Isolation and Characterization of Simple Sequence Repeats (SSR) Markers from the Moss Genus Orthotrichum Using a Small Throughput Pyrosequencing Machine
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Plant Materials
3.2. DNA Extraction
3.3. DNA Library Preparation and Sequencing
3.4. Genotyping Test
4. Conclusions
Acknowledgements
References
- Kalia, R.K.; Rai, M.K.; Kalia, S.; Singh, R.; Dhawan, A.K. Microsatellite markers: An overview of the recent progress in plants. Euphytica 2011, 177, 309–334. [Google Scholar]
 - Karlin, E.F.; Boles, S.; Shaw, A.J. Resolving boundaries between species in Sphagnum section Subsecunda using microsatellite markers. Taxon 2008, 57, 1189–1200. [Google Scholar]
 - Pirseyedi, S.M.; Valizadehghan, S.; Mardi, M.; Ghaffari, M.R.; Mahmoodi, P.; Zahravi, M.; Zeinalabedini, M.; Nekoui, S.M.K. Isolation and characterization of novel microsatellite markers in pomegranate (Punica granatum L.). Int. J. Mol. Sci 2010, 11, 2010–2016. [Google Scholar]
 - Chen, L.; Xu, H.; Li, H.; Wu, J.; Ding, H.; Liu, Y. Isolation and characterization of sixteen polymorphic microsatellite loci in the golden apple snail Pomacea canaliculata. Int. J. Mol. Sci 2011, 12, 5993–5998. [Google Scholar]
 - Li, R.; Yang, J.; Yang, J.; Dao, Z. Isolation and characterization of 21 microsatellite loci in Cardiocrinum giganteum var. yunnanense (Liliaceae), an important economic plant in China. Int. J. Mol. Sci 2012, 13, 1437–1443. [Google Scholar]
 - Provan, J.; Wilson, P.J. Development of microsatellites for the peat moss Sphagnum capillifolium using ISSR cloning. Mol. Ecol. Notes 2007, 7, 254–256. [Google Scholar]
 - Chiang, T.-Y.; Tzeng, T.-D.; Lin, H.-D.; Cho, C.-J.; Lin, F.-J. Isolation and characterization of polymorphic microsatellite loci from Metapenaeopsis barbata using PCR-based Isolation of Microsatellite Arrays (PIMA). Int. J. Mol. Sci 2012, 13, 2763–2768. [Google Scholar]
 - Somme, L.; Raabova, J.; Jacquemart, A.L.; Raspe, O. Development and multiplexing of microsatellite markers using pyrosequencing in the clonal plant Comarum palustre (Rosaceae). Mol. Ecol. Res 2012, 12, 91–97. [Google Scholar]
 - Sakaguchi, S.; Uchiyama, K.; Ueno, S.; Ujino-Ihara, T.; Tsumura, Y.; Prior, L.D.; Bowman, D.M.; Crisp, M.D.; Isagi, Y. Isolation and characterization of 52 polymorphic EST-SSR markers for Callitris columellaris (Cupressaceae). Am. J. Bot 2011, 98, e363–e368. [Google Scholar]
 - Parchman, T.L.; Geist, K.S.; Grahen, J.A.; Benkman, C.W.; Buerkle, C.A. Transcriptome sequencing in an ecologically important tree species: Assembly, annotation, and marker discovery. BMC Genomics 2010, 11. [Google Scholar] [CrossRef]
 - Snall, T.; Fogelqvist, J.; Ribeiro, P.J.J.; Lascoux, M. Spatial genetic structure in two congeneric epiphytes with different dispersal strategies analyzed by three different methods. Mol. Ecol 2004, 13, 2109–2119. [Google Scholar]
 - Buczkowska, K.; Sawicki, J.; Szczecińska, M.; Klama, H.; Milewicz, M.; Bączkiewicz, A. Genetic variation in the liverwort Bazzania trilobata interferred from ISSR markers. J. Bryol 2010, 32, 265–274. [Google Scholar]
 - Sawicki, J.; Szczecińska, M. A comparison of PCR-based markers for molecular identification of Sphagnum species of the section Acutifolia. Acta Soc. Bot. Pol 2011, 80, 185–192. [Google Scholar]
 - Stevens, M.I.; Hunger, S.A.; Hills, S.F.K.; Gemmill, C.E.C. Phantom hitch-hikers mislead estimates of genetic variation in Antarctic mosses. Plant Syst. Evol 2007, 263, 191–201. [Google Scholar]
 - Hutsemeker, V.; Risterucci, A.M.; Ricca, M.; Boles, S.; Hardy, O.J.; Shaw, A.J.; Vanderpoorten, A. Identification and characterization of nuclear microsatellite loci in the aquatic moss Platyhypnidium. Mol. Ecol. Res 2008, 8, 1130–1132. [Google Scholar]
 - Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar]
 - Sawicki, J.; Plášek, V.; Szczecińska, M. Molecular evidence do not support the current division of Orthotrichum subgenus Gymnoporus. Plant Syst. Evol 2009, 279, 125–137. [Google Scholar]
 - Sawicki, J.; Plášek, V.; Szczecińska, M. Molecular data do not support the current division of Orthotrichum (Bryophyta) species with immersed stomata. J. Syst. Evol 2012, 50, 12–24. [Google Scholar]
 - Lewinsky, J. A synopsis of the genus Orthotrichum Hedw. (Musci, Orthotrichaceae). Bryobrothera 1993, 2, 1–59. [Google Scholar]
 - Lewinsky-Haapasaari, J.; Hedenäs, L. A cladistic analysis of the moss genus Orthotrichum. Bryologist 1998, 101, 519–555. [Google Scholar]
 - Vitt, D.H. The infrageneric evolution, phylogeny, and taxonomy of the genus Orthotrichum (Musci) in North America. Nova Hedwig 1971, 21, 683–711. [Google Scholar]
 - Plášek, V.; Sawicki, J. Is the hairy vaginula a diagnostic feature in the taxonomy of the genus Orthotrichum? Acta Soc Bot. Pol 2010, 79, 73–80. [Google Scholar]
 - Faircloth, B.C. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol. Ecol. Res 2008, 8, 92–94. [Google Scholar]
 - Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser 1999, 95–98. [Google Scholar]
 - Sawicki, J.; Plášek, V.; Szczecińska, M. Preliminary studies on the phylogeny of the genus Orthotrichum inferred from nuclear ITS sequences. Ann. Bot. Fenn 2009, 46, 507–515. [Google Scholar]
 - Sawicki, J.; Plášek, V.; Szczecińska, M. Molecular studies resolved Nyholmiella (Orthotrichaceae) as separated genus. J. Syst. Evol 2010, 48, 183–194. [Google Scholar]
 - Wang, X.; Rinehart, T.A.; Wadl, P.A.; Spiers, J.M.; Hadziabdic, D.; Windham, M.T.; Trigiano, R.N. A new electrophoresis technique to separate microsatellite alleles. Afr. J. Biotechnol 2009, 8, 2432–2436. [Google Scholar]
 - Yeh, F.C.; Boyle, T.J.B. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg. J. Bot 1997, 129, 157. [Google Scholar]
 - Goudet, J. FSTAT: A computer program to calculate F-statistics. J. Hered 1995, 86, 485–486. [Google Scholar]
 
| Locus | Motif | Primers | Product Size | Diversity | Cross-Amplification | ||||
|---|---|---|---|---|---|---|---|---|---|
| Number of Alleles | H | Oa | Os | Op | Od | ||||
| os1 | (GTT)4–7 | F-GCAACTTCCTCCAACGACC R CAGATTGCGGCTGACCAAG  | 378–387 | 3 | 0.405 | + | - | - | - | 
| os2 | (GT)6–12 | F-CAAACACGACCGCTTCTCC R-GAGAGCTATCTCCCTCGAAAG  | 405–417 | 6 | 0.540 | - | - | - | - | 
| os3 | (AGG)4–8 | F-GTACGTCGTGCCCAAATCG R-CGTCGCATTCCCACAGAAG  | 354–366 | 5 | 0.355 | + | + | - | - | 
| os4 | (AAT)4–6(AT)7–15 | F-CACTCAAGTGAAGAGTCATGGG R-CGAGCAACGTGGCATGAAC  | 329–351 | 9 | 0.380 | - | - | - | - | 
| os5 | (AT)5–12 | F-AGGATTGATTGCCTTTGCGG R-GATCATTCGCATCTGGGCG  | 229–243 | 5 | 0.290 | - | - | - | - | 
| os6 | (AG)6–11 | F-GTTGACGAAGCCCTCTTGG R-CTTTGAGACGTGGTAATCTGAAG  | 411–421 | 7 | 0.550 | - | - | - | - | 
| os7 | (ATT)4–7…(AAT)5–7 | F-TTCAACCATGTGCTAGTTGTATC R-AGGGTCCAAACTCTAAACTGAC  | 414–425 | 5 | 0.285 | - | + | - | - | 
| os8 | (CTT)4–8 | F-TTCCCTTCAACCGCCACTC R-CCGAAGGCTGGATAATTGCC  | 263–275 | 3 | 0.230 | + | + | + | + | 
| os9 | (CGT)4–7 | F-GGCCATTGAAAGCAGGCTC R-CGGCTACGACATCAATGAAAG  | 401–410 | 3 | 0.280 | + | + | - | - | 
| os10 | (ACC)6–10 | F-CCTCGTAGGGTATCTCCGC R-ATCAAGAGTCGGGACGTGG  | 243–255 | 4 | 0.305 | - | - | - | - | 
| os11 | (GTT)4–10 | F-GCGTTGTGGAGTAAGGACTG R-CCCATCACCACTATGATGCC  | 202–220 | 5 | 0.410 | - | - | - | - | 
| os12 | (AAAT)4–6 | F-AATGTTGGAAACCAGCCCG R-TCCGGATTAGAAGATTTACAGTGG  | 158–166 | 3 | 0.210 | - | + | - | - | 
| os13 | (AG)6–10 | F-AGAATTGCTACTACATGAACGTG R-TTGTGTCCCGTCCCTCAAC  | 192–200 | 3 | 0.430 | + | + | + | + | 
| os14 | (AAC)6–9 | F-CTCCGAGTCCACTTGGTCG R-GACTGAAGTGCTGGCTTGG  | 198–210 | 3 | 0.250 | + | - | - | - | 
| os15 | (AAAG)6–8 | F-TGAAGTATCCAGACCAAGAGC R-ACATTCTGCCCTCAATGTCG  | 152–160 | 3 | 0.220 | - | - | - | - | 
| os16 | (AAG)4–7 | F-AAGAAGGCGTCAGCTTCAC R-TAGCTGCCCGCAACTTC  | 248–257 | 3 | 0.290 | + | + | - | - | 
| os17 | (GAT)4–7 | F-AGCGAGTTGATGGCGGAG R-TCCTCCAATGCCTTAGTCAAAC  | 361–370 | 3 | 0.340 | - | + | - | - | 
| os18 | (GTT)4–6 | F-CATGATGCTGCCCTTGTCC R-GTTAGCTGCATGTCACGGC  | 307–313 | 3 | 0.510 | + | + | + | - | 
| os19 | (CTT)4–6 | F-CCCACGCCACTTAGTCTTG R-GGAGAATGACAACCTCAGCC  | 229–235 | 3 | 0.260 | + | + | + | + | 
| os20 | (ATTT)6–9 | F-AGTTGTGTCTTCCTTCATCTATACC R-GATGGGCCAAAGTGTCTCG  | 169–181 | 3 | 0.220 | - | - | - | - | 
| os21 | (CTT)5–9 | F-AGCGAGTGTACATCCGAGC R-GCCTAAGCCCACTTGGAAAC  | 193–205 | 4 | 0.290 | + | + | + | - | 
| os22 | (GCT)4–7 | F-AAATCTACAACTTCGCACGTC R-TGAGATTCATGAGAGGTGTCCG  | 161–170 | 3 | 0.310 | - | - | - | - | 
| os23 | (AT)7–12 | F-TTCATTGTCCTAAGATTCCC R-GATGCAANTACGTCTTATAATC  | 202–212 | 5 | 0.490 | - | - | - | - | 
| os24 | (ATT)7–11 | F-GTTGAAATCTACTANAAAAGTT R-GCTCNAAATCNCATCTAANCT  | 181–193 | 3 | 0.230 | + | - | - | - | 
| os25 | (GTT)4–6 | F-GGAGTCCCTCCAGCAAGTATG R-GCGNCTAGGTCATGTACTNATGG  | 326–335 | 3 | 0.260 | - | + | - | - | 
| os26 | (GTC)5–8 | F-ACTTGCTGAAGAACGGTCTGC R-GTAACGTCTTGTCACTGAC  | 298–307 | 3 | 0.290 | + | + | - | - | 
| os27 | (GT)6–11 | F-CCTTCATTCCATTTGCCCNTTG R-GTATGTTGCCTCCTCCAATTCATT  | 201–211 | 4 | 0.370 | - | - | - | - | 
| os28 | (GA)6–10 | F-TTCTCCATGTTCTCTACTTNGG R-GACGGCCTCTCGGCAAGAGTTTG  | 210–218 | 3 | 0.220 | + | + | + | + | 
| os29 | (GA)7–10 | F-CATCAATGATGTAGGATNGAAN R-CTCAATATCTGGATTTCTGGGA  | 197–203 | 3 | 0.280 | + | + | + | + | 
| os30 | (CA)11–16 | F-ACACACNCANACACACACNCNC R-TGGATGCGTGTGGGCACCTGT  | 260–270 | 4 | 0.410 | - | - | - | - | 
| os31 | (GAT)4–7 | F-CGTTGATTCTATTTGATAGCTAA R-TTGACATGTCTGAGCCCC  | 241–250 | 3 | 0.320 | + | + | + | + | 
| os32 | (AAAT)4–6 | F-NCCNANCCATGTCAGAAAAAG R-GCCGCATTATGAAGTTGGA  | 269–278 | 3 | 0.220 | - | - | - | - | 
| os33 | (ATT)4–6 | F-CTACAATAAGAGCTCTTTGAA R-ACANTTTGGATCTCAGCCTG  | 202–208 | 3 | 0.260 | - | - | - | - | 
| os34 | (GAT)4–6 | F-AGGGCTCTANCTTATAGNTTG R-GAGGTGGACAGTGCAAGTGNAAG  | 210–216 | 3 | 0.230 | + | + | - | - | 
| os35 | (GGA)4–7 | F-CCCGAGTCCACTTGGNANCC R-GCTAAGCCCAGTTAGAAGCTC  | 171–180 | 3 | 0.345 | + | - | - | - | 
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sawicki, J.; Kwaśniewski, M.; Szczecińska, M.; Chwiałkowska, K.; Milewicz, M.; Plášek, V. Isolation and Characterization of Simple Sequence Repeats (SSR) Markers from the Moss Genus Orthotrichum Using a Small Throughput Pyrosequencing Machine. Int. J. Mol. Sci. 2012, 13, 7586-7593. https://doi.org/10.3390/ijms13067586
Sawicki J, Kwaśniewski M, Szczecińska M, Chwiałkowska K, Milewicz M, Plášek V. Isolation and Characterization of Simple Sequence Repeats (SSR) Markers from the Moss Genus Orthotrichum Using a Small Throughput Pyrosequencing Machine. International Journal of Molecular Sciences. 2012; 13(6):7586-7593. https://doi.org/10.3390/ijms13067586
Chicago/Turabian StyleSawicki, Jakub, Mirosław Kwaśniewski, Monika Szczecińska, Karolina Chwiałkowska, Monika Milewicz, and Vítězslav Plášek. 2012. "Isolation and Characterization of Simple Sequence Repeats (SSR) Markers from the Moss Genus Orthotrichum Using a Small Throughput Pyrosequencing Machine" International Journal of Molecular Sciences 13, no. 6: 7586-7593. https://doi.org/10.3390/ijms13067586
APA StyleSawicki, J., Kwaśniewski, M., Szczecińska, M., Chwiałkowska, K., Milewicz, M., & Plášek, V. (2012). Isolation and Characterization of Simple Sequence Repeats (SSR) Markers from the Moss Genus Orthotrichum Using a Small Throughput Pyrosequencing Machine. International Journal of Molecular Sciences, 13(6), 7586-7593. https://doi.org/10.3390/ijms13067586
        
