, Y.S.; Li, M. Association of 10q23 with colorectal cancer in a Chinese population. Mol. Biol. Rep 2012, 39, 9557–9562. [Google Scholar] [Green Version]
- Yang, X.X.; Sun, J.Z.; Li, F.X.; Wu, Y.S.; Du, H.Y.; Zhu, W.; Li, X.H.; Li, M. Aberrant methylation and downregulation of sall3 in human hepatocellular carcinoma. World J. Gastroenterol 2012, 18, 2719–2726. [Google Scholar] [Green Version]
- Gauderman, W.J.; Morrison, J.M. QUANTO 1.1: A computer program for power and sample size calculations for genetic-epidemiology studies. 2009. Available online: http://hydra.usc.edu/gxe/ (accessed on 24 January 2013).
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [Green Version]
- Lewontin, R.C. The interaction of selection and linkage. I. General considerations; Heterotic models. Genetics 1964, 49, 49–67. [Google Scholar] [Green Version]
- Sole, X.; Guino, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [Green Version]
| dbSNP ID | Allele | Present study | HCB a,b | Japanese b | Caucasians b | Blacks b |
|---|---|---|---|---|---|---|
| Rs4149601 | G | 1369 (79.1%) | 80.0% | 87.5% | 63.3% | 63.3% |
| A | 361 (20.9%) | 20.0% | 12.5% | 36.7% | 36.7% | |
| Rs3865418 | C | 1129 (34.7%) | 64.4% | 76.7% | 55.0% | 32.5% |
| T | 615 (35.3%) | 35.6% | 23.3% | 45.0% | 67.5% | |
| Rs2288774 | T | 1071 (61.1%) | 67.8% | 69.3% | 48.3% | 33.3% |
| C | 683 (38.9%) | 32.2% | 30.7% | 51.7% | 66.7% |
| dbSNP ID | Allele major/minor | MAF a | Pb/Pc | |
|---|---|---|---|---|
| Control | Case | |||
| Rs2288774 | T/C | 38.7% | 39.6% | 0.70/NS d |
| Rs3865418 | C/T | 34.3% | 37.6% | 0.18/NS d |
| Rs4149601 | G/A | 23.1% | 15.3% | 0.0002/0.0006 |
| dbSNP ID | Genotype | n (%) | OR (95%CI) a | OR (95%CI) b | Pa/Pb | |
|---|---|---|---|---|---|---|
| Controls | Cases | |||||
| Rs2288774 | TT | 234 (37.4%) | 96 (38.2%) | 1.00 | 1.00 | |
| TC | 300 (47.9%) | 111 (44.2%) | 0.96 (0.71–1.30) | 0.95 (0.70–1.29) | 0.81/0.73 | |
| CC | 92 (14.7%) | 44 (17.5%) | ||||
| Rs3865418 | CC | 266 (42.8%) | 99 (39.4%) | 1.00 | 1.00 | |
| CT | 284 (45.7%) | 115 (45.8%) | 1.15 (0.85–1.55) | 1.14 (0.84–1.55) | 0.36/0.39 | |
| TT | 71 (11.4%) | 37 (14.7%) | ||||
| Rs4149601 | GG | 367 (59.6%) | 185 (74.3%) | 1.00 | 1.00 | |
| GA | 213 (34.6%) | 52 (20.9%) | 0.51 (0.37–0.71) | 0.52 (0.37–0.74) | <0.0001/<0.0001 | |
| AA | 36 (5.8%) | 12 (4.8%) | ||||
| Phenotypes | Genotype | n (%) | Mean ± SD | Estimate a (95%CI) | p-value |
|---|---|---|---|---|---|
| Height, cm | GG | 552 (63.8%) | 161.04 ± 0.40 | −0.50(−1.49 to 0.49) | 0.33 |
| GA | 265 (30.6%) | 161.24 ± 0.54 | |||
| AA | 48 (5.6%) | 161.02 ± 1.58 | |||
| Weight, kg | GG | 552 (63.8%) | 56.35 ± 0.50 | −2.60(−4.01 to −1.19) | 0.0003 |
| GA | 265 (30.6%) | 54.40 ± 0.68 | |||
| AA | 48 (5.6%) | 54.19 ± 1.52 | |||
| Waist, cm | GG | 552 (63.8%) | 81.66 ± 0.47 | −2.78(−4.29 to −1.28) | 0.0015 |
| GA | 265 (30.6%) | 79.17 ± 0.68 | |||
| AA | 48 (5.6%) | 78.81 ± 1.61 | |||
| BMI, kg/m2 | GG | 552 (63.8%) | 23.42 ± 0.19 | −0.97(−1.56 to −0.38) | 0.0012 |
| GA | 265 (30.6%) | 22.51 ± 0.24 | |||
| AA | 48 (5.6%) | 22.48 ± 0.48 | |||
| SBP, mmHg | GG | 552 (63.8%) | 138.20 ± 0.88 | −0.84(−3.67 to 1.99) | 0.56 |
| GA | 265 (30.6%) | 137.20 ± 1.23 | |||
| AA | 48 (5.6%) | 137.02 ± 2.93 | |||
| DBP, mmHg | GG | 552 (63.8%) | 80.99 ± 0.49 | −1.29(−2.80 to 0.23) | 0.097 |
| GA | 265 (30.6%) | 80.10 ± 0.59 | |||
| AA | 48 (5.6%) | 77.48 ± 1.59 | |||
| TG, mmol/L b | GG | 552 (63.8%) | 2.53 ± 0.37 | −0.22(−1.20 to 0.76) | 0.66 |
| GA | 265 (30.6%) | 2.27 ± 0.11 | |||
| AA | 48 (5.6%) | 2.47 ± 0.36 | |||
| TC, mmol/L b | GG | 552 (63.8%) | 5.35 ± 0.05 | 0.14(−0.05 to 0.32) | 0.14 |
| GA | 265 (30.6%) | 5.52 ± 0.09 | |||
| AA | 48 (5.6%) | 5.31 ± 0.23 | |||
| LDL-c, mmol/L b | GG | 552 (63.8%) | 3.12 ± 0.03 | 0.02(−0.09 to 0.13) | 0.75 |
| GA | 265 (30.6%) | 3.12 ± 0.05 | |||
| AA | 48 (5.6%) | 3.23 ± 0.13 | |||
| HDL-c, mmol/L b | GG | 552 (63.8%) | 1.33 ± 0.02 | 0.04(−0.02 to 0.10) | 0.23 |
| GA | 265 (30.6%) | 1.38 ± 0.03 | |||
| AA | 48 (5.6%) | 1.31 ± 0.04 | |||
| Glucose, mmol/L | GG | 552 (63.8%) | 5.75 ± 0.06 | 0.12(−0.08 to 0.33) | 0.24 |
| GA | 265 (30.6%) | 5.80 ± 0.09 | |||
| AA | 48 (5.6%) | 6.26 ± 0.26 |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wang, Y.-L.; Liang, H.-Y.; Gao, Y.-H.; Wu, X.-J.; Chen, X.; Pan, B.-Y.; Yang, X.-X.; Liu, H.-Z. A Functional Variant of NEDD4L Is Associated with Obesity and Related Phenotypes in a Han Population of Southern China. Int. J. Mol. Sci. 2013, 14, 7433-7444. https://doi.org/10.3390/ijms14047433
Wang Y-L, Liang H-Y, Gao Y-H, Wu X-J, Chen X, Pan B-Y, Yang X-X, Liu H-Z. A Functional Variant of NEDD4L Is Associated with Obesity and Related Phenotypes in a Han Population of Southern China. International Journal of Molecular Sciences. 2013; 14(4):7433-7444. https://doi.org/10.3390/ijms14047433
Chicago/Turabian StyleWang, Yu-Lin, Hui-Ying Liang, Yun-He Gao, Xue-Ji Wu, Xi Chen, Bing-Ying Pan, Xue-Xi Yang, and Hua-Zhang Liu. 2013. "A Functional Variant of NEDD4L Is Associated with Obesity and Related Phenotypes in a Han Population of Southern China" International Journal of Molecular Sciences 14, no. 4: 7433-7444. https://doi.org/10.3390/ijms14047433
APA StyleWang, Y.-L., Liang, H.-Y., Gao, Y.-H., Wu, X.-J., Chen, X., Pan, B.-Y., Yang, X.-X., & Liu, H.-Z. (2013). A Functional Variant of NEDD4L Is Associated with Obesity and Related Phenotypes in a Han Population of Southern China. International Journal of Molecular Sciences, 14(4), 7433-7444. https://doi.org/10.3390/ijms14047433
