Brain Metastases from Colorectal Cancer: Microenvironment and Molecular Mechanisms
Abstract
:1. Introduction
2. Molecules Associated with Metastatic Potential
2.1. Epidermal Growth Factor Receptor Signaling
2.2. Metastasis Promoter
2.2.1. CD44
2.2.2. Rho GDP Dissociation Inhibitor 2
2.2.3. Smad4
2.2.4. Nonmetastatic Protein 23
2.2.5. T-cell Lymphoma Invasion and Metastasis-Inducing Protein 1
2.2.6. S100A4
2.2.7. Src
3. The Role of the Blood-Brain Barrier in Brain Metastasis
4. Brain Microenvironment and Tumor Metastasis
4.1. Extracellular Matrix
4.1.1. Matrix Metalloproteinases
4.1.2. Heparanase
4.2. Glial Cells
4.2.1. Astrocyte
4.2.2. Microglia
4.3. Blood Supply for Brain Metastases
5. Site-Specific Metastatic Factor
5.1. Chemokine
5.2. MicroRNA
6. Models for Metastatic Brain Tumors
7. Conclusions
Acknowledgments
- Conflict of InterestThe authors declare no conflict of interest.
References
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global Cancer Statistics. CA: Cancer J. Clin 2011, 61, 69–90. [Google Scholar]
- Kruser, T.J.; Chao, S.T.; Elson, P.; Barnett, G.H.; Vogelbaum, M.A.; Angelov, L.; Weil, R.J.; Pelley, R.; Suh, J.H. Multidisciplinary management of colorectal brain metastases—A retrospective study. Cancer 2008, 113, 158–165. [Google Scholar]
- Rahmathulla, G.; Toms, S.A.; Weil, R.J. The molecular biology of brain metastasis. J. Oncol. 2012, 2012. [Google Scholar] [CrossRef]
- Cohen, S.J.; Wang, H.; Rogatko, A.; Meropol, N.J.; Sundermeyer, M.L. Changing Patterns of Bone and Brain Metastases in Patients with Colorectal Cancer. Clin. Colorectal Cancer 2005, 5, 108–113. [Google Scholar]
- Mongan, J.P.; Fadul, C.E.; Cole, B.F.; Zaki, B.I.; Suriawinata, A.A.; Ripple, G.H.; Tosteson, T.D.; Pipas, J.M. Brain metastases from colorectal cancer: Risk factors, incidence, and the possible role of chemokines. Clin. Colorectal Cancer 2009, 8, 100–105. [Google Scholar]
- Jiang, X.-B.; Yang, Q.-Y.; Sai, K.; Zhang, X.-H.; Chen, Z.-P.; Mou, Y.-G. Brain metastases from colorectal carcinoma: A description of 60 cases in a single Chinese cancer center. Tumor Biol 2011, 32, 1249–1256. [Google Scholar]
- Jung, M.; Ahn, J.B.; Chang, J.H.; Suh, C.O.; Hong, S.; Roh, J.K.; Shin, S.J.; Rha, S.Y. Brain metastases from colorectal carcinoma: Prognostic factors and outcome. J. Neuro-Oncol 2011, 101, 49–55. [Google Scholar]
- Farnell, G.F.; Buckner, J.C.; Cascino, T.L.; Oconnell, M.J.; Schomberg, P.J.; Suman, V. Brain metastases from colorectal carcinoma—The long term survivors. Cancer 1996, 78, 711–716. [Google Scholar]
- Lin, B.-R.; Chang, T.-C.; Lee, Y.-C.; Lee, P.-H.; Chang, K.-J.; Liang, J.-T. Pulmonary Resection for Colorectal Cancer Metastases: Duration Between Cancer Onset and Lung Metastasis as an Important Prognostic Factor. Ann. Surg. Oncol 2009, 16, 1026–1032. [Google Scholar]
- Franco-Hernandez, C.; Martinez-Glez, V.; Arjona, D.; de Campos, J.M.; Isla, A.; Gutierrez, M.; Vaquero, J.; Rey, J.A. EGFR sequence variations and real-time quantitative polymerase chain reaction analysis of gene dosage in brain metastases of solid tumors. Cancer Genet. Cytogenet 2007, 173, 63–67. [Google Scholar]
- Scartozzi, M.; Bearzi, I.; Berardi, R.; Mandolesi, A.; Fabris, G.; Cascinu, S. Epidermal growth factor receptor (EGFR) status in primary colorectal tumors does not correlate with EGFR expression in related metastatic sites: Implications for treatment with EGFR-targeted monoclonal antibodies. J. Clin. Oncol 2004, 22, 4772–4778. [Google Scholar]
- Barault, L.; Veyrie, N.; Jooste, V.; Lecorre, D.; Chapusot, C.; Ferraz, J.-M.; Lievre, A.; Cortet, M.; Bouvier, A.-M.; Rat, P.; et al. Mutations in the RAS-MAPK, PI(3)K (phosphatidylinositol-3-OH kinase) signaling network correlate with poor survival in a population-based series of colon cancers. Int. J. Cancer 2008, 122, 2255–2259. [Google Scholar]
- Tie, J.; Lipton, L.; Desai, J.; Gibbs, P.; Jorissen, R.N.; Christie, M.; Drummond, K.J.; Thomson, B.N.J.; Usatoff, V.; Evans, P.M.; et al. KRAS Mutation Is Associated with Lung Metastasis in Patients with Curatively Resected Colorectal Cancer. Clin. Cancer Res 2011, 17, 1122–1130. [Google Scholar]
- Resnick, D.K.; Resnick, N.M.; Welch, W.C.; Cooper, D.L. Differential expressions of CD44 variants in tumors affecting the central nervous system. Molecular Diagn 1999, 4, 219–232. [Google Scholar]
- Bendardaf, R.; Algars, A.; Elzagheid, A.; Korkeila, E.; Ristamaki, R.; Lamlum, H.; Collan, Y.; Syrjanen, K.; Pyrhonen, S. Comparison of CD44 expression in primary tumours and metastases of colorectal cancer. Oncol. Rep 2006, 16, 741–746. [Google Scholar]
- Zaytseva, Y.Y.; Rychahou, P.G.; Gulhati, P.; Elliott, V.A.; Mustain, W.C.; O’Connor, K.; Morris, A.J.; Sunkara, M.; Weiss, H.L.; Lee, E.Y.; et al. Inhibition of Fatty Acid Synthase Attenuates CD44-Associated Signaling and Reduces Metastasis in Colorectal Cancer. Cancer Res 2012, 72, 1504–1517. [Google Scholar]
- Seraj, M.J.; Harding, M.A.; Gildea, J.J.; Welch, D.R.; Theodorescu, D. The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines. Clin. Exp. Metastasis 2000, 18, 519–525. [Google Scholar]
- Harding, M.A.; Theodorescu, D. RhoGDI2: A new metastasis suppressor gene: Discovery and clinical translation. Urol. Oncol 2007, 25, 401–406. [Google Scholar]
- Agarwal, N.K.; Chen, C.H.; Cho, H.; Boulbès, D.R.; Spooner, E.; Sarbassov, D.D. Rictor regulates cell migration by suppressing RhoGDI2. Oncogene 2012. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Zhang, X.; Zeng, Y.; Liang, L.; Ding, Y. Overexpression of RhoGDI2 correlates with tumor progression and poor prognosis in colorectal carcinoma. Ann. Surg. Oncol 2012, 19, 145–153. [Google Scholar]
- Fujita, A.; Shida, A.; Fujioka, S.; Kurihara, H.; Okamoto, T.; Yanaga, K. Clinical significance of Rho GDP dissociation inhibitor 2 in colorectal carcinoma. Int. J. Clin. Oncol 2012, 17, 137–142. [Google Scholar]
- Li, J.-F.; Zheng, Z.; Yu, B.-Q.; Qu, Y.; Zhu, Z.-G.; Liu, B.-Y. Screening and identification of genes associated with multi-drug resistance in colonic cancer. Zhonghua Wei Chang Wai Ke Za Zhi 2012, 15, 388–391. [Google Scholar]
- Levy, L.; Hill, C.S. Smad4 dependency defines two classes of transforming growth factor {beta} (TGF-{beta}) target genes and distinguishes TGF-{beta}-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol. Cell Biol 2005, 25, 8108–8125. [Google Scholar]
- Zhang, B.; Halder, S.K.; Kashikar, N.D.; Cho, Y.J.; Datta, A.; Gorden, D.L.; Datta, P.K. Antimetastatic role of Smad4 signaling in colorectal cancer. Gastroenterology 2010, 138, 969–980. [Google Scholar]
- Alhopuro, P.; Alazzouzi, H.; Sammalkorpi, H.; Davalos, V.; Salovaara, R.; Hemminki, A.; Jarvinen, H.; Mecklin, J.P.; Schwartz, S., Jr; Aaltonen, L.A.; et al. SMAD4 levels and response to 5-fluorouracil in colorectal cancer. Clin. Cancer Res. 2005, 11, 6311–6316. [Google Scholar]
- Losi, L.; Bouzourene, H.; Benhattar, J. Loss of Smad4 expression predicts liver metastasis in human colorectal cancer. Oncol. Rep 2007, 17, 1095–1099. [Google Scholar] [Green Version]
- Shi, Q.; Zhong, Y.S.; Yao, L.Q.; Li, Q.L.; Ren, Z.; Liu, X.P.; Shi, F.M. Down-regulation of Smad4 enhances proliferation and invasion of colorectal carcinoma HCT116 cells and up-regulates Id2. Mol. Med. Rep 2012, 5, 89–95. [Google Scholar] [Green Version]
- Papageorgis, P.; Cheng, K.; Ozturk, S.; Gong, Y.; Lambert, A.W.; Abdolmaleky, H.M.; Zhou, J.R.; Thiagalingam, S. Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Res 2011, 71, 998–1008. [Google Scholar] [Green Version]
- Marino, N.; Marshall, J.C.; Steeg, P.S. Protein-protein interactions: A mechanism regulating the anti-metastatic properties of Nm23-H1. Naunyn. Schmiedebergs Arch. Pharmacol 2011, 384, 351–362. [Google Scholar] [Green Version]
- Suzuki, E.; Ota, T.; Tsukuda, K.; Okita, A.; Matsuoka, K.; Murakami, M.; Doihara, H.; Shimizu, N. nm23-H1 reduces in vitro cell migration and the liver metastatic potential of colon cancer cells by regulating myosin light chain phosphorylation. Int. J. Cancer 2004, 108, 207–211. [Google Scholar] [Green Version]
- Stark, A.M.; Tongers, K.; Maass, N.; Mehdorn, H.M.; Held-Feindt, J. Reduced metastasis-suppressor gene mRNA-expression in breast cancer brain metastases. J. Cancer Res. Clin. Oncol 2005, 131, 191–198. [Google Scholar] [Green Version]
- Elagoz, S.; Egilmez, R.; Koyuncu, A.; Muslehiddinoglu, A.; Arici, S. The intratumoral microvessel density and expression of bFGF and nm23-H1 in colorectal cancer. Pathol. Oncol. Res 2006, 12, 21–27. [Google Scholar] [Green Version]
- Oliveira, L.A.; Artigiani-Neto, R.; Waisberg, D.R.; Fernandes, L.C.; de Lima, F.O.; Waisberg, J. NM23 protein expression in colorectal carcinoma using TMA (tissue microarray): Association with metastases and survival. Arq. Gastroenterol. 2010, 47, 361–367. [Google Scholar] [Green Version]
- Sarris, M.; Lee, C.S. nm23 protein expression in colorectal carcinoma metastasis in regional lymph nodes and the liver. Eur. J. Surg. Oncol 2001, 27, 170–174. [Google Scholar] [Green Version]
- Habets, G.G.M.; Vanderkammen, R.A.; Stam, J.C.; Michiels, F.; Collard, J.G. Sequence of human invasion-inducing TIAM1 gene, its conservation in evolution and its expression in tumor-cell lines of lines of different tissue origin. Oncogene 1995, 10, 1371–1376. [Google Scholar] [Green Version]
- Ehler, E.; van Leeuwen, F.; ollard, J.G.; Salinas, P.C. Expression ofTiam-1in the Developing Brain Suggests a Role for the Tiam-1-Rac Signaling Pathway in Cell Migration and Neurite Outgrowth. Mol. Cell Neurosci 1997, 9, 1–12. [Google Scholar] [Green Version]
- Minard, M.E.; Ellis, L.M.; Gallick, G.E. Tiam1 regulates cell adhesion, migration and apoptosis in colon tumor cells. Clin. Exp. Metastasis 2006, 23, 301–313. [Google Scholar] [Green Version]
- Minard, M.E.; Herynk, M.H.; Collard, J.G.; Gallick, G.E. The guanine nucleotide exchange factor Tiam1 increases colon carcinoma growth at metastatic sites in an orthotopic nude mouse model. Oncogene 2005, 24, 2568–2573. [Google Scholar] [Green Version]
- Liu, L.; Wu, D.-H.; Ding, Y.-Q. Tiam1 gene expression and its significance in colorectal carcinoma. World J. Gastroenterol 2005, 11, 705–707. [Google Scholar] [Green Version]
- Mertens, A.E.; Pegtel, D.M.; Collard, J.G. Tiam1 takes PARt in cell polarity. Trends Cell Biol 2006, 16, 308–316. [Google Scholar] [Green Version]
- Sherbet, G.V.; Lakshmi, M.S. S100A4 (MTS1) calcium binding protein in cancer growth, invasion and metastasis. Anticancer Res 1998, 18, 2415–2421. [Google Scholar] [Green Version]
- Gongoll, S.; Peters, G.; Mengel, M.; Piso, P.; Klempnauer, J.; Kreipe, H.; Von Wasielewski, R. Prognostic significance of calcium-binding protein S100A4 in colorectal cancer. Gastroenterol 2002, 123, 1478–1484. [Google Scholar] [Green Version]
- Kwak, J.M.; Lee, H.J.; Kim, S.H.; Kim, H.K.; Mok, Y.J.; Park, Y.T.; Choi, J.S.; Moon, H.Y. Expression of protein S100A4 is a predictor of recurrence in colorectal cancer. World J. Gastroenterol 2010, 16, 3897–3904. [Google Scholar] [Green Version]
- Nishioku, T.; Furusho, K.; Tomita, A.; Ohishi, H.; Dohgu, S.; Shuto, H.; Yamauchi, A.; Kataoka, Y. Potential role for S100A4 in the disruption of the blood-brain barrier in collagen-induced arthritic mice, and animal model of rheumatoid arthritis. Neuroscience 2011, 189, 286–292. [Google Scholar] [Green Version]
- Irby, R.B.; Mao, W.G.; Coppola, D.; Kang, J.; Loubeau, J.M.; Trudeau, W.; Karl, R.; Fujita, D.J.; Jove, R.; Yeatman, T.J. Activating SRC mutation in a subset of advanced human colon cancers. Nat. Genet 1999, 21, 187–190. [Google Scholar] [Green Version]
- Aligayer, H.; Boyd, D.D.; Heiss, M.M.; Abdalla, E.K.; Curley, S.A.; Gallick, G.E. Activation of Src kinase in primary colorectal carcinoma: An indicator of poor clinical prognosis. Cancer 2002, 94, 344–351. [Google Scholar] [Green Version]
- Maurer, G.D.; Leupold, J.H.; Schewe, D.M.; Biller, T.; Kates, R.E.; Hornung, H.-M.; Lau-Werner, U.; Post, S.; Allgayer, H. Analysis of specific transcriptional regulators as early predictors of independent prognostic relevance in resected colorectal cancer. Clin. Cancer Res 2007, 13, 1123–1132. [Google Scholar] [Green Version]
- de Heer, P.; Koudijs, M.M.; van de Velde, C.J.H.; Aalbers, R.I.J.M.; Tollenaar, R.A.E.M.; Putter, H.; Morreau, J.; van de Water, B.; Kuppen, P.J.K. Combined expression of the non-receptor protein tyrosine kinases FAK and Src in primary colorectal cancer is associated with tumor recurrence and metastasis formation. Eur. J. Surg. Oncol 2008, 34, 1253–1261. [Google Scholar] [Green Version]
- Sirvent, A.; Benistant, C.; Pannequin, J.; Veracini, L.; Simon, V.; Bourgaux, J.F.; Hollande, F.; Cruzalegui, F.; Roche, S. Src family tyrosine kinases-driven colon cancer cell invasion is induced by Csk membrane delocalization. Oncogene 2010, 29, 1303–1315. [Google Scholar] [Green Version]
- Nam, J.S.; Ino, Y.; Sakamoto, M.; Hirohashi, S. Src family kinase inhibitor PP2 restores the E-cadherin/catenin cell adhesion system in human cancer cells and reduces cancer metastasis. Clin. Cancer Res 2002, 8, 2430–2436. [Google Scholar] [Green Version]
- Boyd, D.D.; Wang, H.; Avila, H.; Parikh, N.U.; Kessler, H.; Magdolen, V.; Gallick, G.E. Combination of an src kinase inhibitor with a novel pharmacological antagonist of the urokinase receptor diminishes in vitro colon cancer invasiveness. Clin. Cancer Res 2004, 10, 1545–1555. [Google Scholar] [Green Version]
- Kopetz, S.; Lesslie, D.P.; Dallas, N.A.; Park, S.I.; Johnson, M.; Parikh, N.U.; Kim, M.P.; Abbruzzese, J.L.; Ellis, L.M.; Chandra, J.; Gallick, G.E. Synergistic Activity of the Src Family Kinase Inhibitor Dasatinib and Oxaliplatin in Colon Carcinoma Cells Is Mediated by Oxidative Stress. Cancer Res 2009, 69, 3842–3849. [Google Scholar] [Green Version]
- Petty, M.A.; Lo, E.H. Junctional complexes of the blood-brain barrier: Permeability changes in neuroinflammation. Prog. Neurobiol 2002, 68, 311–323. [Google Scholar] [Green Version]
- Meijer, O.C.; de Lange, E.C.M.; Breimer, D.D.; de Boer, A.G.; Workel, J.O.; de Kloet, E.R. Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdr1A P-glycoprotein knockout mice. Endocrinology 1998, 139, 1789–1793. [Google Scholar] [Green Version]
- Loscher, W.; Potschka, H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog. Neurobiol 2005, 76, 22–76. [Google Scholar] [Green Version]
- Butt, A.M.; Jones, H.C.; Abbott, N.J. Electrical-resistance across the blood-brain-barrier in anesthetized rats—a developmental study. J. Physiol. (London) 1990, 429, 47–62. [Google Scholar] [Green Version]
- Deli, M.A.; Abraham, C.S.; Kataoka, Y.; Niwa, M. Permeability studies on in vitro in vitro blood-brain barrier models: Physiology, pathology, and pharmacology. Cell Mol. Neurobiol 2005, 25, 59–127. [Google Scholar] [Green Version]
- Bart, J.; Groen, H.J.M.; Hendrikse, N.H.; van der Graaf, W.T.A.; Vaalburg, W.; de Vries, E.G.E. The blood-brain barrier and oncology: New insights into function and modulation. Cancer Treat. Rev 2000, 26, 449–462. [Google Scholar] [Green Version]
- Harhaj, N.S.; Antonetti, D.A. Regulation of tight junctions and loss of barrier function in pathophysiology. Int. J. Biochem. Cell Biol 2004, 36, 1206–1237. [Google Scholar] [Green Version]
- Lee, B.C.; Lee, T.H.; Avraham, S.; Avraham, H.K. Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1 alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol. Cancer Res 2004, 2, 327–338. [Google Scholar] [Green Version]
- Ottaiano, A.; Franco, R.; Talamanca, A.A.; Liguori, G.; Tatangelo, F.; Delrio, P.; Nasti, G.; Barletta, E.; Facchini, G.; Daniele, B.; et al. Overexpression of both CXC chemokine receptor 4 and vascular endothelial growth factor proteins predicts early distant relapse in stage II–III colorectal cancer patients. Clin. Cancer Res 2006, 12, 2795–2803. [Google Scholar] [Green Version]
- Yoshitake, N.; Fukui, H.; Yamagishi, H.; Sekikawa, A.; Fujii, S.; Tomita, S.; Ichikawa, K.; Imura, J.; Hiraishi, H.; Fujimori, T. Expression of SDF-1 alpha and nuclear CXCR4 predicts lymph node metastasis in colorectal cancer. Br. J. Cancer 2008, 98, 1682–1689. [Google Scholar] [Green Version]
- Lee, T.H.; Avraham, H.K.; Jiang, S.X.; Avraham, S. Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J. Biol. Chem 2003, 278, 5277–5284. [Google Scholar] [Green Version]
- Wang, W.; Dentler, W.L.; Borchardt, R.T. VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly. Am. J. Physiol.-Heart Circul. Physiol 2001, 280, H434–H440. [Google Scholar] [Green Version]
- Harhaj, N.S.; Felinski, E.A.; Wolpert, E.B.; Sundstrom, J.M.; Gardner, T.W.; Antonetti, D.A. VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability. Invest. Ophthalmol. Vis. Sci 2006, 47, 5106–5115. [Google Scholar] [Green Version]
- Bonneh-Barkay, D.; Wiley, C.A. Brain Extracellular Matrix in Neurodegeneration. Brain Pathol 2009, 19, 573–585. [Google Scholar] [Green Version]
- Hotary, K.; Li, X.-Y.; Allen, E.; Stevens, S.L.; Weiss, S.J. A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes Dev 2006, 20, 2673–2686. [Google Scholar] [Green Version]
- Mook, O.R.F.; Frederiks, W.M.; Van Noorden, C.J.F. The role of gelatinases in colorectal cancer progression and metastasis. Biochim. Biophys. Acta-Rev. Cancer 2004, 1705, 69–89. [Google Scholar] [Green Version]
- Zucker, S.; Vacirca, J. Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev 2004, 23, 101–117. [Google Scholar] [Green Version]
- Arnold, S.M.; Young, A.B.; Munn, R.K.; Patchell, R.A.; Nanayakkara, N.; Markesbery, W.R. Expression of p53, bcl-2, E-cadherin, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinases-1 in paired primary tumors and brain metastasis. Clin. Cancer Res 1999, 5, 4028–4033. [Google Scholar] [Green Version]
- Xie, T.X.; Huang, F.J.; Aldape, K.D.; Kang, S.H.; Liu, A.G.; Gershenwald, J.E.; Xie, K.P.; Sawaya, R.; Huang, S.Y. Activation of Stat3 in human melanoma promotes brain metastasis. Cancer Res 2006, 66, 3188–3196. [Google Scholar] [Green Version]
- Nathoo, N.; Chahlavi, A.; Barnett, G.H.; Toms, S.A. Pathobiology of brain metastases. J. Clin. Pathol 2005, 58, 237–242. [Google Scholar] [Green Version]
- Ridgway, L.D.; Wetzel, M.D.; Marchetti, D. Modulation of GEF-H1 Induced Signaling by Heparanase in Brain Metastatic Melanoma Cells. J. Cell Biochem 2010, 111, 1299–1309. [Google Scholar] [Green Version]
- Ridgway, L.D.; Wetzel, M.D.; Ngo, J.A.; Erdreich-Epstein, A.; Marchetti, D. Heparanase-induced GEF-H1 signaling regulates the cytoskeletal dynamics of brain metastatic breast cancer cells. Mol. Cancer Res 2012, 10, 689–702. [Google Scholar] [Green Version]
- Sato, T.; Yamaguchi, A.; Goi, T.; Hirono, Y.; Takeuchi, K.; Katayama, K.; Matsukawa, S. Heparanase expression in human colorectal cancer and its relationship to tumor angiogenesis, hernatogenous metastasis, and prognosis. J. Surg. Oncol 2004, 87, 174–181. [Google Scholar] [Green Version]
- Langley, R.R.; Fan, D.; Guo, L.X.; Zhang, C.Y.; Lin, Q.T.; Brantley, E.C.; McCarty, J.H.; Fidler, I.J. Generation of an immortalized astrocyte cell line from H-2K(b)-tsA58 mice to study the role of astrocytes in brain metastasis. Int. J. Oncol 2009, 35, 665–672. [Google Scholar] [Green Version]
- Lin, Q.T.; Balasubramanian, K.; Fan, D.; Kim, S.J.; Guo, L.X.; Wang, H.; Bar-Eli, M.; Aldape, K.D.; Fidler, I.J. Reactive Astrocytes Protect Melanoma Cells from Chemotherapy by Sequestering Intracellular Calcium through Gap Junction Communication Channels. Neoplasia 2010, 12, 748–754. [Google Scholar] [Green Version]
- Marchetti, D.; Li, J.; Shen, R. Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase. Cancer Res 2000, 60, 4767–4770. [Google Scholar] [Green Version]
- Mendes, O.; Kim, H.T.; Lungu, G.; Stoica, G. MMP2 role in breast cancer brain metastasis development and its regulation by TIMP2 and ERK1/2. Clin. Exp. Metastasis 2007, 24, 341–351. [Google Scholar] [Green Version]
- Noda, M.; Seike, T.; Fujita, K.; Yamakawa, Y.; Kido, M.; Iguchi, H. The role of immune cells in brain metastasis of lung cancer cells and neuron-tumor cell interaction. Ross. Fiziol. Zh. Im. I. M. Sechenova 2009, 95, 1386–1396. [Google Scholar] [Green Version]
- Murata, J.; RicciardiCastagnoli, P.; Mange, P.D.L.; Martin, F.; JuilleratJeanneret, L. Microglial cells induce cytotoxic effects toward colon carcinoma cells: Measurement of tumor cytotoxicity with a gamma-glutamyl transpeptidase assay. Int. J. Cancer 1997, 70, 169–174. [Google Scholar] [Green Version]
- Murata, J.I.; Corradin, S.B.; Janzer, R.C.; Juilleratjeanneret, L. Tumor-cells suppress cytokine-induced nitric-oside (NO) production in cerebral endothelial-cells. Int. J. Cancer 1994, 59, 699–705. [Google Scholar] [Green Version]
- Fidler, I.J.; Yano, S.; Zhang, R.D.; Fujimaki, T.; Bucana, C.D. The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol 2002, 3, 53–57. [Google Scholar] [Green Version]
- Yano, S.; Shinohara, H.; Herbst, R.S.; Kuniyasu, H.; Bucana, C.D.; Ellis, L.M.; Davis, D.W.; McConkey, D.J.; Fidler, I.J. Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res 2000, 60, 4959–4967. [Google Scholar] [Green Version]
- Tomisaki, S.; Ohno, S.; Ichiyoshi, Y.; Kuwano, H.; Maehara, Y.; Sugimachi, K. Microvessel quantification and its possible relation with liver metastasis in colorectal cancer. Cancer 1996, 77, 1722–1728. [Google Scholar] [Green Version]
- Ben-Baruch, A. Organ selectivity in metastasis: Regulation by chemokines and their receptors. Clin. Exp. Metastasis 2008, 25, 345–356. [Google Scholar] [Green Version]
- Chen, G.; Wang, Z.; Liu, X.Y.; Liu, F.Y. High-level CXCR4 expression correlates with brain-specific metastasis of non-small cell lung cancer. World J. Surg 2011, 35, 56–61. [Google Scholar] [Green Version]
- Brand, S.; Dambacher, J.; Beigel, F.; Olszak, T.; Diebold, J.; Otte, J.M.; Goke, B.; Eichhorst, S.T. CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation. Exp. Cell Res 2005, 310, 117–130. [Google Scholar] [Green Version]
- Muller, A.; Homey, B.; Soto, H.; Ge, N.F.; Catron, D.; Buchanan, M.E.; McClanahan, T.; Murphy, E.; Yuan, W.; Wagner, S.N.; et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001, 410, 50–56. [Google Scholar] [Green Version]
- Matsusue, R.; Kubo, H.; Hisamori, S.; Okoshi, K.; Takagi, H.; Hida, K.; Nakano, K.; Itami, A.; Kawada, K.; Nagayama, S.; Sakai, Y. Hepatic stellate cells promote liver metastasis of colon cancer cells by the action of SDF-1/CXCR4 axis. Ann. Surg. Oncol 2009, 16, 2645–2653. [Google Scholar] [Green Version]
- Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebet, B.L.; Mak, R.H.; Ferrando, A.A.; et al. MicroRNA expression profiles classify human cancers. Nature 2005, 435, 834–838. [Google Scholar] [Green Version]
- Schetter, A.J.; Leung, S.Y.; Sohn, J.J.; Zanetti, K.A.; Bowman, E.D.; Yanaihara, N.; Yuen, S.T.; Chan, T.L.; Kwong, D.L.W.; Au, G.K.H.; et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008, 299, 425–436. [Google Scholar] [Green Version]
- Lu, Y.; Govindan, R.; Wang, L.; Liu, P.Y.; Goodgame, B.; Wen, W.D.; Sezhiyan, A.; Pfeifer, J.; Li, Y.F.; Hua, X.; et al. MicroRNA profiling and prediction of recurrence/relapse-free survival in stage I lung cancer. Carcinogenesis 2012, 33, 1046–1054. [Google Scholar] [Green Version]
- Arora, S.; Ranade, A.R.; Tran, N.L.; Nasser, S.; Sridhar, S.; Korn, R.L.; Ross, J.T.D.; Dhruv, H.; Foss, K.M.; Sibenaller, Z.; et al. MicroRNA-328 is associated with (non-small) cell lung cancer (NSCLC) brain metastasis and mediates NSCLC migration. Int. J. Cancer 2011, 129, 2621–2631. [Google Scholar] [Green Version]
- Gaziel, A.; Menendez, S.; Segura, M.F.; Zakrzewski, J.; Rose, A.; Kerbel, R.S.; Darvishian, F.; Cohen, D.; Osman, I.; Hernando, E. Identification of miRNAs that contribute to melanoma brain metastasis. Proceedings of the 101st Annual Meeting of the American Association for Cancer Research, Washington, PA, USA, 17–21 April 2010. Abstract 1946.
- Li, Z.Y.; Gu, X.D.; Fang, Y.T.; Xiang, J.B.; Chen, Z.Y. microRNA expression profiles in human colorectal cancers with brain metastases. Oncol. Lett 2012, 3, 346–350. [Google Scholar] [Green Version]
- Saito, N.; Hatori, T.; Murata, N.; Zhang, Z.-A.; Nonaka, H.; Aoki, K.; Iwabuchi, S.; Ueda, M. Comparison of metastatic brain tumour models using three different methods: The morphological role of the pia mater. Int. J. Exp. Pathol 2008, 89, 38–44. [Google Scholar] [Green Version]
- Bullard, D.E.; Schold, S.C.; Bigner, S.H.; Bigner, D.D. Growth and chemotherapeutic response in athymic mice of tumors arising from human glioma-derived cell-lines. J. Neuropathol. Exp. Neurol 1981, 40, 410–427. [Google Scholar] [Green Version]
- Yoshida, T.; Shimizu, K.; Ushio, Y.; Hayakawa, T.; Arita, N.; Mogami, H. Development of experimental meningeal glimatosis models in rats. J. Neurosurg 1986, 65, 503–507. [Google Scholar] [Green Version]
- Schackert, G.; Fidler, I.J. Site-specific metastasis of mouse melanomas and a fibro-sarcoma in the brain or meninges of syngeneic animals. Cancer Res 1988, 48, 3478–3484. [Google Scholar] [Green Version]
- Kim, L.S.; Huang, S.Y.; Lu, W.X.; Lev, D.C.; Price, J.E. Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin. Exp. Metastasis 2004, 21, 107–118. [Google Scholar] [Green Version]
- Mendes, O.; Kim, H.T.; Stoica, G. Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clin. Exp. Metastasis 2005, 22, 237–246. [Google Scholar] [Green Version]
- Zhang, Z.; Hatori, T.; Nonaka, H. An experimental model of brain metastasis of lung carcinoma. Neuropathology 2008, 28, 24–28. [Google Scholar] [Green Version]
- Saito, N.; Hatori, T.; Murata, N.; Zhang, Z.A.; Ishikawa, F.; Nonaka, H.; Iwabuchi, S.; Samejima, H. A double three-step theory of brain metastasis in mice: The role of the pia mater and matrix metalloproteinases. Neuropathol. Appl. Neurobiol 2007, 33, 288–298. [Google Scholar] [Green Version]
- Rashidi, B.; Yang, M.; Jiang, P.; Baranov, E.; An, Z.L.; Wang, X.; Moossa, A.R.; Hoffman, R.M. A highly metastatic Lewis lung carcinoma orthotopic green fluorescent protein model. Clin. Exp. Metastasis 2000, 18, 57–60. [Google Scholar] [Green Version]
- Weilemann, F.; Steinmetz, A.; Kirsch, M.; Buttler, A.; Kunze, S.; Kuhlisch, E.; Schackert, H.K.; Schackert, G. Prevention of brain metastasis formation by local expression of interleukin-4 or hemagglutinin antigen. Zentralbl. Neurochir 2003, 64, 65–70. [Google Scholar] [Green Version]
- Wang, J.; Daphu, I.; Pedersen, P.H.; Miletic, H.; Hovland, R.; Mork, S.; Bjerkvig, R.; Tiron, C.; McCormack, E.; Micklem, D.; et al. A novel brain metastases model developed in immunodeficient rats closely mimics the growth of metastatic brain tumours in patients. Neuropathol. Appl. Neurobiol 2011, 37, 189–205. [Google Scholar] [Green Version]
| OMIM No. | Gene | Chromosome Location | Function(s) of Protein |
|---|---|---|---|
| 107269 | CD44 | 11pter-p13 | An integral cell membrane glycoprotein with a postulated role in matrix adhesion lymphocyte activation and lymph node homing |
| 114210 | S100A4 | 1q21.3 | Increases endothelial cell motility, increases invasive properties through deregulation of the extracellular matrix |
| 120361 | MMP-9 | 20q13.12 | Extracellular matrix degradation |
| 156490 | NM23 | 17q21.3 | A histidine kinase related to cell proliferative activity by phosphorylating KSR and leading to decreased ERK1/2 activation |
| 190070 | KRAS | 12p12.1 | Encode GDP/GTP-binding proteins involved in signal transduction in cellular proliferation, differentiation, and senescence |
| 190090 | SRC | 20q11.23 | Regulating cell division, motility, adhesion, angiogenesis, and survival |
| 192240 | VEGF | 6p21.1 | Angiogenic growth factor, controlling blood vessel formation and permeability |
| 600687 | TIAM1 | 21q22.11 | Rac-specific guanine nucleotide exchange factor, directly mediate Ras activation of Rac. |
| 600993 | SMAD4 | 18q21.2 | Transcription factor, pivotal role in signal transduction of TGF-β |
| RHOGDI2 | 11p11.2 | Regulates function of Rho and Rac, involved in cell signaling, proliferation, cytoskeletal organization, and secretion |
| Authors | Methods of Modeling | Tumor Cell Lines | Animals | Primary Tumors |
|---|---|---|---|---|
| Bullard, D.E. [98] | Intracerebral injection | D-54 MG, U-118 MG, U-251 MG | nu/nu genotype, NIH Swiss, BALB/c | Gliomatosis |
| Yoshida, T. [99] | Intracisternal inoculation | C6, 9L glioma | Wistar, Fischer 344 rats | Meningeal gliomatosis |
| Schackert, G. [100] | Intracarotid injection | K-1735, B16 melanoma UV-2237 fibrosarcoma | C3H/HeN, C57BL/6, C57BL/6 × C3H/HeN F1 | Melanoma and fibrosarcoma |
| Kim, L.S. [101] | Intracarotid injection | MDA-MB-231 | NCr–nu/nu mice | Breast cancer |
| Mendes, O. [102] | Left ventricular injection | ENU 1564 | BD-IV rats | Breast cancer |
| Zhang, Z. [103], Saito, N. [104] | Intracarotid injection | Lewis lung carcinoma cells | C57BL/6NCrj mice | Lung cancer |
| Rashidi, B. [105] | SOI (right lung) | Lewis lung carcinoma cells | BALB/c mice | Lung cancer |
| Yano, S. [84] | Intracarotid injection | Colon carcinoma KM12SM | NCr–nu/nu mice | Colon carcinoma |
| Weilemann, F. [106] | Intracarotid injection | CT-26 | BALB/c mice | Colon carcinoma |
| Wang, J. [107] | Intracerebral implantation | pts brain metastaes | rnu/rnu Rowett rats | Ovary, colon, lung cancer, and melanoma |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zang, Y.-W.; Gu, X.-D.; Xiang, J.-B.; Chen, Z.-Y. Brain Metastases from Colorectal Cancer: Microenvironment and Molecular Mechanisms. Int. J. Mol. Sci. 2012, 13, 15784-15800. https://doi.org/10.3390/ijms131215784
Zang Y-W, Gu X-D, Xiang J-B, Chen Z-Y. Brain Metastases from Colorectal Cancer: Microenvironment and Molecular Mechanisms. International Journal of Molecular Sciences. 2012; 13(12):15784-15800. https://doi.org/10.3390/ijms131215784
Chicago/Turabian StyleZang, Yi-Wen, Xiao-Dong Gu, Jian-Bin Xiang, and Zong-You Chen. 2012. "Brain Metastases from Colorectal Cancer: Microenvironment and Molecular Mechanisms" International Journal of Molecular Sciences 13, no. 12: 15784-15800. https://doi.org/10.3390/ijms131215784
APA StyleZang, Y.-W., Gu, X.-D., Xiang, J.-B., & Chen, Z.-Y. (2012). Brain Metastases from Colorectal Cancer: Microenvironment and Molecular Mechanisms. International Journal of Molecular Sciences, 13(12), 15784-15800. https://doi.org/10.3390/ijms131215784
