Environmental Risk Factors for Multiple Sclerosis: A Review with a Focus on Molecular Mechanisms
Abstract
:1. Introduction
2. Epidemiology of MS
3. Genetic Risk
4. Environmental Risk Factors
4.1. Latitude
4.2. Vitamin D
4.2.1. Cellular and Immune Functions
4.2.2. Genomic Effects of Vitamin D
4.2.3. Evidence that Vitamin D Has a Role in MS
4.2.3.1. Epidemiological Evidence
4.2.3.2. Genetic Evidence
4.3. Epstein-Barr Virus
4.3.1. Interactions with Other Environmental and Genetic Factors
4.3.2. Causal Pathways
4.4. Cigarette Smoking
4.4.1. Epidemiological Evidence for Association
4.4.2. Interaction with Other Risk Factors
4.4.3. Smoking and Progression of MS
4.4.4. Causal Pathways
4.4.4.1. Effects on the Immune System
4.4.4.2. Non-Immunological Effects
5. Summary
References
- Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol 2011, 69, 292–302. [Google Scholar]
- Killestein, J.; Rudick, R.A.; Polman, C.H. Oral treatment for multiple sclerosis. Lancet Neurol 2011, 10, 1026–1034. [Google Scholar]
- Warren, S.; Warren, K.G. Prevalence of multiple sclerosis in Barrhead County, Alberta, Canada. Can. J. Neurol. Sci 1992, 19, 72–75. [Google Scholar]
- Wynn, D.R.; Rodriguez, M.; O’Fallon, W.M.; Kurland, L.T. A reappraisal of the epidemiology of multiple sclerosis in Olmsted County, Minnesota. Neurology 1990, 40, 780–786. [Google Scholar]
- Simpson, S., Jr; Blizzard, L.; Otahal, P.; van der Mei, I.; Taylor, B. Latitude is significantly associated with the prevalence of multiple sclerosis: A meta-analysis. J. Neurol. Neurosurg. Psychiatry 2011, 82, 1132–1141. [Google Scholar]
- Compston, A. Genetic epidemiology of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 1997, 62, 553–561. [Google Scholar]
- Beebe, G.W.; Kurtzke, J.F.; Kurland, L.T.; Auth, T.L.; Nagler, B. Studies on the natural history of multiple sclerosis. 3. Epidemiologic analysis of the army experience in World War II. Neurology 1967, 17, 1–17. [Google Scholar]
- Kurtzke, J.F. A reassessment of the distribution of multiple sclerosis. Part one. Acta Neurol. Scand 1975, 51, 110–136. [Google Scholar]
- Visser, E.M.; Wilde, K.; Wilson, J.F.; Yong, K.K.; Counsell, C.E. A new prevalence study of multiple sclerosis in Orkney, Shetland and Aberdeen city. J. Neurol. Neurosurg. Psychiatry 2012, 83, 719–724. [Google Scholar]
- Brain, W. Diseases of the Nervous System, 3rd ed; Oxford Medical Publications: London, UK; p. 1947.
- Barnett, M.H.; Williams, D.B.; Day, S.; Macaskill, P.; McLeod, J.G. Progressive increase in incidence and prevalence of multiple sclerosis in Newcastle, Australia: A 35-year study. J. Neurol. Sci 2003, 213, 1–6. [Google Scholar]
- Celius, E.; Smestad, C. Change in sex ratio, disease course and age at diagnosis in Oslo MS patients through seven decades. Acta Neurol. Scand 2009, 120, 27–29. [Google Scholar]
- Orton, S.M.; Herrera, B.M.; Yee, I.M.; Valdar, W.; Ramagopalan, S.V.; Sadovnick, A.D.; Ebers, G.C. Sex ratio of multiple sclerosis in Canada: A longitudinal study. Lancet Neurol 2006, 5, 932–936. [Google Scholar]
- Koch-Henriksen, N.; Sorensen, P.S. Why does the north-south gradient of incidence of multiple sclerosis seem to have disappeared on the northern hemisphere? J. Neurol. Sci 2011, 311, 58–63. [Google Scholar]
- Koch-Henriksen, N.; Sorensen, P.S. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol 2010, 9, 520–532. [Google Scholar]
- Etemadifar, M.; Maghzi, A.H. Sharp increase in the incidence and prevalence of multiple sclerosis in Isfahan, Iran. Mult. Scler 2011, 17, 1022–1027. [Google Scholar]
- Taylor, B.V.; Lucas, R.M.; Dear, K.; Kilpatrick, T.J.; Pender, M.P.; van der Mei, I.A.; Chapman, C.; Coulthard, A.; Dwyer, T.; McMichael, A.J.; et al. Latitudinal variation in incidence and type of first central nervous system demyelinating events. Mult. Scler 2010, 16, 398–405. [Google Scholar]
- Palacios, N.; Alonso, A.; Bronnum-Hansen, H.; Ascherio, A. Smoking and increased risk of multiple sclerosis: Parallel trends in the sex ratio reinforce the evidence. Ann. Epidemiol 2011, 21, 536–542. [Google Scholar]
- Wallin, M.T.; Culpepper, W.J.; Coffman, P.; Pulaski, S.; Maloni, H.; Mahan, C.M.; Haselkorn, J.K.; Kurtzke, J.F. Veterans Affairs Multiple Sclerosis Centres of Excellence Epidemiology Group. The Gulf War era multiple sclerosis cohort: Age and incidence rates by race, sex and service. Brain 2012, 135, 1778–1785. [Google Scholar]
- Gale, C.R.; Martyn, C.N. Migrant studies in multiple sclerosis. Prog. Neurobiol 1995, 47, 425–448. [Google Scholar]
- Ahlgren, C.; Lycke, J.; Odén, A.; Andersen, O. High risk of MS in Iranian immigrants in Gothenburg, Sweden. Mult. Scler 2010, 16, 1079–1082. [Google Scholar]
- Cabre, P.; Signate, A.; Olindo, S.; Merle, H.; Caparros-Lefebvre, D.; Béra, O.; Smadja, D. Role of return migration in the emergence of multiple sclerosis in the French West Indies. Brain 2005, 128, 2899–2910. [Google Scholar]
- Dean, G.; Elian, M. Age at immigration to England of Asian and Caribbean immigrants and the risk of developing multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 1997, 63, 565–568. [Google Scholar]
- Guimond, C.; Dyment, D.A.; Ramagopalan, S.V.; Giovannoni, G.; Criscuoli, M.; Yee, I.M.; Ebers, G.C.; Sadovnick, A.D. Prevalence of MS in Iranian immigrants to British Columbia, Canada. J. Neurol 2010, 257, 667–668. [Google Scholar]
- Kahana, E.; Alter, M.; Zilbe, N. Environmental factors determine multiple sclerosis risk in migrants to Israel. Mult. Scler 2008, 14(Suppl 1), S69–70. [Google Scholar]
- Wallin, M.T.; Page, W.F.; Kurtzke, J.F. Migration and multiple sclerosis in Alaskan military veterans. J. Neurol 2009, 256, 1413–1417. [Google Scholar]
- McLeod, J.G.; Hammond, S.R.; Kurtzke, J.F. Migration and multiple sclerosis in immigrants to Australia from United Kingdom and Ireland: A reassessment. I. Risk of MS by age at immigration. J. Neurol. 2011, 258, 1140–1149. [Google Scholar]
- Handel, A.E.; Williamson, A.J.; Disanto, G.; Dobson, R.; Giovannoni, G.; Ramagopalan, S.V. Smoking and multiple sclerosis: An updated meta-analysis. PLoS One 2011, 6, e16149. [Google Scholar]
- Handel, A.E.; Williamson, A.J.; Disanto, G.; Handunnetthi, L.; Giovannoni, G.; Ramagopalan, S.V. An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. PLoS One 2010, 5, e12496. [Google Scholar]
- Islam, T.; Gauderman, W.J.; Cozen, W.; Mack, T.M. Childhood sun exposure influences risk of multiple sclerosis in monozygotic twins. Neurology 2007, 69, 381–388. [Google Scholar]
- Van der Mei, I.A.; Ponsonby, A.L.; Dwyer, T.; Blizzard, L.; Simmons, R.; Taylor, B.V.; Butzkueven, H.; Kilpatrick, T. Past exposure to sun, skin phenotype, and risk of multiple sclerosis: Case-control study. Br. Med. J 2003, 327, 316. [Google Scholar]
- Naito, S.; Namerow, N.; Mickey, M.R.; Terasaki, P.I. Multiple sclerosis: Association with HL-A3. Tissue Antigens 1972, 2, 1–4. [Google Scholar]
- Schmidt, H.; Williamson, D.; Ashley-Koch, A. HLA-DR15 haplotype and multiple sclerosis: A HuGE review. Am. J. Epidemiol 2007, 165, 1097–1109. [Google Scholar]
- Marrosu, M.G.; Murru, M.R.; Costa, G.; Cucca, F.; Sotgiu, S.; Rosati, G.; Muntoni, F. Multiple sclerosis in Sardinia is associated and in linkage disequilibrium with HLA-DR3 and -DR4 alleles. Am. J. Hum. Genet 1997, 61, 454–457. [Google Scholar]
- Marrosu, M.G.; Murru, M.R.; Costa, G.; Murru, R.; Muntoni, F.; Cucca, F. DRB1-DQA1-DQB1 loci and multiple sclerosis predisposition in the Sardinian population. Hum. Mol. Genet 1998, 7, 1235–1237. [Google Scholar]
- Haegert, D.G.; Muntoni, F.; Murru, M.R.; Costa, G.; Francis, G.S.; Marrosu, M.G. HLA-DQA1 and -DQB1 associations with multiple sclerosis in Sardinia and French Canada: Evidence for immunogenetically distinct patient groups. Neurology 1993, 43, 548–552. [Google Scholar]
- Hafler, D.A.; Compston, A.; Sawcer, S.; Lander, E.S.; Daly, M.J.; de Jager, P.L.; de Bakker, P.I.; Gabriel, S.B.; Mirel, D.B.; Ivinson, A.J.; et al. Risk alleles for multiple sclerosis identified by a genomewide study. N. Engl. J. Med 2007, 357, 851–862. [Google Scholar]
- Yeo, T.W.; De Jager, P.L.; Gregory, S.G.; Barcellos, L.F.; Walton, A.; Goris, A.; Fenoglio, C.; Ban, M.; Taylor, C.J.; Goodman, R.S.; et al. A second major histocompatibility complex susceptibility locus for multiple sclerosis. Ann. Neurol 2007, 61, 228–236. [Google Scholar]
- International Multiple Sclerosis Genetics Consortium (IMSGC). Refining genetic associations in multiple sclerosis. Lancet Neurol. 2008, 7, 567–569.
- Barcellos, L.F.; Sawcer, S.; Ramsay, P.P.; Baranzini, S.E.; Thomson, G.; Briggs, F.; Cree, B.C.; Begovich, A.B.; Villoslada, P.; Montalban, X.; et al. Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. Hum. Mol. Genet 2006, 15, 2813–2824. [Google Scholar]
- Gregory, S.G.; Schmidt, S.; Seth, P.; Oksenberg, J.R.; Hart, J.; Prokop, A.; Caillier, S.J.; Ban, M.; Goris, A.; Barcellos, L.F.; et al. Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat. Genet 2007, 39, 1083–1091. [Google Scholar]
- De Jager, P.L.; Jia, X.; Wang, J.; de Bakker, P.I.; Ottoboni, L.; Aggarwal, N.T.; Piccio, L.; Raychaudhuri, S.; Tran, D.; Aubin, C.; et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat. Genet 2009, 41, 776–782. [Google Scholar]
- Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene). Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat. Genet. 2009, 41, 824–828.
- Bush, W.S.; Sawcer, S.J.; de Jager, P.L.; Oksenberg, J.R.; McCauley, J.L.; Pericak-Vance, M.A.; Haines, J.L. Evidence for polygenic susceptibility to multiple sclerosis—The shape of things to come. Am. J. Hum. Genet 2010, 86, 621–625. [Google Scholar]
- D’Netto, M.J.; Ward, H.; Morrison, K.M.; Ramagopalan, S.V.; Dyment, D.A.; DeLuca, G.C.; Handunnetthi, L.; Sadovnick, A.D.; Ebers, G.C. Risk alleles for multiple sclerosis in multiplex families. Neurology 2009, 72, 1984–1988. [Google Scholar]
- Gourraud, P.A.; McElroy, J.P.; Caillier, S.J.; Johnson, B.A.; Santaniello, A.; Hauser, S.L.; Oksenberg, J.R. Aggregation of multiple sclerosis genetic risk variants in multiple and single case families. Ann. Neurol 2011, 69, 65–74. [Google Scholar]
- Wang, J.H.; Pappas, D.; de Jager, P.L.; Pelletier, D.; de Bakker, P.I.; Kappos, L.; Polman, C.H.; Chibnik, L.B.; Hafler, D.A.; Matthews, P.M.; et al. Modeling the cumulative genetic risk for multiple sclerosis from genome-wide association data. Genome Med 2011, 3, 3. [Google Scholar]
- Sawcer, S.; Hellenthal, G.; Pirinen, M.; Spencer, C.C.; Patsopoulos, N.A.; Moutsianas, L.; Dilthey, A.; Su, Z.; Freeman, C.; Hunt, S.E.; et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011, 476, 214–219. [Google Scholar] [Green Version]
- Patsopoulos, N.A.; de Bakker, P.I.W. Bayer Pharma MS Genetics Working Group; Steering Committees of Studies Evaluating IFNβ-1b and a CCR1-Antagonist; ANZgene Consortium; GeneMSA; International Multiple Sclerosis Genetics Consortium. Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann. Neurol 2011, 70, 897–912. [Google Scholar]
- Sadovnick, A.D.; Ebers, G.C.; Dyment, D.A.; Risch, N.J. The Canadian Collaborative Study Group. Evidence for genetic basis of multiple sclerosis. Lancet 1996, 347, 1728–1730. [Google Scholar]
- Ebers, G.C.; Sadovnick, A.D.; Dyment, D.A.; Yee, I.M.; Willer, C.J.; Risch, N. Parent-of-origin effect in multiple sclerosis: Observations in half-siblings. Lancet 2004, 363, 1773–1774. [Google Scholar]
- Ebers, G.C.; Sadovnick, A.D.; Risch, N.J. Canadian Collaborative Study Group. A genetic basis for familial aggregation in multiple sclerosis. Nature 1995, 377, 150–151. [Google Scholar]
- Dyment, D.A.; Yee, I.M.; Ebers, G.C.; Sadovnick, A.D. Multiple sclerosis in stepsiblings: Recurrence risk and ascertainment. J. Neurol. Neurosurg. Psychiatry 2006, 77, 258–259. [Google Scholar]
- Islam, T.; Gauderman, W.J.; Cozen, W.; Hamilton, A.S.; Burnett, M.E.; Mack, T.M. Differential twin concordance for multiple sclerosis by latitude of birthplace. Ann. Neurol 2006, 60, 56–64. [Google Scholar]
- O’Gorman, C.; Freeman, S.; Taylor, B.V.; Butzkueven, H.; Broadley, S.A. Familial recurrence risks for multiple sclerosis in Australia. J. Neurol. Neurosurg. Psychiatry 2011, 82, 1351–1354. [Google Scholar]
- O’Gorman, C.; Lin, R.; Stankovich, J.; Broadley, S.A. Modelling genetic susceptibility to multiple sclerosis with family data. Neuroepidemiology 2012. [Google Scholar] [CrossRef]
- Risch, N. Assessing the role of HLA-linked and unlinked determinants of disease. Am. J. Hum. Genet 1987, 40, 1–14. [Google Scholar]
- Vukusic, S.; Van Bockstael, V.; Gosselin, S.; Confavreux, C. Regional variations in the prevalence of multiple sclerosis in French farmers. J. Neurol. Neurosurg. Psychiatry 2007, 78, 707–709. [Google Scholar]
- Kurtzke, J.F. Some contributions of the Department of Veterans Affairs to the epidemiology of multiple sclerosis. Mult. Scler 2008, 14, 1007–1012. [Google Scholar]
- Kurtzke, J.F.; Beebe, G.W.; Norman, J.E., Jr. Epidemiology of multiple sclerosis in U.S. Veterans: 1. Race, sex, and geographic distribution. Neurology 1979, 29, 1228–1235. [Google Scholar]
- Hammond, S.R.; McLeod, J.G.; Millingen, K.S.; Stewart-Wynne, E.G.; English, D.; Holland, J.T.; McCall, M.G. The epidemiology of multiple sclerosis in three Australian cities: Perth, Newcastle and Hobart. Brain 1988, 111 Pt 1, 1–25. [Google Scholar]
- Taylor, B.V.; Pearson, J.F.; Clarke, G.; Mason, D.F.; Abernethy, D.A.; Willoughby, E.; Sabel, C. MS prevalence in New Zealand, an ethnically and latitudinally diverse country. Mult. Scler 2010, 16, 1422–1431. [Google Scholar]
- Kuroiwa, Y.; Shibasaki, H.; Ikeda, M. Prevalence of multiple sclerosis and its north-to-south gradient in Japan. Neuroepidemiology 1983, 2, 62–69. [Google Scholar]
- Poppe, A.Y.; Wolfson, C.; Zhu, B. Prevalence of multiple sclerosis in Canada: A systematic review. Can. J. Neurol. Sci 2008, 35, 593–601. [Google Scholar]
- Melcon, M.O.; Gold, L.; Carra, A.; Caceres, F.; Correale, J.; Cristiano, E.; Fernandez Liguori, N.; Garcea, O.; Luetic, G.; Kremenchutzky, M. Argentine Patagonia: Prevalence and clinical features of multiple sclerosis. Mult. Scler 2008, 14, 656–662. [Google Scholar]
- Gronlie, S.A.; Myrvoll, E.; Hansen, G.; Gronning, M.; Mellgren, S.I. Multiple sclerosis in North Norway, and first appearance in an indigenous population. J. Neurol 2000, 247, 129–133. [Google Scholar]
- Rosati, G. Descriptive epidemiology of multiple sclerosis in Europe in the 1980s: A critical overview. Ann. Neurol 1994, 36(Suppl 2), S164–174. [Google Scholar]
- Rosati, G. The prevalence of multiple sclerosis in the world: An update. Neurol. Sci 2001, 22, 117–139. [Google Scholar]
- Marrosu, M.G.; Lai, M.; Cocco, E.; Loi, V.; Spinicci, G.; Pischedda, M.P.; Massole, S.; Marrosu, G.; Contu, P. Genetic factors and the founder effect explain familial MS in Sardinia. Neurology 2002, 58, 283–288. [Google Scholar]
- Grant, W.B.; Mascitelli, L. Evidence that the north-south gradient of multiple sclerosis may not have disappeared. J. Neurol. Sci 2012, 315, 178–179. [Google Scholar]
- Swank, R.L.; Lerstad, O.; Strom, A.; Backer, J. Multiple sclerosis in rural Norway its geographic and occupational incidence in relation to nutrition. N. Engl. J. Med 1952, 246, 722–728. [Google Scholar]
- Westlund, K. Distribution and mortality time trend of multiple sclerosis and some other diseases in Norway. Acta Neurol. Scand 1970, 46, 455–483. [Google Scholar]
- Goldberg, P. Multiple sclerosis: Vitamin D and calcium as environmental determinants of prevalence (a viewpoint). Part 1: Sunlight, dietary factors and epidemiology. Int. J. Environ. Stud 1974, 6, 19–27. [Google Scholar]
- Kampman, M.T.; Brustad, M. Vitamin D: A candidate for the environmental effect in multiple sclerosis - observations from Norway. Neuroepidemiology 2008, 30, 140–146. [Google Scholar]
- Kampman, M.T.; Wilsgaard, T.; Mellgren, S.I. Outdoor activities and diet in childhood and adolescence relate to MS risk above the Arctic Circle. J. Neurol 2007, 254, 471–477. [Google Scholar]
- Brustad, M.; Edvardsen, K.; Wilsgaard, T.; Engelsen, O.; Aksnes, L.; Lund, E. Seasonality of UV-radiation and vitamin D status at 69 degrees north. Photochem. Photobiol. Sci 2007, 6, 903–908. [Google Scholar]
- Davenport, C. Multiple sclerosis: From the standpoint of geographic distribution and race. Arch. Neurol. Psychiatry 1922, 8, 51–58. [Google Scholar]
- Acheson, E.D.; Bachrach, C.A.; Wright, F.M. Some comments on the relationship of the distribution of multiple sclerosis to latitude, solar radiation, and other variables. Acta Psychiatr. Scand. Suppl 1960, 35, 132–147. [Google Scholar]
- Holick, M.F. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am. J. Clin. Nutr 2004, 80, 1678S–1688S. [Google Scholar]
- Ganji, V.; Zhang, X.; Tangpricha, V. Serum 25-hydroxyvitamin D concentrations and prevalence estimates of hypovitaminosis D in the U.S. population based on assay-adjusted data. J. Nutr 2012, 142, 498–507. [Google Scholar]
- Daly, R.M.; Gagnon, C.; Lu, Z.X.; Magliano, D.J.; Dunstan, D.W.; Sikaris, K.A.; Zimmet, P.Z.; Ebeling, P.R.; Shaw, J.E. Prevalence of vitamin D deficiency and its determinants in Australian adults aged 25 years and older: A national, population-based study. Clin. Endocrinol. (Oxf) 2012, 77, 26–35. [Google Scholar]
- Lucas, R.M.; Ponsonby, A.L.; Dear, K.; Valery, P.C.; Pender, M.P.; Taylor, B.V.; Kilpatrick, T.J.; Dwyer, T.; Coulthard, A.; Chapman, C.; et al. Sun exposure and vitamin D are independent risk factors for CNS demyelination. Neurology 2011, 76, 540–548. [Google Scholar]
- Rajakumar, K. Vitamin D, Cod Liver Oil, Sunlight and Rickets. Pediatrics 2003, 112, e132–e135. [Google Scholar]
- Norman, A. Vitamin D receptor (VDR): New assignment for an already busy receptor. Endocrinology 2006, 147, 5542–5548. [Google Scholar]
- Wang, T.T.; Tavera-Mendoza, L.E.; Laperriere, D.; Libby, E.; MacLeod, N.B.; Nagai, Y.; Bourdeau, V.; Konstorum, A.; Lallemant, B.; Zhang, R.; et al. Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol. Endocrinol 2005, 19, 2685–2695. [Google Scholar]
- Lehmann, B. The vitamin D3 pathway in human skin and its role for regulation of biological processes. Photochem. Photobiol 2005, 81, 1246–1251. [Google Scholar]
- Armas, L.A.G.; Hollis, B.W.; Heaney, R.P. Vitamin D2 is much less effective than vitamin D3 in humans. J. Clin. Endocrinol. Metab 2004, 89, 5387–5391. [Google Scholar]
- DeLuca, H.F. Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr 2004, 80, 1689S–1696S. [Google Scholar]
- Garcion, E.; Wion-Barbot, N.; Montero-Menei, C.N.; Berger, F.; Wion, D. New clues about vitamin D functions in the nervous system. Trends Endocrinol. Metab 2002, 13, 100–105. [Google Scholar]
- Adams, J.S.; Hewison, M. Unexpected actions of vitamin D: New perspectives on the regulation of innate and adaptive immunity. Nat. Clin. Pract. Endocrinol. Metab 2008, 4, 80–90. [Google Scholar]
- Smolders, J.; Damoiseaux, J.; Menheere, P.; Hupperts, R. Vitamin D as an immune modulator in multiple sclerosis, a review. J. Neuroimmunol 2008, 194, 7–17. [Google Scholar]
- Campbell, F.C.; Xu, H.; El-Tanani, M.; Crowe, P.; Bingham, V. The yin and yang of vitamin D receptor (VDR) signaling in neoplastic progression: Operational networks and tissue-specific growth control. Biochem. Pharmacol 2010, 79, 1–9. [Google Scholar]
- Le Mellay, V.; Grosse, B.; Lieberherr, M. Phospholipase C beta and membrane action of calcitriol and estradiol. J. Biol. Chem 1997, 272, 11902–11907. [Google Scholar]
- Wali, R.K.; Kong, J.; Sitrin, M.D.; Bissonnette, M.; Li, Y.C. Vitamin D receptor is not required for the rapid actions of 1,25-dihydroxyvitamin D3 to increase intracellular calcium and activate protein kinase C in mouse osteoblasts. J. Cell. Biochem 2003, 88, 794–801. [Google Scholar]
- Farach-Carson, M.C.; Ridall, A.L. Dual 1,25-dihydroxyvitamin D3 signal response pathways in osteoblasts: Cross-talk between genomic and membrane-initiated pathways. Am. J. Kidney Dis 1998, 31, 729–742. [Google Scholar]
- Kamen, D.L.; Tangpricha, V. Vitamin D and molecular actions on the immune system: Modulation of innate and autoimmunity. J. Mol. Med 2010, 88, 441–450. [Google Scholar]
- May, E.; Asadullah, K.; Zugel, U. Immunoregulation through 1,25-dihydroxyvitamin D3 and its analogs. Curr. Drug Targets Inflamm. Allergy 2004, 3, 377–393. [Google Scholar]
- Lefebvre d’Hellencourt, C.; Montero-Menei, C.N.; Bernard, R.; Couez, D. Vitamin D3 inhibits proinflammatory cytokines and nitric oxide production by the EOC13 microglial cell line. J. Neurosci. Res 2003, 71, 575–582. [Google Scholar]
- Tenenhouse, A.; Warner, M.; Commissiong, J.W. Neurotransmitters in the CNS of the vitamin D deficient, hypocalcemic rat. Neurochem. Int 1991, 18, 249–255. [Google Scholar]
- Goudarzvand, M.; Javan, M.; Mirnajafi-Zadeh, J.; Mozafari, S.; Tiraihi, T. Vitamins E and D3 attenuate demyelination and potentiate remyelination processes of hippocampal formation of rats following local injection of ethidium bromide. Cell. Mol. Neurobiol 2010, 30, 289–299. [Google Scholar]
- Toell, A.; Polly, P.; Carlberg, C. All natural DR3-type vitamin D response elements show a similar functionality in vitro. Biochem. J. 2000, 352 Pt 2, 301–309. [Google Scholar]
- Kim, S.; Shevde, N.K.; Pike, J.W. 1,25-Dihydroxyvitamin D3 stimulates cyclic vitamin D receptor/retinoid X receptor DNA-binding, co-activator recruitment, and histone acetylation in intact osteoblasts. J. Bone Miner. Res 2005, 20, 305–317. [Google Scholar]
- Torchia, J.; Glass, C.; Rosenfeld, M.G. Co-activators and co-repressors in the integration of transcriptional responses. Curr. Opin. Cell Biol 1998, 10, 373–383. [Google Scholar]
- Freedman, L.P. Increasing the complexity of coactivation in nuclear receptor signaling. Cell 1999, 97, 5–8. [Google Scholar]
- Ahn, J.; Yu, K.; Stolzenberg-Solomon, R.; Simon, K.C.; McCullough, M.L.; Gallicchio, L.; Jacobs, E.J.; Ascherio, A.; Helzlsouer, K.; Jacobs, K.B.; et al. Genome-wide association study of circulating vitamin D levels. Hum. Mol. Genet 2010, 19, 2739–2745. [Google Scholar]
- Wang, T.J.; Zhang, F.; Richards, J.B.; Kestenbaum, B.; van Meurs, J.B.; Berry, D.; Kiel, D.P.; Streeten, E.A.; Ohlsson, C.; Koller, D.L.; et al. Common genetic determinants of vitamin D insufficiency: A genome-wide association study. Lancet 2010, 376, 180–188. [Google Scholar]
- Bikle, D.D.; Oda, Y.; Xie, Z. Vitamin D and skin cancer: A problem in gene regulation. J. Steroid Biochem. Mol. Biol 2005, 97, 83–91. [Google Scholar]
- Swami, S.; Raghavachari, N.; Muller, U.R.; Bao, Y.P.; Feldman, D. Vitamin D growth inhibition of breast cancer cells: Gene expression patterns assessed by cDNA microarray. Breast Cancer Res. Treat 2003, 80, 49–62. [Google Scholar]
- Matilainen, J.M.; Husso, T.; Toropainen, S.; Seuter, S.; Turunen, M.P.; Gynther, P.; Yla-Herttuala, S.; Carlberg, C.; Vaisanen, S. Primary effect of 1alpha,25(OH)D on IL-10 expression in monocytes is short-term down-regulation. Biochim. Biophys. Acta 2010, 1803, 1276–1286. [Google Scholar]
- Ramagopalan, S.V.; Maugeri, N.J.; Handunnetthi, L.; Lincoln, M.R.; Orton, S.M.; Dyment, D.A.; Deluca, G.C.; Herrera, B.M.; Chao, M.J.; Sadovnick, A.D.; et al. Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1*1501 is regulated by vitamin D. PLoS Genet 2009, 5, e1000369. [Google Scholar]
- Munger, K.L.; Zhang, S.M.; O’Reilly, E.; Hernan, M.A.; Olek, M.J.; Willett, W.C.; Ascherio, A. Vitamin D intake and incidence of multiple sclerosis. Neurology 2004, 62, 60–65. [Google Scholar]
- Munger, K.L.; Levin, L.I.; Hollis, B.W.; Howard, N.S.; Ascherio, A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. J. Am. Med. Assoc 2006, 296, 2832–2838. [Google Scholar]
- Nieves, J.; Cosman, F.; Herbert, J.; Shen, V.; Lindsay, R. High prevalence of vitamin D deficiency and reduced bone mass in multiple sclerosis. Neurology 1994, 44, 1687–1692. [Google Scholar]
- Cosman, F.; Nieves, J.; Komar, L.; Ferrer, G.; Herbert, J.; Formica, C.; Shen, V.; Lindsay, R. Fracture history and bone loss in patients with MS. Neurology 1998, 51, 1161–1165. [Google Scholar]
- Soilu-Hanninen, M.; Airas, L.; Mononen, I.; Heikkila, A.; Viljanen, M.; Hanninen, A. 25-Hydroxyvitamin D levels in serum at the onset of multiple sclerosis. Mult. Scler 2005, 11, 266–271. [Google Scholar]
- Ozgocmen, S.; Bulut, S.; Ilhan, N.; Gulkesen, A.; Ardicoglu, O.; Ozkan, Y. Vitamin D deficiency and reduced bone mineral density in multiple sclerosis: Effect of ambulatory status and functional capacity. J. Bone Miner. Metab 2005, 23, 309–313. [Google Scholar]
- Van der Mei, I.A.; Ponsonby, A.L.; Dwyer, T.; Blizzard, L.; Taylor, B.V.; Kilpatrick, T.; Butzkueven, H.; McMichael, A.J. Vitamin D levels in people with multiple sclerosis and community controls in Tasmania, Australia. J. Neurol 2007, 254, 581–590. [Google Scholar]
- Simpson, S., Jr; Taylor, B.; Blizzard, L.; Ponsonby, A.L.; Pittas, F.; Tremlett, H.; Dwyer, T.; Gies, P.; van der Mei, I. Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis. Ann. Neurol. 2010, 68, 193–203. [Google Scholar]
- Mowry, E.M.; Krupp, L.B.; Milazzo, M.; Chabas, D.; Strober, J.B.; Belman, A.L.; McDonald, J.C.; Oksenberg, J.R.; Bacchetti, P.; Waubant, E. Vitamin D status is associated with relapse rate in pediatric-onset multiple sclerosis. Ann. Neurol 2010, 67, 618–624. [Google Scholar]
- Mowry, E.M.; Waubaunt, E. Vitamin D status predicts new brain MRI activity in multiple sclerosis. Ann. Neurol 2012. [Google Scholar] [CrossRef]
- Runia, T.F.; Hop, W.C.; de Rijke, Y.B.; Buljevac, D.; Hintzen, R.Q. Lower serum vitamin D levels are associated with a higher relapse risk in multiple sclerosis. Neurology 2012, 79, 261–266. [Google Scholar]
- ANZgene. Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat. Genet. 2009, 41, 824–828.
- Sundqvist, E.; Baarnhielm, M.; Alfredsson, L.; Hillert, J.; Olsson, T.; Kockum, I. Confirmation of association between multiple sclerosis and CYP27B1. Eur. J. Hum. Genet 2010, 18, 1349–1352. [Google Scholar]
- Steckley, J.L.; Dyment, D.A.; Sadovnick, A.D.; Risch, N.; Hayes, C.; Ebers, G.C. Canadian Collaborative Study Group. Genetic analysis of vitamin D related genes in Canadian multiple sclerosis patients. Neurology 2000, 54, 729–732. [Google Scholar]
- Simon, K.C.; Munger, K.L.; Xing, Y.; Ascherio, A. Polymorphisms in vitamin D metabolism related genes and risk of multiple sclerosis. Mult. Scler 2010, 16, 133–138. [Google Scholar]
- Tajouri, L.; Ovcaric, M.; Curtain, R.; Johnson, M.P.; Griffiths, L.R.; Csurhes, P.; Pender, M.P.; Lea, R.A. Variation in the vitamin D receptor gene is associated with multiple sclerosis in an Australian population. J. Neurogenet 2005, 19, 25–38. [Google Scholar]
- Partridge, J.M.; Weatherby, S.J.; Woolmore, J.A.; Highland, D.J.; Fryer, A.A.; Mann, C.L.; Boggild, M.D.; Ollier, W.E.; Strange, R.C.; Hawkins, C.P. Susceptibility and outcome in MS: Associations with polymorphisms in pigmentation-related genes. Neurology 2004, 62, 2323–2325. [Google Scholar]
- Mamutse, G.; Woolmore, J.; Pye, E.; Partridge, J.; Boggild, M.; Young, C.; Fryer, A.; Hoban, P.R.; Rukin, N.; Alldersea, J.; Strange, R.C.; Hawkins, C.P. Vitamin D receptor gene polymorphism is associated with reduced disability in multiple sclerosis. Mult. Scler 2008, 14, 1280–1283. [Google Scholar]
- Dickinson, J.; Perera, D.; van der Mei, A.; Ponsonby, A.L.; Polanowski, A.; Thomson, R.; Taylor, B.; McKay, J.; Stankovich, J.; Dwyer, T. Past environmental sun exposure and risk of multiple sclerosis: A role for the Cdx-2 Vitamin D receptor variant in this interaction. Mult. Scler 2009, 15, 563–570. [Google Scholar]
- Smolders, J.; Damoiseaux, J.; Menheere, P.; Tervaert, J.W.; Hupperts, R. Association study on two vitamin D receptor gene polymorphisms and vitamin D metabolites in multiple sclerosis. Ann. N. Y. Acad. Sci 2009, 1173, 515–520. [Google Scholar]
- Fukazawa, T.; Yabe, I.; Kikuchi, S.; Sasaki, H.; Hamada, T.; Miyasaka, K.; Tashiro, K. Association of vitamin D receptor gene polymorphism with multiple sclerosis in Japanese. J. Neurol. Sci 1999, 166, 47–52. [Google Scholar]
- Niino, M.; Fukazawa, T.; Yabe, I.; Kikuchi, S.; Sasaki, H.; Tashiro, K. Vitamin D receptor gene polymorphism in multiple sclerosis and the association with HLA class II alleles. J. Neurol. Sci 2000, 177, 65–71. [Google Scholar]
- Ramagopalan, S.V.; Heger, A.; Berlanga, A.J.; Maugeri, N.J.; Lincoln, M.R.; Burrell, A.; Handunnetthi, L.; Handel, A.E.; Disanto, G.; Orton, S.M.; et al. A ChIP-seq defined genome-wide map of vitamin D receptor binding: Associations with disease and evolution. Genome Res 2010, 20, 1352–1360. [Google Scholar]
- Disanto, G.; Sandve, G.K.; Berlanga-Taylor, A.J.; Ragnedda, G.; Morahan, J.M.; Watson, C.T.; Giovannoni, G.; Ebers, G.C.; Ramagopalan, S.V. Vitamin D receptor binding, chromatin states and association with multiple sclerosis. Hum. Mol. Genet 2012, 21, 3575–3586. [Google Scholar]
- Ramagopalan, S.V.; Dyment, D.A.; Cader, M.Z.; Morrison, K.M.; Disanto, G.; Morahan, J.M.; Berlanga-Taylor, A.J.; Handel, A.; De Luca, G.C.; Sadovnick, A.D.; et al. Rare variants in the CYP27B1 gene are associated with multiple sclerosis. Ann. Neurol 2011, 70, 881–886. [Google Scholar]
- Torkildsen, O.; Knappskog, P.M.; Nyland, H.I.; Myhr, K.M. Vitamin D-dependent rickets as a possible risk factor for multiple sclerosis. Arch. Neurol 2008, 65, 809–811. [Google Scholar]
- Pancharoen, C.; Mekmullica, J.; Chinratanapisit, S.; Bhattarakosol, P.; Thisyakorn, U. Seroprevalence of Epstein-Barr virus antibody among children in various age groups in Bangkok, Thailand. Asian Pac. J. Allergy Immunol 2001, 19, 135–137. [Google Scholar]
- Takeuchi, K.; Tanaka-Taya, K.; Kazuyama, Y.; Ito, Y.M.; Hashimoto, S.; Fukayama, M.; Mori, S. Prevalence of Epstein-Barr virus in Japan: Trends and future prediction. Pathol. Int 2006, 56, 112–116. [Google Scholar]
- Haahr, S.; Koch-Henriksen, N.; Møller-Larsen, A.; Eriksen, L.S.; Andersen, H.M. Increased risk of multiple sclerosis after late Epstein-Barr virus infection: A historical prospective study. Mult. Scler 1995, 1, 73–77. [Google Scholar]
- Haahr, S.; Plesner, A.M.; Vestergaard, B.F.; Höllsberg, P. A role of late Epstein-Barr virus infection in multiple sclerosis. Acta Neurol. Scand 2004, 109, 270–275. [Google Scholar]
- Lucas, R.M.; Hughes, A.M.; Lay, M.L.; Ponsonby, A.L.; Dwyer, D.E.; Taylor, B.V.; Pender, M.P. Epstein-Barr virus and multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2011, 82, 1142–1148. [Google Scholar]
- Melbye, M.; Ebbesen, P.; Bennike, T. Infectious mononucleosis in Greenland: A disease of the non-indigenous population. Scand. J. Infect. Dis 1984, 16, 9–15. [Google Scholar]
- Niederman, J.C.; Evans, A.S.; Subrahmanyan, L.; McCollum, R.W. Prevalence, incidence and persistence of EB virus antibody in young adults. N. Engl. J. Med 1970, 282, 361–365. [Google Scholar]
- Houzen, H.; Niino, M.; Hata, D.; Nakano, F.; Kikuchi, S.; Fukazawa, T.; Sasaki, H. Increasing prevalence and incidence of multiple sclerosis in northern Japan. Mult. Scler 2008, 14, 887–892. [Google Scholar]
- Ascherio, A.; Munch, M. Epstein-Barr virus and multiple sclerosis. Epidemiology 2000, 11, 220–224. [Google Scholar]
- Pakpoor, J.; Disanto, G.; Gerber, J.E.; Dobson, R.; Meier, U.C.; Giovannoni, G.; Ramagopalan, S.V. The risk of developing multiple sclerosis in individuals seronegative for Epstein-Barr virus: A meta-analysis. Mult. Scler 2012. [Google Scholar] [CrossRef]
- Sundqvist, E.; Sundström, P.; Lindén, M.; Hedström, A.K.; Aloisi, F.; Hillert, J.; Kockum, I.; Alfredsson, L.; Olsson, T. Epstein-Barr virus and multiple sclerosis: Interaction with HLA. Genes Immun 2012, 13, 14–20. [Google Scholar]
- Levin, L.I.; Munger, K.L.; Rubertone, M.V.; Peck, C.A.; Lennette, E.T.; Spiegelman, D.; Ascherio, A. Temporal relationship between elevation of Epstein-Barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. J. Am. Med. Assoc 2005, 293, 2496–2500. [Google Scholar]
- Ascherio, A.; Munger, K.L.; Lennette, E.T.; Spiegelman, D.; Hernan, M.A.; Olek, M.J.; Hankinson, S.E.; Hunter, D.J. Epstein-Barr virus antibodies and risk of multiple sclerosis: A prospective study. J. Am. Med. Assoc 2001, 286, 3083–3088. [Google Scholar]
- DeLorenze, G.N.; Munger, K.L.; Lennette, E.T.; Orentreich, N.; Vogelman, J.H.; Ascherio, A. Epstein-Barr virus and multiple sclerosis: Evidence of association from a prospective study with long-term follow-up. Arch. Neurol 2006, 63, 839–844. [Google Scholar]
- Sundstrom, P.; Juto, P.; Wadell, G.; Hallmans, G.; Svenningsson, A.; Nystrom, L.; Dillner, J.; Forsgren, L. An altered immune response to Epstein-Barr virus in multiple sclerosis: A prospective study. Neurology 2004, 62, 2277–2282. [Google Scholar]
- Levin, L.I.; Munger, K.L.; O’Reilly, E.J.; Falk, K.I.; Ascherio, A. Primary infection with the Epstein-Barr virus and risk of multiple sclerosis. Ann. Neurol 2010, 67, 824–830. [Google Scholar]
- Simon, K.C.; van der Mei, I.A.; Munger, K.L.; Ponsonby, A.; Dickinson, J.; Dwyer, T.; Sundstrom, P.; Ascherio, A. Combined effects of smoking, anti-EBNA antibodies, and HLA-DRB1*1501 on multiple sclerosis risk. Neurology 2010, 74, 1365–1371. [Google Scholar]
- Sundqvist, E.; Sundström, P.; Lindén, M.; Hedström, A.K.; Aloisi, F.; Hillert, J.; Kockum, I.; Alfredsson, L.; Olsson, T. Lack of replication of interaction between EBNA1 IgG and smoking in risk for multiple sclerosis. Neurology 2012. [Google Scholar] [CrossRef]
- Riise, T.; Pugliatti, M.; Casetta, I.; Drulovic, J.; Granieri, E.; Holmoy, T.; Kampman, M.; Landtblom, A.; Lauer, K.; Myhr, K.; et al. Negative Interaction between Smoking and Infectious Mononucleosis in the Risk of MS. Proceeding of 5th Joint Triennial Congress of the European and Americas Committees for Treatment and Research in Multiple Sclerosis, Amsterdam, The Netherlands, 19–22 October 2011.
- Lucas, R.M.; Ponsonby, A.L.; Dear, K.; Valery, P.; Pender, M.P.; Burrows, J.M.; Burrows, S.R.; Chapman, C.; Coulthard, A.; Dwyer, D.E.; et al. Current and past Epstein-Barr virus infection in risk of initial CNS demyelination. Neurology 2011, 77, 371–379. [Google Scholar]
- Milo, R.; Kahana, E. Multiple sclerosis: Geoepidemiology, genetics and the environment. Autoimmun. Rev 2010, 9, A387–A394. [Google Scholar]
- Hollsberg, P.; Hansen, H.J.; Haahr, S. Altered CD8+ T cell responses to selected Epstein-Barr virus immunodominant epitopes in patients with multiple sclerosis. Clin. Exp. Immunol 2003, 132, 137–143. [Google Scholar]
- Lunemann, J.D.; Kamradt, T.; Martin, R.; Munz, C. Epstein-barr virus: Environmental trigger of multiple sclerosis? J. Virol 2007, 81, 6777–6784. [Google Scholar]
- Tai, A.K.; O’Reilly, E.J.; Alroy, K.A.; Simon, K.C.; Munger, K.L.; Huber, B.T.; Ascherio, A. Human endogenous retrovirus-K18 Env as a risk factor in multiple sclerosis. Mult. Scler 2008, 14, 1175–1180. [Google Scholar]
- Santon, A.; Cristobal, E.; Aparicio, M.; Royuela, A.; Villar, L.M.; Alvarez-Cermeno, J.C. High frequency of co-infection by Epstein-Barr virus types 1 and 2 in patients with multiple sclerosis. Mult. Scler 2011, 17, 1295–1300. [Google Scholar]
- De Jager, P.L.; Simon, K.C.; Munger, K.L.; Rioux, J.D.; Hafler, D.A.; Ascherio, A. Integrating risk factors: HLA-DRB1*1501 and Epstein-Barr virus in multiple sclerosis. Neurology 2008, 70, 1113–1118. [Google Scholar]
- Sundstrom, P.; Nystrom, L.; Jidell, E.; Hallmans, G. EBNA-1 reactivity and HLA DRB1*1501 as statistically independent risk factors for multiple sclerosis: A case-control study. Mult. Scler 2008, 14, 1120–1122. [Google Scholar]
- Lunemann, J.D.; Edwards, N.; Muraro, P.A.; Hayashi, S.; Cohen, J.I.; Munz, C.; Martin, R. Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain 2006, 129, 1493–1506. [Google Scholar]
- Lindsey, J.W.; Hatfield, L.M.; Crawford, M.P.; Patel, S. Quantitative PCR for Epstein-Barr virus DNA and RNA in multiple sclerosis. Mult. Scler 2009, 15, 153–158. [Google Scholar]
- Santiago, O.; Gutierrez, J.; Sorlozano, A.; de Dios Luna, J.; Villegas, E.; Fernandez, O. Relation between Epstein-Barr virus and multiple sclerosis: Analytic study of scientific production. Eur. J. Clin. Microbiol. Infect. Dis 2010, 29, 857–866. [Google Scholar]
- Lunemann, J.D.; Tintore, M.; Messmer, B.; Strowig, T.; Rovira, A.; Perkal, H.; Caballero, E.; Munz, C.; Montalban, X.; Comabella, M. Elevated Epstein-Barr virus-encoded nuclear antigen-1 immune responses predict conversion to multiple sclerosis. Ann. Neurol 2010, 67, 159–169. [Google Scholar]
- Strachan, D.P. Hay fever, hygiene, and household size. Br. Med. J 1989, 299, 1259–1260. [Google Scholar]
- Poskanzer, D.C.; Schapira, K.; Miller, H. Multiple Sclerosis and Poliomyelitis. Lancet 1963, 2, 917–921. [Google Scholar]
- Ascherio, A.; Munger, K.L. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: Epstein-Barr virus and multiple sclerosis: Epidemiological evidence. Clin. Exp. Immunol 2010, 160, 120–124. [Google Scholar]
- Saito, H. Essentials for starting a pediatric clinical study (2): Role of environment and immunity in the development of childhood allergic and immunologic disorders. J. Toxicol. Sci 2009, 34(Suppl 2), SP313–319. [Google Scholar]
- Steinman, L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat. Med 2007, 13, 139–145. [Google Scholar]
- Baecher-Allan, C.; Hafler, D.A. Human regulatory T cells and their role in autoimmune disease. Immunol. Rev 2006, 212, 203–216. [Google Scholar]
- Lunemann, J.D.; Huppke, P.; Roberts, S.; Bruck, W.; Gartner, J.; Munz, C. Broadened and elevated humoral immune response to EBNA1 in pediatric multiple sclerosis. Neurology 2008, 71, 1033–1035. [Google Scholar]
- Lunemann, J.D.; Jelcic, I.; Roberts, S.; Lutterotti, A.; Tackenberg, B.; Martin, R.; Munz, C. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J. Exp. Med 2008, 205, 1763–1773. [Google Scholar]
- Heinlen, L.; McClain, M.; Gross, T.; Anderson, J.; Pachner, A.; Harley, J.; James, J.A. Multiple sclerosis patients make antibodies against a unique sequence of EBNA-1 that cross reacts with myelin basic protein. Mult. Scler. J 2009, 15, 1389. [Google Scholar]
- James, J.A.; Anderson, J.; Chabas, D.; Strober, J.; Waubant, E. Pediatric-onset multiple sclerosis patients sera recognize unique regions of Epstein-Barr nuclear antigen 1. Mult. Scler. J 2009, 15, 1406. [Google Scholar]
- Sundstrom, P.; Nystrom, M.; Ruuth, K.; Lundgren, E. Antibodies to specific EBNA-1 domains and HLA DRB1*1501 interact as risk factors for multiple sclerosis. J. Neuroimmunol 2009, 215, 102–107. [Google Scholar]
- Serafini, B.; Rosicarelli, B.; Franciotta, D.; Magliozzi, R.; Reynolds, R.; Cinque, P.; Andreoni, L.; Trivedi, P.; Salvetti, M.; Faggioni, A.; et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J. Exp. Med 2007, 204, 2899–2912. [Google Scholar]
- Serafini, B.; Severa, M.; Columba-Cabezas, S.; Rosicarelli, B.; Veroni, C.; Chiappetta, G.; Magliozzi, R.; Reynolds, R.; Coccia, E.M.; Aloisi, F. Epstein-Barr virus latent infection and BAFF expression in B cells in the multiple sclerosis brain: Implications for viral persistence and intrathecal B-cell activation. J. Neuropathol. Exp. Neurol 2010, 69, 677–693. [Google Scholar]
- Peferoen, L.A.; Lamers, F.; Lodder, L.N.; Gerritsen, W.H.; Huitinga, I.; Melief, J.; Giovannoni, G.; Meier, U.; Hintzen, R.Q.; Verjans, G.M.; et al. Epstein Barr virus is not a characteristic feature in the central nervous system in established multiple sclerosis. Brain 2010, 133, e137. [Google Scholar]
- Willis, S.N.; Stadelmann, C.; Rodig, S.J.; Caron, T.; Gattenloehner, S.; Mallozzi, S.S.; Roughan, J.E.; Almendinger, S.E.; Blewett, M.M.; Bruck, W.; et al. Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain 2009, 132, 3318–3328. [Google Scholar]
- Lassmann, H.; Niedobitek, G.; Aloisi, F.; Middeldorp, J.M. NeuroproMiSe EBV Working Group. Epstein-Barr virus in the multiple sclerosis brain: A controversial issue—Report on a focused workshop held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain 2011, 134 Pt 9, 2772–2786. [Google Scholar]
- Pender, M.P.; Csurhes, P.A.; Lenarczyk, A.; Pfluger, C.M.; Burrows, S.R. Decreased T cell reactivity to Epstein-Barr virus infected lymphoblastoid cell lines in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2009, 80, 498–505. [Google Scholar]
- Cepok, S.; Zhou, D.; Srivastava, R.; Nessler, S.; Stei, S.; Bussow, K.; Sommer, N.; Hemmer, B. Identification of Epstein-Barr virus proteins as putative targets of the immune response in multiple sclerosis. J. Clin. Invest 2005, 115, 1352–1360. [Google Scholar]
- Jilek, S.; Schluep, M.; Meylan, P.; Vingerhoets, F.; Guignard, L.; Monney, A.; Kleeberg, J.; Le Goff, G.; Pantaleo, G.; Du Pasquier, R.A. Strong EBV-specific CD8+ T-cell response in patients with early multiple sclerosis. Brain 2008, 131 Pt 7, 1712–1721. [Google Scholar]
- Van Sechel, A.C.; Bajramovic, J.J.; van Stipdonk, M.J.; Persoon-Deen, C.; Geutskens, S.B.; van Noort, J.M. EBV-induced expression and HLA-DR-restricted presentation by human B cells of alpha B-crystallin, a candidate autoantigen in multiple sclerosis. J. Immunol 1999, 162, 129–135. [Google Scholar]
- Van Noort, J.M.; van Sechel, A.C.; Bajramovic, J.J.; el Ouagmiri, M.; Polman, C.H.; Lassmann, H.; Ravid, R. The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature 1995, 375, 798–801. [Google Scholar]
- Bajramovic, J.J.; Lassmann, H.; van Noort, J.M. Expression of alphaB-crystallin in glia cells during lesional development in multiple sclerosis. J. Neuroimmunol 1997, 78, 143–151. [Google Scholar]
- Van Noort, J.M.; Bajramovic, J.J.; Plomp, A.C.; van Stipdonk, M.J. Mistaken self, a novel model that links microbial infections with myelin-directed autoimmunity in multiple sclerosis. J. Neuroimmunol 2000, 105, 46–57. [Google Scholar]
- Hayes, C.E.; Acheson, D.E. A unifying multiple sclerosis etiology linking virus infection, sunlight, and vitamin D, through viral interleukin-10. Med. Hypotheses 2008, 71, 85–90. [Google Scholar]
- Pender, M.P. Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol 2003, 24, 584–588. [Google Scholar]
- Hauser, S.L.; Waubant, E.; Arnold, D.L.; Vollmer, T.; Antel, J.; Fox, R.J.; Bar-Or, A.; Panzara, M.; Sarkar, N.; Agarwal, S.; Langer-Gould, A.; Smith, C.H. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med 2008, 358, 676–688. [Google Scholar]
- Birkett, N.J. Trends in smoking by birth cohort for births between 1940 and 1975: A reconstructed cohort analysis of the 1990 Ontario Health Survey. Prev. Med 1997, 26, 534–541. [Google Scholar]
- Escobedo, L.G.; Peddicord, J.P. Smoking prevalence in US birth cohorts: The influence of gender and education. Am. J. Public Health 1996, 86, 231–236. [Google Scholar]
- Ronneberg, A.; Lund, K.E.; Hafstad, A. Lifetime smoking habits among Norwegian men and women born between 1890 and 1974. Int. J. Epidemiol 1994, 23, 267–276. [Google Scholar]
- Marrie, R.; Horwitz, R.; Cutter, G.; Tyry, T.; Campagnolo, D.; Vollmer, T. High frequency of adverse health behaviors in multiple sclerosis. Mult. Scler 2009, 15, 105–113. [Google Scholar]
- Nortvedt, M.W.; Riise, T.; Maeland, J.G. Multiple sclerosis and lifestyle factors: The Hordaland Health Study. Neurol. Sci 2005, 26, 334–339. [Google Scholar]
- Friend, K.B.; Mernoff, S.T.; Block, P.; Reeve, G. Smoking rates and smoking cessation among individuals with multiple sclerosis. Disabil. Rehabil 2006, 28, 1135–1141. [Google Scholar]
- Turner, A.P.; Kivlahan, D.R.; Kazis, L.E.; Haselkorn, J.K. Smoking among veterans with multiple sclerosis: Prevalence correlates, quit attempts, and unmet need for services. Arch. Phys. Med. Rehabil 2007, 88, 1394–1399. [Google Scholar]
- Ghadirian, P.; Dadgostar, B.; Azani, R.; Maisonneuve, P. A case-control study of the association between socio-demographic, lifestyle and medical history factors and multiple sclerosis. Can. J. Public Health 2001, 92, 281–285. [Google Scholar]
- Pekmezovic, T.; Drulovic, J.; Milenkovic, M.; Jarebinski, M.; Stojsavljevic, N.; Mesaros, S.; Kisic, D.; Kostic, J. Lifestyle factors and multiple sclerosis: A case-control study in Belgrade. Neuroepidemiology 2006, 27, 212–216. [Google Scholar]
- Hernan, M.A.; Olek, M.J.; Ascherio, A. Cigarette smoking and incidence of multiple sclerosis. Am. J. Epidemiol 2001, 154, 69–74. [Google Scholar]
- Villard-Mackintosh, L.; Vessey, M.P. Oral contraceptives and reproductive factors in multiple sclerosis incidence. Contraception 1993, 47, 161–168. [Google Scholar]
- Hedstrom, A.K.; Baarnhielm, M.; Olsson, T.; Alfredsson, L. Tobacco smoking, but not Swedish snuff use, increases the risk of multiple sclerosis. Neurology 2009, 73, 696–701. [Google Scholar]
- Marrie, R.A.; Cutter, G.; Tyry, T.; Campagnolo, D.; Vollmer, T. Smoking status over two years in patients with multiple sclerosis. Neuroepidemiology 2009, 32, 72–79. [Google Scholar]
- Sundstrom, P.; Nystrom, L.; Hallmans, G. Smoke exposure increases the risk for multiple sclerosis. Eur. J. Neurol 2008, 15, 579–583. [Google Scholar]
- Hedstrom, A.K.; Baarnhielm, M.; Olsson, T.; Alfredsson, L. Exposure to environmental tobacco smoke is associated with increased risk for multiple sclerosis. Mult. Scler 2011, 17, 788–793. [Google Scholar]
- Mikaeloff, Y.; Caridade, G.; Tardieu, M.; Suissa, S. Parental smoking at home and the risk of childhood-onset multiple sclerosis in children. Brain 2007, 130, 2589–2595. [Google Scholar]
- Montgomery, S.M.; Bahmanyar, S.; Hillert, J.; Ekbom, A.; Olsson, T. Maternal smoking during pregnancy and multiple sclerosis amongst offspring. Eur. J. Neurol 2008, 15, 1395–1399. [Google Scholar]
- Mueller, B.A.; Nelson, J.L.; Newcomb, P.A. Intrauterine environment and multiple sclerosis: A population- based case-control study. Mult. Scler 2012. [Google Scholar] [CrossRef]
- Carlens, C.; Hergens, M.P.; Grunewald, J.; Ekbom, A.; Eklund, A.; Hoglund, C.O.; Askling, J. Smoking, use of moist snuff, and risk of chronic inflammatory diseases. Am. J. Respir. Crit. Care Med 2010, 181, 1217–1222. [Google Scholar]
- Jafari, N.; Hoppenbrouwers, I.A.; Hop, W.C.; Breteler, M.M.; Hintzen, R.Q. Cigarette smoking and risk of MS in multiplex families. Mult. Scler 2009, 15, 1363–1367. [Google Scholar]
- Hedstrom, A.K.; Sundqvist, E.; Baarnhielm, M.; Nordin, N.; Hillert, J.; Kockum, I.; Olsson, T.; Alfredsson, L. Smoking and two human leukocyte antigen genes interact to increase the risk for multiple sclerosis. Brain 2011, 134, 653–664. [Google Scholar]
- Hernan, M.A.; Jick, S.S.; Logroscino, G.; Olek, M.J.; Ascherio, A.; Jick, H. Cigarette smoking and the progression of multiple sclerosis. Brain 2005, 128, 1461–1465. [Google Scholar]
- Sundstrom, P.; Nystrom, L. Smoking worsens the prognosis in multiple sclerosis. Mult. Scler 2008, 14, 1031–1035. [Google Scholar]
- Healy, B.C.; Ali, E.N.; Guttmann, C.R.; Chitnis, T.; Glanz, B.I.; Buckle, G.; Houtchens, M.; Stazzone, L.; Moodie, J.; Berger, A.M.; et al. Smoking and disease progression in multiple sclerosis. Arch. Neurol 2009, 66, 858–864. [Google Scholar]
- Pittas, F.; Ponsonby, A.L.; van der Mei, I.A.; Taylor, B.V.; Blizzard, L.; Groom, P.; Ukoumunne, O.C.; Dwyer, T. Smoking is associated with progressive disease course and increased progression in clinical disability in a prospective cohort of people with multiple sclerosis. J. Neurol 2009, 256, 577–585. [Google Scholar]
- D’Hooghe, M.B.; Haentjens, P.; Nagels, G.; De Keyser, J. Alcohol, coffee, fish, smoking and disease progression in multiple sclerosis. Eur. J. Neurol 2012, 19, 616–624. [Google Scholar]
- Di Pauli, F.; Reindl, M.; Ehling, R.; Schautzer, F.; Gneiss, C.; Lutterotti, A.; O’Reilly, E.; Munger, K.; Deisenhammer, F.; Ascherio, A.; et al. Smoking is a risk factor for early conversion to clinically definite multiple sclerosis. Mult. Scler 2008, 14, 1026–1030. [Google Scholar]
- Zivadinov, R.; Weinstock-Guttman, B.; Hashmi, K.; Abdelrahman, N.; Stosic, M.; Dwyer, M.; Hussein, S.; Durfee, J.; Ramanathan, M. Smoking is associated with increased lesion volumes and brain atrophy in multiple sclerosis. Neurology 2009, 73, 504–510. [Google Scholar]
- Bakshi, R.; Neema, M.; Healy, B.C.; Liptak, Z.; Betensky, R.A.; Buckle, G.J.; Gauthier, S.A.; Stankiewicz, J.; Meier, D.; Egorova, S.; et al. Predicting clinical progression in multiple sclerosis with the magnetic resonance disease severity scale. Arch. Neurol 2008, 65, 1449–1453. [Google Scholar]
- Green, C.; Rodgman, A. The Tobacco Chemists’ Research Conference: A half century forum for advances in analytical methodology of tobacco and its products. Recent Adv. Tob. Sci 1996, 22, 131–304. [Google Scholar]
- Costenbader, K.; Karlson, E. Cigarette smoking and autoimmune disease: What can we learn from epidemiology? Lupus 2006, 15, 737–745. [Google Scholar]
- Wakeham, H. Recent trends in tobacco and tobacco smoke research; Proceedings of Symposium on the composition of tobacco and tobacco smoke—162nd National Meeting of the American Chemical Society (ACS), Washington DC, 16–17 September 1971, Schmeltz, I., Ed.; Plenum Press: New York, 1971; pp. 1–20. [Google Scholar]
- Dawson, J. The histology of disseminated sclerosis. Trans. R. Soc. Edinburgh 1916, 50, 517–540. [Google Scholar]
- Evangelou, N.; Konz, D.; Esiri, M.M.; Smith, S.; Palace, J.; Matthews, P.M. Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain 2000, 123 Pt 9, 1845–1849. [Google Scholar]
- Vessey, M.P.; Villard-Mackintosh, L.; Yeates, D. Oral contraceptives, cigarette smoking and other factors in relation to arthritis. Contraception 1987, 35, 457–464. [Google Scholar]
- Nagata, C.; Fujita, S.; Iwata, H.; Kurosawa, Y.; Kobayashi, K.; Kobayashi, M.; Motegi, K.; Omura, T.; Yamamoto, M.; Nose, T.; et al. Systemic lupus erythematosus: A case-control epidemiologic study in Japan. Int. J. Dermatol 1995, 34, 333–337. [Google Scholar]
- Marrie, R.A.; Horwitz, R.I.; Cutter, G.; Tyry, T.; Vollmer, T. Smokers with multiple sclerosis are more likely to report comorbid autoimmune diseases. Neuroepidemiology 2011, 36, 85–90. [Google Scholar]
- Holt, P.G. Immune and inflammatory function in cigarette smokers. Thorax 1987, 42, 241–249. [Google Scholar]
- Sopori, M.; Goud, N.; Kaplan, A. Effects of Tobacco Smoke on the Immune System; Raven Press: New York, NY, USA, 1994; pp. 413–434. [Google Scholar]
- Hersey, P.; Prendergast, D.; Edwards, A. Effects of cigarette smoking on the immune system. Follow-up studies in normal subjects after cessation of smoking. Med. J. Aust 1983, 2, 425–429. [Google Scholar]
- Kannel, W.B.; D’Agostino, R.B.; Belanger, A.J. Fibrinogen, cigarette smoking, and risk of cardiovascular disease: Insights from the Framingham Study. Am. Heart J 1987, 113, 1006–1010. [Google Scholar]
- Stefanick, M.L.; Legault, C.; Tracy, R.P.; Howard, G.; Kessler, C.M.; Lucas, D.L.; Bush, T.L. Distribution and correlates of plasma fibrinogen in middle-aged women. Initial findings of the Postmenopausal Estrogen/Progestin Interventions (PEPI) study. Arterioscler. Thromb. Vasc. Biol 1995, 15, 2085–2093. [Google Scholar]
- Pearce, M.S.; Ahmed, A.; Tennant, P.W.; Parker, L.; Unwin, N.C. Lifecourse predictors of adult fibrinogen levels: The Newcastle Thousand Families Study. Int. J. Cardiol 2012, 155, 206–211. [Google Scholar]
- Bermudez, E.A.; Rifai, N.; Buring, J.; Manson, J.E.; Ridker, P.M. Interrelationships among circulating interleukin-6, C-reactive protein, and traditional cardiovascular risk factors in women. Arterioscler. Thromb. Vasc. Biol 2002, 22, 1668–1673. [Google Scholar]
- Tracy, R.P.; Psaty, B.M.; Macy, E.; Bovill, E.G.; Cushman, M.; Cornell, E.S.; Kuller, L.H. Lifetime smoking exposure affects the association of C-reactive protein with cardiovascular disease risk factors and subclinical disease in healthy elderly subjects. Arterioscler. Thromb. Vasc. Biol 1997, 17, 2167–2176. [Google Scholar]
- Graham, N.M. The epidemiology of acute respiratory infections in children and adults: A global perspective. Epidemiol. Rev 1990, 12, 149–178. [Google Scholar]
- Kalra, R.; Singh, S.P.; Savage, S.M.; Finch, G.L.; Sopori, M.L. Effects of cigarette smoke on immune response: Chronic exposure to cigarette smoke impairs antigen-mediated signaling in T cells and depletes IP3-sensitive Ca(2+) stores. J. Pharmacol. Exp. Ther 2000, 293, 166–171. [Google Scholar]
- Robbins, C.S.; Dawe, D.E.; Goncharova, S.I.; Pouladi, M.A.; Drannik, A.G.; Swirski, F.K.; Cox, G.; Stampfli, M.R. Cigarette smoke decreases pulmonary dendritic cells and impacts antiviral immune responsiveness. Am. J. Respir. Cell Mol. Biol 2004, 30, 202–211. [Google Scholar]
- Pace, E.; Ferraro, M.; Siena, L.; Melis, M.; Montalbano, A.M.; Johnson, M.; Bonsignore, M.R.; Bonsignore, G.; Gjomarkaj, M. Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway epithelial cells. Immunology 2008, 124, 401–411. [Google Scholar]
- Mortaz, E.; Lazar, Z.; Koenderman, L.; Kraneveld, A.D.; Nijkamp, F.P.; Folkerts, G. Cigarette smoke attenuates the production of cytokines by human plasmacytoid dendritic cells and enhances the release of IL-8 in response to TLR-9 stimulation. Respir. Res 2009, 10, 47. [Google Scholar]
- Hockertz, S.; Emmendorffer, A.; Scherer, G.; Ruppert, T.; Daube, H.; Tricker, A.R.; Adlkofer, F. Acute effects of smoking and high experimental exposure to environmental tobacco smoke (ETS) on the immune system. Cell Biol. Toxicol 1994, 10, 177–190. [Google Scholar]
- Moszczynski, P.; Zabinski, Z.; Moszczynski, P., Jr; Rutowski, J.; Slowinski, S.; Tabarowski, Z. Immunological findings in cigarette smokers. Toxicol. Lett. 2001, 118, 121–127. [Google Scholar]
- Phillips, B.; Marshall, M.E.; Brown, S.; Thompson, J.S. Effect of smoking on human natural killer cell activity. Cancer 1985, 56, 2789–2792. [Google Scholar]
- Sibley, W.A.; Bamford, C.R.; Clark, K. Clinical viral infections and multiple sclerosis. Lancet 1985, 1, 1313–1315. [Google Scholar]
- Andersen, O.; Lygner, P.E.; Bergstrom, T.; Andersson, M.; Vahlne, A. Viral infections trigger multiple sclerosis relapses: A prospective seroepidemiological study. J. Neurol 1993, 240, 417–422. [Google Scholar]
- Buljevac, D.; Flach, H.Z.; Hop, W.C.; Hijdra, D.; Laman, J.D.; Savelkoul, H.F.; van Der Meche, F.G.; van Doorn, P.A.; Hintzen, R.Q. Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain 2002, 125, 952–960. [Google Scholar]
- Tremlett, H.; van der Mei, I.A.; Pittas, F.; Blizzard, L.; Paley, G.; Mesaros, D.; Woodbaker, R.; Nunez, M.; Dwyer, T.; Taylor, B.V.; et al. Monthly ambient sunlight, infections and relapse rates in multiple sclerosis. Neuroepidemiology 2008, 31, 271–279. [Google Scholar]
- Karvonen, M.; Tuomilehto, J.; Pitkaniemi, J.; Naukkarinen, A.; Saikku, P. Importance of smoking for Chlamydia pneumoniae seropositivity. Int. J. Epidemiol 1994, 23, 1315–1321. [Google Scholar]
- Ridker, P.M.; Kundsin, R.B.; Stampfer, M.J.; Poulin, S.; Hennekens, C.H. Prospective study of Chlamydia pneumoniae IgG seropositivity and risks of future myocardial infarction. Circulation 1999, 99, 1161–1164. [Google Scholar]
- Parratt, J.; Tavendale, R.; O’Riordan, J.; Parratt, D.; Swingler, R. Chlamydia pneumoniae-specific serum immune complexes in patients with multiple sclerosis. Mult. Scler 2008, 14, 292–299. [Google Scholar]
- Sriram, S.; Stratton, C.W.; Yao, S.; Tharp, A.; Ding, L.; Bannan, J.D.; Mitchell, W.M. Chlamydia pneumoniae infection of the central nervous system in multiple sclerosis. Ann. Neurol 1999, 46, 6–14. [Google Scholar]
- Boman, J.; Roblin, P.M.; Sundstrom, P.; Sandstrom, M.; Hammerschlag, M.R. Failure to detect Chlamydia pneumoniae in the central nervous system of patients with MS. Neurology 2000, 54, 265. [Google Scholar]
- Budak, F.; Keceli, S.; Efendi, H.; Vahaboglu, H. The investigation of Chlamydophila pneumoniae in patients with multiple sclerosis. Int. J. Neurosci 2007, 117, 409–415. [Google Scholar]
- Bagos, P.G.; Nikolopoulos, G.; Ioannidis, A. Chlamydia pneumoniae infection and the risk of multiple sclerosis: A meta-analysis. Mult. Scler 2006, 12, 397–411. [Google Scholar]
- Bijl, M.; Horst, G.; Limburg, P.C.; Kallenberg, C.G. Effects of smoking on activation markers, fas expression and apoptosis of peripheral blood lymphocytes. Eur. J. Clin. Invest 2001, 31, 550–553. [Google Scholar]
- Doyle, H.A.; Mamula, M.J. Posttranslational protein modifications: New flavors in the menu of autoantigens. Curr. Opin. Rheumatol 2002, 14, 244–249. [Google Scholar]
- Cloos, P.A.; Christgau, S. Post-translational modifications of proteins: Implications for aging, antigen recognition, and autoimmunity. Biogerontology 2004, 5, 139–158. [Google Scholar]
- Shankarkumar, U. The Human Leukocyte Antigen (HLA) System. Int. J. Hum. Genet 2004, 4, 91–103. [Google Scholar]
- Klareskog, L.; Padyukov, L.; Ronnelid, J.; Alfredsson, L. Genes, environment and immunity in the development of rheumatoid arthritis. Curr. Opin. Immunol 2006, 18, 650–655. [Google Scholar]
- Linn-Rasker, S.P.; van der Helm-van Mil, A.H.; van Gaalen, F.A.; Kloppenburg, M.; de Vries, R.R.; le Cessie, S.; Breedveld, F.C.; Toes, R.E.; Huizinga, T.W. Smoking is a risk factor for anti-CCP antibodies only in rheumatoid arthritis patients who carry HLA-DRB1 shared epitope alleles. Ann. Rheum. Dis 2006, 65, 366–371. [Google Scholar]
- Kallberg, H.; Padyukov, L.; Plenge, R.M.; Ronnelid, J.; Gregersen, P.K.; van der Helm-van Mil, A.H.; Toes, R.E.; Huizinga, T.W.; Klareskog, L.; Alfredsson, L. Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am. J. Hum. Genet 2007, 80, 867–875. [Google Scholar]
- Lundstrom, E.; Kallberg, H.; Alfredsson, L.; Klareskog, L.; Padyukov, L. Gene-environment interaction between the DRB1 shared epitope and smoking in the risk of anti-citrullinated protein antibody-positive rheumatoid arthritis: All alleles are important. Arthritis Rheum 2009, 60, 1597–1603. [Google Scholar]
- Mahdi, H.; Fisher, B.A.; Kallberg, H.; Plant, D.; Malmstrom, V.; Ronnelid, J.; Charles, P.; Ding, B.; Alfredsson, L.; Padyukov, L.; et al. Specific interaction between genotype, smoking and autoimmunity to citrullinated alpha-enolase in the etiology of rheumatoid arthritis. Nat. Genet 2009, 41, 1319–1324. [Google Scholar]
- Karlson, E.W.; Chang, S.C.; Cui, J.; Chibnik, L.B.; Fraser, P.A.; de Vivo, I.; Costenbader, K.H. Gene-environment interaction between HLA-DRB1 shared epitope and heavy cigarette smoking in predicting incident rheumatoid arthritis. Ann. Rheum. Dis 2010, 69, 54–60. [Google Scholar]
- Makrygiannakis, D.; Hermansson, M.; Ulfgren, A.K.; Nicholas, A.P.; Zendman, A.J.; Eklund, A.; Grunewald, J.; Skold, C.M.; Klareskog, L.; Catrina, A.I. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann. Rheum. Dis 2008, 67, 1488–1492. [Google Scholar]
- Harkiolaki, M.; Holmes, S.L.; Svendsen, P.; Gregersen, J.W.; Jensen, L.T.; McMahon, R.; Friese, M.A.; van Boxel, G.; Etzensperger, R.; Tzartos, J.S.; et al. T cell-mediated autoimmune disease due to low-affinity crossreactivity to common microbial peptides. Immunity 2009, 30, 348–357. [Google Scholar]
- Moore, G.R.W. Neuropathology and pathophysiology of the MS lesion. In Multiple Sclerosis; Paty, D., Ebers, G., Eds.; F.A. Davis Company: Philadelphia, PA, USA; p. 1998.
- Minagar, A.; Alexander, J.S. Blood-brain barrier disruption in multiple sclerosis. Mult. Scler 2003, 9, 540–549. [Google Scholar]
- Hans, F.J.; Wei, L.; Bereczki, D.; Acuff, V.; Demaro, J.; Chen, J.L.; Otsuka, T.; Patlak, C.; Fenstermacher, J. Nicotine increases microvascular blood flow and flow velocity in three groups of brain areas. Am. J. Physiol 1993, 265, H2142–H2150. [Google Scholar]
- Hawkins, B.T.; Abbruscato, T.J.; Egleton, R.D.; Brown, R.C.; Huber, J.D.; Campos, C.R.; Davis, T.P. Nicotine increases in vivo blood-brain barrier permeability and alters cerebral microvascular tight junction protein distribution. Brain Res 2004, 1027, 48–58. [Google Scholar]
- Chen, J.L.; Wei, L.; Bereczki, D.; Hans, F.J.; Otsuka, T.; Acuff, V.; Ghersi-Egea, J.F.; Patlak, C.; Fenstermacher, J.D. Nicotine raises the influx of permeable solutes across the rat blood-brain barrier with little or no capillary recruitment. J. Cereb. Blood Flow Metab 1995, 15, 687–698. [Google Scholar]
- Grunwald, F.; Schrock, H.; Kuschinsky, W. The influence of nicotine on local cerebral blood flow in rats. Neurosci. Lett 1991, 124, 108–110. [Google Scholar]
- Pryor, W.A.; Stone, K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann. N. Y. Acad. Sci 1993, 686, 12–27. [Google Scholar]
- Blomgren, K.; Hagberg, H. Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radic. Biol. Med 2006, 40, 388–397. [Google Scholar]
- Hoffmann, D.; Wynder, E.L. Smoke of cigarettes and little cigars: An analytical comparison. Science 1972, 178, 1197–1199. [Google Scholar]
- Levine, S.; Stypulkowski, W. Experimental cyanide encephalopathy. AMA Arch. Pathol 1959, 67, 306–323. [Google Scholar]
- Bass, N.H. Pathogenesis of myelin lesions in experimental cyanide encephalopathy. A microchemical study. Neurology 1968, 18, 167–177. [Google Scholar]
- Levine, S. Experimental cyanide encephalopathy: Gradients of susceptibility in the corpus callosum. J. Neuropathol. Exp. Neurol 1967, 26, 214–222. [Google Scholar]
- Smith, A.D.; Duckett, S.; Waters, A.H. Neuropathological changes in chronic cyanide intoxication. Nature 1963, 200, 179–181. [Google Scholar]
- Philbrick, D.J.; Hopkins, J.B.; Hill, D.C.; Alexander, J.C.; Thomson, R.G. Effects of prolonged cyanide and thiocyanate feeding in rats. J. Toxicol. Environ. Health 1979, 5, 579–592. [Google Scholar]
- Hicks, S.P. Brain metabolism in vivo; the distribution of lesions caused by cyanide poisoning, insulin hypoglycemia, asphyxia in nitrogen and fluoroacetate poisoning in rats. AMA Arch. Pathol 1950, 49, 111–137. [Google Scholar]
- Matthews, D.M.; Wilson, J.; Zilkha, K.J. Cyanide metabolism and vitamin B12 in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 1965, 28, 426–428. [Google Scholar]
- Osuntokun, B.O. Cassava diet, chronic cyanide intoxication and neuropathy in the Nigerian Africans. World Rev. Nutr. Diet 1981, 36, 141–173. [Google Scholar]
- Cliff, J.; Lundqvist, P.; Martensson, J.; Rosling, H.; Sorbo, B. Association of high cyanide and low sulphur intake in cassava-induced spastic paraparesis. Lancet 1985, 2, 1211–1213. [Google Scholar]
- The Cuba Neuropathy Field Investigation Team. Epidemic optic neuropathy in Cuba—Clinical characterization and risk factors. N. Engl. J. Med. 1995, 333, 1176–1182.
- Freeman, A.G. Optic neuropathy and chronic cyanide intoxication: A review. J. R. Soc. Med 1988, 81, 103–106. [Google Scholar]
- Clancy, R.M.; Amin, A.R.; Abramson, S.B. The role of nitric oxide in inflammation and immunity. Arthritis Rheum 1998, 41, 1141–1151. [Google Scholar]
- Eiserich, J.P.; Vossen, V.; O’Neill, C.A.; Halliwell, B.; Cross, C.E.; van der Vliet, A. Molecular mechanisms of damage by excess nitrogen oxides: Nitration of tyrosine by gas-phase cigarette smoke. FEBS Lett 1994, 353, 53–56. [Google Scholar]
- Norman, V.; Keith, C. Nitrogen oxides in tobacco smoke. Nature 1965, 205, 915–916. [Google Scholar]
- Smith, D.A.; Hoffman, A.F.; David, D.J.; Adams, C.E.; Gerhardt, G.A. Nicotine-evoked nitric oxide release in the rat hippocampal slice. Neurosci. Lett 1998, 255, 127–130. [Google Scholar]
- Suemaru, K.; Kawasaki, H.; Gomita, Y.; Tanizaki, Y. Involvement of nitric oxide in development of tail-tremor induced by repeated nicotine administration in rats. Eur. J. Pharmacol 1997, 335, 139–143. [Google Scholar]
- Tonnessen, B.H.; Severson, S.R.; Hurt, R.D.; Miller, V.M. Modulation of nitric-oxide synthase by nicotine. J. Pharmacol. Exp. Ther 2000, 295, 601–606. [Google Scholar]
- Cooper, C.E.; Giulivi, C. Nitric oxide regulation of mitochondrial oxygen consumption II: Molecular mechanism and tissue physiology. Am. J. Physiol. Cell Physiol 2007, 292, C1993–C2003. [Google Scholar]
- Smith, K.J.; Kapoor, R.; Hall, S.M.; Davies, M. Electrically active axons degenerate when exposed to nitric oxide. Ann. Neurol 2001, 49, 470–476. [Google Scholar]
- Redford, E.J.; Kapoor, R.; Smith, K.J. Nitric oxide donors reversibly block axonal conduction: Demyelinated axons are especially susceptible. Brain 1997, 120 Pt 12, 2149–2157. [Google Scholar]
- Mitrovic, B.; Ignarro, L.J.; Vinters, H.V.; Akers, M.A.; Schmid, I.; Uittenbogaart, C.; Merrill, J.E. Nitric oxide induces necrotic but not apoptotic cell death in oligodendrocytes. Neuroscience 1995, 65, 531–539. [Google Scholar]
- Mitrovic, B.; Parkinson, J.; Merrill, J.E. An in vitro model of oligodendrocyte destruction by nitric oxide and its relevance to multiple sclerosis. Methods 1996, 10, 501–513. [Google Scholar]
- Smith, K.J.; Kapoor, R.; Felts, P.A. Demyelination: The role of reactive oxygen and nitrogen species. Brain Pathol 1999, 9, 69–92. [Google Scholar]
- Yamashita, T.; Ando, Y.; Obayashi, K.; Uchino, M.; Ando, M. Changes in nitrite and nitrate (NO2−/NO3−) levels in cerebrospinal fluid of patients with multiple sclerosis. J. Neurol. Sci 1997, 153, 32–34. [Google Scholar]
- Cross, A.H.; Manning, P.T.; Keeling, R.M.; Schmidt, R.E.; Misko, T.P. Peroxynitrite formation within the central nervous system in active multiple sclerosis. J. Neuroimmunol 1998, 88, 45–56. [Google Scholar]
- Svenningsson, A.; Petersson, A.S.; Andersen, O.; Hansson, G.K. Nitric oxide metabolites in CSF of patients with MS are related to clinical disease course. Neurology 1999, 53, 1880–1882. [Google Scholar]
- Rejdak, K.; Eikelenboom, M.J.; Petzold, A.; Thompson, E.J.; Stelmasiak, Z.; Lazeron, R.H.; Barkhof, F.; Polman, C.H.; Uitdehaag, B.M.; Giovannoni, G. CSF nitric oxide metabolites are associated with activity and progression of multiple sclerosis. Neurology 2004, 63, 1439–1445. [Google Scholar]
- Lawther, P.J.; Commins, B.T. Cigarette smoking and exposure to carbon monoxide. Ann. N. Y. Acad. Sci 1970, 174, 135–147. [Google Scholar]
- Russell, M.A. Blood carboxyhaemoglobin changes during tobacco smoking. Postgrad. Med. J 1973, 49, 684–687. [Google Scholar]
- Somogyi, E.; Balogh, I.; Rubanyi, G.; Sotonyi, P.; Szegedi, L. New findings concerning the pathogenesis of acute carbon monoxide (CO) poisoning. Am. J. Forensic. Med. Pathol 1981, 2, 31–39. [Google Scholar]
- Ball, E.G.; Strittmatter, C.F.; Cooper, O. The reaction of cytochrome oxidase with carbon monoxide. J. Biol. Chem 1951, 193, 635–647. [Google Scholar]
- Mawatari, S. Biochemical study on rat brain in acute carbon monoxide poisoning. Folia Psychiatr. Neurol. Jpn 1970, 24, 123–129. [Google Scholar]
- Lewey, G.; Drabkin, D. Experimental chronic carbon monoxide poisoning of dogs. Am. J. Med. Sci 1944, 208, 502–511. [Google Scholar]
- Plum, F.; Posner, J.B.; Hain, R.F. Delayed neurological deterioration after anoxia. Arch. Intern. Med 1962, 110, 18–25. [Google Scholar]
- Lapresle, J.; Fardeau, M. The central nervous system and carbon monoxide poisoning. II. Anatomical study of brain lesions following intoxication with carbon monixide (22 cases). Prog. Brain Res 1967, 24, 31–74. [Google Scholar]
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
O’Gorman, C.; Lucas, R.; Taylor, B. Environmental Risk Factors for Multiple Sclerosis: A Review with a Focus on Molecular Mechanisms. Int. J. Mol. Sci. 2012, 13, 11718-11752. https://doi.org/10.3390/ijms130911718
O’Gorman C, Lucas R, Taylor B. Environmental Risk Factors for Multiple Sclerosis: A Review with a Focus on Molecular Mechanisms. International Journal of Molecular Sciences. 2012; 13(9):11718-11752. https://doi.org/10.3390/ijms130911718
Chicago/Turabian StyleO’Gorman, Cullen, Robyn Lucas, and Bruce Taylor. 2012. "Environmental Risk Factors for Multiple Sclerosis: A Review with a Focus on Molecular Mechanisms" International Journal of Molecular Sciences 13, no. 9: 11718-11752. https://doi.org/10.3390/ijms130911718