Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Orthotrichum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4800 KiB  
Article
Temperature and Precipitation More Than Tree Cover Affect the Distribution Patterns of Epiphytic Mosses within the Orthotrichaceae Family in China and Adjacent Areas
by Lucie Fialová, Vítězslav Plášek, Ewelina Klichowska, Shuiliang Guo and Marcin Nobis
Plants 2023, 12(1), 222; https://doi.org/10.3390/plants12010222 - 3 Jan 2023
Cited by 1 | Viewed by 3525
Abstract
Epiphytes, including vascular and non-vascular, constitute a large part of global plant biodiversity. Distribution of obligatory epiphytic bryophytes results from climate and local habitat conditions. The most important epiphytic bryophytes and at the same time poorly investigated and taxonomically problematic ones belong to [...] Read more.
Epiphytes, including vascular and non-vascular, constitute a large part of global plant biodiversity. Distribution of obligatory epiphytic bryophytes results from climate and local habitat conditions. The most important epiphytic bryophytes and at the same time poorly investigated and taxonomically problematic ones belong to the family Orthotrichaceae. Epiphytic mosses are also ideal organisms for species modelling, because of having no roots, they are highly dependent on external environmental conditions. For this purpose, we used the ecological niche modelling approach to define their potential distribution in China and adjacent areas and explore factors that shape this distribution. We used 617 occurrence records of 23 species from six genera within the Orthotrichaceae family. Our results suggest that the distribution of members of the Orthotrichaceae family is predominantly affected by bioclimatic variables, especially bio10 (mean temperature of the warmest quarter), bio15 (precipitation seasonality), bio18 (precipitation of the warmest quarter), bio19 (precipitation of the coldest quarter), bio9 (mean temperature of the driest quarter), and bio2 (mean diurnal range). However, the distribution of particular genera is ruled by a different set of those variables. The distribution of two genera (Leratia and Ulota) is also highly influenced by land cover (especially mixed/other trees), whereas human footprint shows a moderate contribution to models of three genera (Lewinskya, Orthotrichum, Nyholmiella). Based on the occupied climatic niche and distribution patterns, representatives of the studied family are divided into two groups. The ‘western-montane group‘ is characterised by lower temperatures and lower precipitation whereas the ‘eastern-lowland’ group‘ by more humid and warmer conditions. Full article
(This article belongs to the Special Issue New Knowledge in Bryology 2.0)
Show Figures

Figure 1

19 pages, 3743 KiB  
Article
Effects of Moss-Dominated Biocrusts on Soil Microbial Community Structure in an Ionic Rare Earth Tailings Area of Southern China
by Yongsheng Song, Renlu Liu, Liren Yang, Xiaoyu Xiao and Genhe He
Toxics 2022, 10(12), 782; https://doi.org/10.3390/toxics10120782 - 13 Dec 2022
Cited by 8 | Viewed by 2624
Abstract
Moss-dominated biocrusts are widespread in degraded mining ecosystems and play an important role in soil development and ecosystem primary succession. In this work, the soil microbial community structure under moss-dominated biocrusts in ionic rare earth tailings was investigated to reveal the relationship between [...] Read more.
Moss-dominated biocrusts are widespread in degraded mining ecosystems and play an important role in soil development and ecosystem primary succession. In this work, the soil microbial community structure under moss-dominated biocrusts in ionic rare earth tailings was investigated to reveal the relationship between different types of moss and taxonomy/function of microbiomes. The results showed that microbial community structure was significantly influenced by four moss species (Claopodium rugulosifolium, Orthotrichum courtoisii, Polytrichum formosum, and Taxiphyllum giraldii). The microbial assembly was more prominent in Claopodium rugulosifolium soil than in the other moss soils, which covers 482 bacterial genera (including 130 specific genera) and 338 fungal genera (including 72 specific genera), and the specific genus is 40% to 1300% higher than that of the other three mosses. Although only 141 and 140 operational taxonomic units (OTUs) rooted in bacterial and fungal clusters, respectively, were shared by all four mosses grown in ionic rare earth tailings, this core microbiome could represent a large fraction (28.2% and 38.7%, respectively) of all sequence reads. The bacterial population and representation are the most abundant, which mainly includes Sphingomonas, Clostridium_sensu_stricto_1, and unclassified filamentous bacteria and chloroplasts, while the fungi population is relatively singular. The results also show that biocrust dominated by moss has a positive effect on soil microbe activity and soil nutrient conditions. Overall, these findings emphasize the importance of developing moss-dominated biocrusts as hotspots of ecosystem functioning and precious microbial genetic resources in degraded rare-earth mining areas and promoting a better understanding of biocrust ecology in humid climates under global change scenarios. Full article
Show Figures

Figure 1

13 pages, 2132 KiB  
Article
Quo Vadis, Orthotrichum pulchellum? A Journey of Epiphytic Moss across the European Continent
by Vítězslav Plášek, Lukáš Číhal, Frank Müller, Michał Smoczyk, Ivana Marková and Lucie Fialová
Plants 2022, 11(20), 2669; https://doi.org/10.3390/plants11202669 - 11 Oct 2022
Cited by 3 | Viewed by 2356
Abstract
Orthotrichum pulchellum is a species of epiphytic moss in which a significant expansion from the oceanic part of Europe to the east of the continent has been observed in the recent two decades. The improvement in air quality in Central and Eastern Europe, [...] Read more.
Orthotrichum pulchellum is a species of epiphytic moss in which a significant expansion from the oceanic part of Europe to the east of the continent has been observed in the recent two decades. The improvement in air quality in Central and Eastern Europe, but also climate change, probably plays a role in this. This study shows what direction of its spreading we can expect in the future. Ecological niche modeling (ENM) is a widespread method to find out species niches in environmental and geographical space, which allows us to highlight areas that have a higher probability of occurrences of the studied species, based on identifying similar environmental conditions to those already known. We also made predictions for different future scenarios (CMIP5 climatology datasets for the years 2041–2060). Because we were not able to distinguish between historical and newly settled areas, and so, had to use some of the traditional approaches when modeling invasive species, we proposed to use niche clusters based on environmental layers to split the data of all known occurrences and make models separately for each cluster. This approach seems reasonable from the ecological species point of view because using all the morphologically same samples could be misleading. Altogether, 2712 samples were used from three separate niche clusters. For building the models, the Maxent algorithm was used as a well-tested, well-accepted, and commonly used method. Full article
(This article belongs to the Special Issue New Knowledge in Bryology 2.0)
Show Figures

Graphical abstract

36 pages, 6059 KiB  
Article
A Synopsis of Orthotrichum s. lato (Bryophyta, Orthotrichaceae) in China, with Distribution Maps and a Key to Determination
by Vítězslav Plášek, Zuzana Komínková, Ryszard Ochyra, Lucie Fialová, Shuiliang Guo and Mamtimin Sulayman
Plants 2021, 10(3), 499; https://doi.org/10.3390/plants10030499 - 8 Mar 2021
Cited by 7 | Viewed by 4291
Abstract
A total of 46 species and two varieties of the traditionally interpreted genus Orthotrichum are currently known to occur in China. They represent five genera, including Orthotrichum (29 species), Lewinskya (14 species and two varieties), and Nyholmiella and Leratia that are represented by [...] Read more.
A total of 46 species and two varieties of the traditionally interpreted genus Orthotrichum are currently known to occur in China. They represent five genera, including Orthotrichum (29 species), Lewinskya (14 species and two varieties), and Nyholmiella and Leratia that are represented by a single species each. The fifth genus Florschuetziella, also consisting of only one species, F. scaberrima, is an entirely neglected representative of the China’s moss flora. A list of all accepted taxa is presented and for each taxon all literature records and herbarium specimens are enumerated for provinces in which they have been recorded, and their distribution is mapped. A key to determination of Chinese orthotrichalean mosses is presented. A chronological list of 63 species and varieties and two designations, O. catagonioides and O. microsporum which have never been validly published, reported from China in the years 1892–2020 is presented. Four species, Orthotrichum brasii, O. hooglandii, O. elegans and O. gymnostomum are excluded from the bryoflora of China and Lewinskya affinis var. bohemica and Orthotrichum schimperi are recorded for the first time from this country. Phytogeography of the Chinese taxa of the orthotrichalean mosses is considered and they are grouped into eight phytogeographical elements and five sub-elements. Full article
(This article belongs to the Special Issue New Knowledge in Bryology)
Show Figures

Graphical abstract

8 pages, 138 KiB  
Article
Isolation and Characterization of Simple Sequence Repeats (SSR) Markers from the Moss Genus Orthotrichum Using a Small Throughput Pyrosequencing Machine
by Jakub Sawicki, Mirosław Kwaśniewski, Monika Szczecińska, Karolina Chwiałkowska, Monika Milewicz and Vítězslav Plášek
Int. J. Mol. Sci. 2012, 13(6), 7586-7593; https://doi.org/10.3390/ijms13067586 - 19 Jun 2012
Cited by 8 | Viewed by 6871
Abstract
Here, we report the results of next-generation sequencing on the GS Junior system to identify a large number of microsatellites from the epiphytic moss Orthotrichum speciosum. Using a combination of a total (non-enrichment) genomic library and small-scale 454 pyrosequencing, we determined 5382 [...] Read more.
Here, we report the results of next-generation sequencing on the GS Junior system to identify a large number of microsatellites from the epiphytic moss Orthotrichum speciosum. Using a combination of a total (non-enrichment) genomic library and small-scale 454 pyrosequencing, we determined 5382 contigs whose length ranged from 103 to 5445 bp. In this dataset we identified 92 SSR (simple sequence repeats) motifs in 89 contigs. Forty-six of these had flanking regions suitable for primer design. We tested PCR amplification, reproducibility, and the level of polymorphism of 46 primer pairs for Orthotrichum speciosum using 40 individuals from two populations. As a result, the designed primers revealed 35 polymorphic loci with more than two alleles detected. This method is cost- and time-effective in comparison with traditional approaches involving cloning and sequencing. Full article
Back to TopTop