Next Article in Journal
Metal-Induced Oxidative Stress and Plant Mitochondria
Next Article in Special Issue
Eighteen Years of Molecular Genotyping the Hemophilia Inversion Hotspot: From Southern Blot to Inverse Shifting-PCR
Previous Article in Journal
Assessing Molecular Signature for Some Potential Date (Phoenix dactylifera L.) Cultivars from Saudi Arabia, Based on Chloroplast DNA Sequences rpoB and psbA-trnH
Previous Article in Special Issue
The Role of microRNAs in the Biology of Rare Diseases
Article Menu

Export Article

Int. J. Mol. Sci. 2011, 12(10), 6881-6893; doi:10.3390/ijms12106881

Malignant Catarrhal Fever: Understanding Molecular Diagnostics in Context of Epidemiology
Animal Disease Research Unit, USDA-Agricultural Research Service, Washington State University, Pullman, WA 99164, USA
Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
Author to whom correspondence should be addressed.
Received: 24 August 2011; in revised form: 22 September 2011 / Accepted: 10 October 2011 / Published: 18 October 2011


: Malignant catarrhal fever (MCF) is a frequently fatal disease, primarily of ruminants, caused by a group of gammaherpesviruses. Due to complexities of pathogenesis and epidemiology in various species, which are either clinically-susceptible or reservoir hosts, veterinary clinicians face significant challenges in laboratory diagnostics. The recent development of specific assays for viral DNA and antibodies has expanded and improved the inventory of laboratory tests and opened new opportunities for use of MCF diagnostics. Issues related to understanding and implementing appropriate assays for specific diagnostic needs must be addressed in order to take advantage of molecular diagnostics in the laboratory.
malignant catarrhal fever; diagnosis; cELISA; PCR; gammaherpesvirus; infection

1. Introduction

Malignant catarrhal fever (MCF) is a clinically dramatic and often lethal infection of many species of Bovidae and Cervidae [13] caused by a member of the MCF virus (MCFV) group [2,4] that belongs to the genus Macavirus in the subfamily Gammaherpesvirinae [2,4]; these viruses exist in nature as inapparent infections in well adapted hosts. Currently, 10 members within the MCFV group have been identified, and six of them are clearly associated with clinical disease [4]. Alcelaphine herpesvirus 1 (AlHV-1) and ovine herpesvirus 2 (OvHV-2) are the major causative agents responsible for wildebeest-associated MCF (WA-MCF) and sheep-associated MCF (SA-MCF), respectively. AlHV-1 is endemic in wildebeest, in which it is a subclinical infection [5]. Domestic and wild sheep are reservoirs for OvHV-2 [3]. Other MCFVs known to cause disease include caprine herpesvirus-2 (CpHV-2), which is endemic in goats [6,7], an MCFV of unknown origin causing disease in white-tailed deer (MCFV-WTD) [8,9], ibex MCFV (MCFV-ibex) carried by ibex [10], and an AlHV-2-like virus carried by Jackson hartebeest [11]. The remaining four viruses carried by roan antelope [12], oryx, muskox [10], and aoudad [4] have not yet been associated with disease. MCF is increasingly being recognized as the cause of significant economic losses in several major ruminant species [1315], as well as a threat to certain other susceptible species held in mixed-species confinement [1618]. Due to the complexities of pathogenesis and its epidemiology, clinicians and veterinarians face significant challenges in diagnosing MCFV infection and/or disease. However, recently developed molecular diagnostic assays have improved the detection and differentiation of MCF causative viruses, and increased accuracy of laboratory assays in confirming MCFV infection and/or disease in various species. Understanding the appropriate application of newly developed MCFV diagnostic assays for each epidemiological situation is necessary to take advantage of these molecular diagnostics. The situational application of MCFV diagnostics in veterinary diagnostic laboratories is the focus of this mini review.

2. Infection, Disease and Clinical Epidemiology

Malignant catarrhal fever occurs in clinically susceptible hosts, such as cattle, bison, deer and pigs when a sufficient dose of an MCFV is transmitted from a reservoir host. Disease usually has an acute onset and involves a spectrum of symptoms that may include corneal opacity, profuse ocular and nasal discharge, diarrhea, enlarged lymph nodes, fever and anorexia. The distribution of lesions differs slightly depending upon the species affected but the basic pathological features are consistent and include widespread lymphoproliferation, vasculitis, and epithelial necrosis [1923]. The transmitting viral dose does not affect lesion severity once clinical MCF develops [24]; however, transmitting viral dose is significantly correlated with the incubation period and the timing of first viral DNA detection by polymerase chain reaction (PCR) in peripheral blood leukocytes (PBL) [25]. Both clinical presentation and pathological features are of significant diagnostic value [21]. Detection of viral DNA by PCR in PBL and tissues, especially at high levels, can support the diagnosis of MCFV caused disease [26].

Experimental studies in cattle, bison and sheep indicate that the susceptibility of various ruminant species to OvHV-2 infection and MCF varies significantly. Bison are approximately 1000 times more susceptible to clinical MCF than cattle [14,27]. The difference in susceptibility to MCF between bison and domestic sheep is more than six orders of magnitude [24,28]. Although MCF is usually fatal once clinical signs develop, especially in bison, cattle and certain species of deer, subclinical infection can occur. Subclinical infections with an MCF group virus in bison and other species, such as deer and cattle, have been documented [2931]. For instance, a prospective study using 300 healthy bison showed that 23.7% of the bison (71/300) were antibody-positive for MCF group viruses and 11.3% (8/71) of the antibody-positive animals had detectable OvHV-2 DNA in the peripheral blood by PCR [21]. Recent experimental infection of cattle and bison with OvHV-2 by aerosol transmission further confirms that clinically susceptible hosts can be subclinically infected [24,27].

MCF may occur wherever a reservoir host is present and there are clinically susceptible animals in close proximity. The epidemiology of MCF, regarding the pattern of virus transmission from reservoir hosts to clinically susceptible hosts, has been relatively well defined for AlHV-1 and OvHV-2, the two major MCFVs [13]. Both viruses are shed into the environment via nasal, and perhaps ocular, secretions from their reservoirs [32,33]. Clinically-susceptible species acquire the virus through inhalation, although ingestion of virus-laden secretions from contaminated foodstuffs or water has also been suggested as a route of transmission [34]. Efficient transmission via infected secretions is enhanced by close contact and by a cool, moist environment; however, long distance transmission has been documented [35]. MCFV is not transmitted by natural means from one clinically-susceptible host to another; affected animals are dead-end hosts [2,14,36]. Virtually all reservoir hosts are infected with their own distinct MCFV; however, a dual infection can occur under certain conditions [6]. The infection in reservoir hosts is usually subclinical, although MCF-like disease has been rarely reported in sheep and goats [28,37].

The epidemiology of AlHV-1 and OvHV-2 within their natural hosts has been relatively well defined, and differs significantly from each other [1,2]. The epidemiology within the wildebeest species involves both horizontal and vertical transmission. A portion of wildebeest calves are born infected through the transplacental route; however, most calves are infected horizontally from previously infected cohorts. Intense viral shedding from the wildebeest occurs predominantly during the first 90 days of life through ocular and nasal secretions [32,38]. Neutralizing antibody develops by about 3 months of age, after which viral shedding declines dramatically [32]. Adult wildebeest shed a relatively low level of the virus, except during periods of stress or parturition [38,39]. Wildebeest-associated MCF occurs seasonally with wildebeest calving [40], and the virus originates from the wildebeest calves up to the age of about 4 months [32,41].

The epidemiology of OvHV-2 within sheep has become better understood. Although lambs can be infected at an early age [42], similar to wildebeest calves, the majority of lambs are not infected until after 2 months of age, under natural flock conditions [43]. If lambs are removed from contact with infected sheep prior to that age, they remain uninfected and can be raised virus free [44]. This knowledge is being used by sheep producers and zoos [16] to produce OvHV-2-free sheep. Data support the concept of delayed, rather than congenital or perinatal, infection of lambs with OvHV-2. The delayed infection in lambs is largely due to the viral dose at first exposure [45], rather than age-related susceptibility or passive-immune protection [46]. Both adolescent lambs and adult sheep shed virus predominantly though nasal secretions [33]. Lambs between 6 and 9 months of age shed virus more frequently and intensively than at any other stage of life. No correlation between parturition and virus shedding levels in adult sheep has been found [33], suggesting that the likelihood of transmission from adult sheep is relatively stable and low year-round; therefore, the small increase of SA-MCF in spring during lambing season could reflect factors other than viral shedding levels, such as climate conditions and seasonal variations in stock densities that could influence exposure intensity.

Little is known concerning epidemiology of other viruses in the MCFV group. Based on phylogenetic analysis of a portion of the DNA polymerase gene that is relatively conserved among herpesviruses [4], all MCFVs identified to date can be clustered into two major groups: (1) the Alcelaphinae/Hippotraginae group, which includes AlHV-1, AlHV-2, hippotragine herpesvirus 1 (HiHV-1), and the MCFV carried by oryx; and 2) the Caprinae group including OvHV-2, CpHV-2, MCFV-WTD, and the MCFVs carried by ibex, muskox, and aoudad [4]. These data suggest the epidemiology of these viruses within the groups may be similar. The viruses within the group share certain biological properties; for example, the viruses in the Alcelaphinae/Hippotraginae group can propagate in cell culture, and a recent study on CpHV-2 transmission among goats showed that CpHV-2 has a similar transmission pattern as OvHV-2 [47].

It is important to note that naturally occurring MCF in multiple-species mixed operations, such as zoos, state fairs, wildlife parks and game farms, is linked to the reservoir hosts: goats have been responsible for CpHV-2 induced MCF in sika deer [48,49], also white-tailed deer [50], and pronghorn antelopes [51]; and ibex have been responsible for several cases of MCF in bongo [52] and an anoa [53]. With the complexity of multiple-species environments, confirmation of MCFV caused disease and differentiation of a causative virus not only requires accurate diagnostic tools, but also epidemiological information.

3. Serological Tests

Several serological assays have been developed for detection of antibodies against MCFVs, and all the assays use the alcelaphine herpesviruses as antigens, predominantly AlHV-1, because these viruses can be propagated in vitro. These assays include virus neutralization (VN), immunoblotting, enzyme-linked immunosorbent assay (ELISA)/competitive-inhibition ELISA (cELISA), immunofluorescence assay (IFA)/immunoperoxidase test (IPT), and complement fixation test [5460]. These tests can be divided into three categories: neutralizing antibody-, polyclonal antibody- and monoclonal antibody-based assays. Viral neutralization tests have been developed for detection of antibodies to AlHV-1 or other viruses in the Alcelaphinae/Hippotraginae group of both reservoir and clinically-affected hosts [61]. The VN tests are highly specific and work well for detection of infected wildebeest or other related hosts, such as hartebeest and topi. Infected sheep usually develop no or low neutralizing antibody responses to AlHV-1 [62]; therefore, the viral neutralization test is of very limited use in detection of antibodies in animals infected with OvHV-2 or the other related viruses carried by Caprinae species. Polyclonal antibody-based assays, including ELISA, IFA, and IPT among others, detect antibodies against multiple epitopes of AlHV-1. Generally, these tests have good sensitivity, but reduced specificity, due to cross-reactivity with other herpesviruses, such as bovine herpesviruses 1 and 4 [63,64]. To increase specificity, a cELISA for detection of MCF viral antibody was developed using an antibody (15-A) against an epitope conserved among all MCFVs examined to date [58]. The MCF cELISA has high specificity and sensitivity due to the use of the monoclonal antibody and its direct conjugation with the detecting enzyme [65]. A recent study reported an ELISA using AlHV-1 antigens that resulted in good agreement with the cELISA using a set of field bovine serum samples [66]. However, the cELISA still offers the advantage of testing samples from many species without the need for species-specific enzyme-labeled conjugates for each species being tested [65]. In addition, relatively crude antigens may be used in the cELISA without reducing the desired specificity.

Serological tests are best used for surveying asymptomatic animals in the field and a positive result is indicative of infection. Virtually all reservoir hosts of MCFVs are infected and consistently develop antibodies, which can be detected by any of the serological tests. Uninfected lambs under 4 months of age may be antibody-positive due to the presence of maternal antibody [43]; therefore, a serological test should not be used to determine the infection status of a young animal, especially for the production of MCFV-free animals for mixed-species programs [44]. It is unusual for adult reservoir hosts such as sheep and goats to be seronegative. However, young animals less than 12 months of age, especially in a small flock or herd, may test antibody negative due to exposure to a low collective virus dose shed from infected animals [45]. An animal challenged with a low dose of virus may take more than 4 weeks to become seropositive [67], which should be considered when serology is used to test an animal in pre-shipment or quarantine procedures. Additionally, animals from specially-designed programs intended to produce MCF-free animals, or from zoos, small operations, or other environments where the animals are separated at an early age from an infected flock or herd and hand raised are expected to be seronegative to MCF antibodies. Overall, serology is reliable for determining infection status in adult reservoir hosts, although it does not differentiate MCFVs. Detection of MCF viral antibodies in clinically susceptible species, such as cattle, bison and deer, also indicates infection. However, since a significant percentage of these species can be subclincially infected with the virus [21,29,30], the presence of antibody supports the diagnosis of disease only when associated with histopathological evidence suggestive of MCF.

4. Polymerase Chain Reaction (PCR) Assays

PCR has become an important tool in MCF molecular diagnostics. The first PCR for detection of AlHV-1 DNA was reported in 1990 [68] and since then, at least a dozen PCRs in different formats have been developed targeting various MCFVs [6,8,6977]. Among those, the one with the most significant impact is the PCR specific for detection of OvHV-2 DNA developed by Baxter et al. [70]. This assay in nested format was developed from the base sequence of a fragment cloned from a lymphoblastoid cell line that was derived from an acute case of SA-MCF. The primers target a DNA fragment in the ORF 75 of OvHV-2, a gene coding for a viral tegument protein [70]. The specificity for OvHV-2 arises from one of the primers (#556), which binds to a region of low homology between OvHV-2 and AlHV-1 [70]. This nested PCR has high sensitivity and is validated for detection of OvHV-2 DNA in infected sheep as well as in animals with clinical MCF [64,78]. The assay has been widely used in veterinary diagnostic laboratories; however, its use as a routine method to detect OvHV-2 DNA for confirmation of clinical SA-MCF in diagnostic laboratories may be problematic due to a high potential for amplicon contamination leading to false positive results in diagnostic laboratories. The second important step in MCF PCR development was a quantitative PCR (qPCR) for OvHV-2 DNA developed by Hussy and coworkers [77]. The OvHV-2-specific primer-probe set for the real-time qPCR is based on the same sequence of genomic OvHV-2 DNA that had been used for the nested PCR (ORF 75 gene) [77] and showed adequate sensitivity for clinical samples [73]. Another significant advance in MCF molecular diagnostics, especially for mixed-species operations, such as zoos, wildlife parks, and game farms, was the development of a multiplex PCR for detection and differentiation of MCFVs known to cause disease [76]. The multiplex PCR is a probe-based real-time PCR that targets a polymorphic region in the viral DNA polymerase gene containing unique sequences for each pathogenic MCFV of interest [76], and represents a rapid, reliable, and differential method for the identification of MCFVs in clinical samples.

These newly developed assays have significantly improved MCF diagnostics at the molecular level and the key question for clinicians and veterinarians is: which assay should be used? In MCF diagnostics, it is important to first consider epidemiological information. In most cases, it is clear whether the disease is associated with sheep, wildebeest, or another reservoir host, and a test specific for the expected virus can be employed. However, when a sample comes from a zoo or game farm where various reservoir hosts may have been in contact with the clinically susceptible species, multiplex PCR or several PCRs specific for different individual viruses should be considered. In general, all samples can be divided into two large categories: clinical cases (whether or not the disease is caused by an MCFV) and subclinical cases (whether or not an animal is infected with an MCFV). Both clinical and subclinical MCFV infections occur in clinically-susceptible hosts, such as cattle, bison, and deer. In clinical cases of SA-MCF, levels of OvHV-2 DNA in PBL and tissues are usually high, ranging from a thousand to over a million copies per microgram DNA, which can be easily detected by the OvHV-2 qPCR [24]. The qPCR is highly recommended for diagnosis of OvHV-2-induced MCF. In clinical samples derived from mixed-species operations, the multiplex PCR is recommended to confirm which virus is causal [76]. In subclinically infected bison and cattle, levels of OvHV-2 DNA in PBL are low, and in most cases not detectable even by nested PCR [21]. The confirmation of infection in clinically susceptible hosts that are disease-free is usually an irrelevant issue, since the subclinical infection leading to clinical MCF in cattle and bison is uncommon, and transmission of the virus from an infected animal to its cohorts is unlikely [36,79]. Virtually all reservoir hosts, such as sheep, goats and wildebeest, are infected with their respective MCFVs and their infection status can be generally confirmed by serology. There are some instances where it is necessary to use PCR to document that animals are MCFV-free. For example, in order to raise OvHV-2-free sheep and perform an early separation of uninfected lambs from a positive flock, initial screening of lambs requires a PCR test [44]. In these cases, it is necessary to use a nested PCR to maximize sensitivity, since the nested PCR is more sensitive than the qPCR [26]. Veterinarians or managers in mixed-species operations usually want to know which MCFV(s) infect their reservoir species and request PCR for that identification. One should keep in mind that: (1) some PCR assays may not have adequate sensitivity to detect viral DNA in PBL of certain reservoir hosts; for example, CpHV-2 specific PCR detects only 85% of infected goats that are seropositive; and (2) viral DNA levels in PBL may vary among different reservoir species: infected sheep usually have enough viral DNA in their PBL to be detected by PCR, while viral DNA in PBL cannot be detected by PCR in most infected oryx [10] or black wildebeest [80]. One also should keep in mind that all infected reservoir hosts are considered to be the source for virus transmission regardless of which virus the animal carries. Although it is extremely rare, MCF can occur in reservoir hosts, which is supported by the experimental induction of MCF in sheep by high dose OvHV-2 challenge [28]. In these cases, antibody or PCR testing has little diagnostic value, and the verification of suspected cases of MCF in the reservoir species will require additional laboratory data (e.g. compatible histological lesions, and ruling out other differential diagnoses). It is necessary to keep in mind that an unidentified MCFV can be present in cases with strong clinical and pathological indications of MCF, even though all existing PCRs are negative. Although the amplification products require verification by sequencing, the degenerate PCR that pan-specifically targets the herpesviral DNA polymerase gene [81] is a useful tool to identify new members of the MCFV group, and will continue to be used in the MCF diagnostic field.

5. Other Potential Molecular Diagnostic Tests

In cases where MCF is suspected in a reservoir host, the use of a diagnostic assay directly targeting a viral component that is associated with lesion development would be of great relevance to confirm the diagnosis. The in situ PCR specific for OvHV-2 was initially thought to have diagnostic potential [82], but it was shown to be technically difficult for adaptation as a routine diagnostic tool. Recent studies showed that the OvHV-2 major capsid protein is detected in sheep lung during initial pulmonary viral replication [83] and in rabbit tissues with OvHV-2 induced MCF [84]. Further data showed that the OvHV-2 ORF 25 gene encoding the major capsid protein was highly expressed in tissues of bison with experimentally induced MCF, and levels of the transcripts were significantly co-related with lesion severity [85,86]. These data suggest that ORF 25 gene transcripts and/or the capsid protein can be a diagnostic target for OvHV-2 induced MCF. Monoclonal or monospecific polyclonal antibodies against the OvHV-2 capsid proteins can potentially be generated and used in an immunohistochemistry-based assay to provide a definitive confirmation of the disease by detecting viral proteins in tissues with lesions. Also, detection of the gene transcripts by reverse-transcriptase PCR (RT-PCR) can be an alternative assay. A preliminary study showed that transcripts of the ORF 25 gene can be detected in the RNA samples obtained from formalin-fixed, paraffin-embedded tissues [87], suggesting that real-time RT-PCR may have potential for clinical diagnosis of MCF.

6. Summary

Several newly developed molecular diagnostic assays are now available for MCF and due to the complexity of pathogenesis and its epidemiology in various species, including clinically-susceptible and reservoir hosts, the challenge for clinicians and veterinarians is to choose the right test for confirmation of the disease or infection. The broad range of natural hosts for MCFVs can be generally divided into two categories: reservoir hosts (such as sheep, goats, and wildebeest) and clinically-susceptible hosts (such as cattle, bison, and deer). Virtually all reservoir hosts are infected and serological assays are useful and efficient to determine infection status except for very young animals with maternal antibodies. Using PCR for detection and differentiation of MCFV in reservoir hosts is generally used only for very specific purposes; for example, nested PCR is needed to determine whether lambs are free of OvHV-2 in order to establish an OvHV-2-free flock. Serology and PCR have little value for confirming the disease in a reservoir host with suspected MCF. Both clinical disease and subclinical infection occur in clinically susceptible hosts. Both nested PCR and real-time PCR work well for detection of viral DNA in PBLs and tissues of animals with clinical MCF. The use of real-time qPCR is highly recommended for routine testing due to its adequate sensitivity, high specificity, and decreased vulnerability to cross contamination of amplicons. Serological testing, specifically the cELISA, is recommended for screening the infection status in clinically susceptible hosts rather than PCR, which may result in a high number of false negatives due to low levels of viral DNA in PBLs during subclinical infection. It is important to keep in mind that epidemiological information needs to be considered first in order to determine which specific PCR should be used to confirm the diagnosis of the cause of clinical disease. If samples are from mixed-species operations, the multiplex PCR is the first choice, because it saves significant time, labor and cost. In case where the multiplex PCR results are negative, the herpesvirus degenerate PCR would be the next option. With the advances in molecular technologies and better understanding of the disease, a new generation of tests for MCF with better sensitivity, specificity, and convenience may be developed in the near future.


The funding was supported by USDA-ARS CWU 5348-32000-032-00D. We thank James Evermann, Anthony Nicola and Donald Knowles for valuable discussions and revision of the manuscript.

  • Conflict of InterestThe authors declare no conflict of interest.


  1. Crawford, TB; O’Toole, DT; Li, H. Malignant catarrhal fever. In Current Veterinary Therapy: Food Animal Practice, 4th ed; Howell, J, Smith, RA, Eds.; W.B. Saunders Company: Oklahoma, OK, USA, 1999; pp. 306–309. [Google Scholar]
  2. Plowright, W. Malignant catarrhal fever virus. In Virus Infections of Ruminants, 3rd ed; Dinter, Z, Morein, B, Eds.; Elsevier Science Publishers: New York, NY, USA, 1990; pp. 123–150. [Google Scholar]
  3. Russell, GC; Stewart, JP; Haig, DM. Malignant catarrhal fever: a review. Vet. J 2009, 179, 324–335. [Google Scholar]
  4. Li, H; Gailbreath, K; Flach, EJ; Taus, NS; Cooley, J; Keller, J; Russell, GC; Knowles, DP; Haig, DM; Oaks, JL; et al. A novel subgroup of rhadinoviruses in ruminants. J. Gen. Virol 2005, 86, 3021–3026. [Google Scholar]
  5. Plowright, W; Ferris, RD; Scott, GR. Blue Wildebeest and the aetiological agent of bovine malignant catarrhal fever virus. Nature 1960, 188, 1167–1169. [Google Scholar]
  6. Li, H; Keller, J; Knowles, DP; Crawford, TB. Recognition of another member of the malignant catarrhal fever virus group: an endemic gammaherpesvirus in domestic goats. J. Gen. Virol 2001, 82, 227–232. [Google Scholar]
  7. Chmielewicz, B; Goltz, M; Ehlers, B. Detection and multigenic characterization of a novel gammaherpesvirus in goats. Virus Res 2001, 75, 87–94. [Google Scholar]
  8. Li, H; Dyer, N; Keller, J; Crawford, TB. Newly recognized herpesvirus causing malignant catarrhal fever in white-tailed deer (Odocoileus virginianus). J. Clin. Microbiol 2000, 38, 1313–1318. [Google Scholar]
  9. Kleiboeker, SB; Miller, MA; Schommer, SK; Ramos-Vara, JA; Boucher, M; Turnquist, SE. Detection and multigenic characterization of a herpesvirus associated with malignant catarrhal fever in white-tailed deer (Odocoileus virginianus) from Missouri. J. Clin. Microbiol 2002, 40, 1311–1318. [Google Scholar]
  10. Li, H; Gailbreath, K; Bender, LC; West, K; Keller, J; Crawford, TB. Evidence of three new members of malignant catarrhal fever virus group in muskox (Ovibos moschatus), Nubian ibex (Capra nubiana), and gemsbok (Oryx gazella). J. Wildl. Dis 2003, 39, 875–880. [Google Scholar]
  11. Klieforth, R; Maalouf, G; Stalis, I; Terio, K; Janssen, D; Schrenzel, M. Malignant catarrhal fever-like disease in Barbary red deer (Cervus elaphus barbarus) naturally infected with a virus resembling alcelaphine herpesvirus 2. J. Clin. Microbiol 2002, 40, 3381–3390. [Google Scholar]
  12. Reid, HW; Bridgen, A. Recovery of a herpesvirus from a roan antelope (Hippotragus equinus). Vet. Microbiol 1991, 28, 269–278. [Google Scholar]
  13. Cleaveland, S; Kusiluka, L; Kuwai, JO; Bell, C; Rudovick, K. Assessing the Impact of Malignant Catarrhal Fever in Ngorongoro District, Tanzania, Available online: accessed on 13 October 2011.
  14. Li, H; Taus, NS; Jones, C; Murphy, B; Evermann, JF; Crawford, TB. A devastating outbreak of malignant catarrhal fever in a bison feedlot. J. Vet. Diagn. Invest 2006, 18, 119–123. [Google Scholar]
  15. Moore, DA; Kohrs, P; Baszler, T; Faux, C; Sathre, P; Wenz, JR; Eldridge, L; Li, H. Outbreak of malignant catarrhal fever among cattle associated with a state livestock exhibition.
  16. Cooley, AJ; Taus, NS; Li, H. Development of a management program for a mixed species wildlife park following an occurrence of malignant catarrhal fever. J. Zoo Wildl. Med 2008, 39, 380–385. [Google Scholar]
  17. Li, H; Westover, WC; Crawford, TB. Sheep-associated malignant catarrhal fever in a petting zoo. J. Zoo. Wildl. Med 1999, 30, 408–412. [Google Scholar]
  18. Heuschele, WP. Malignant catarrhal fever in wild ruminants-A review and current status report. Proceedings of the United States Animal Health Association, Nashville, TN, USA, 7–12 November 1982.
  19. Liggitt, HD; DeMartini, JC. The pathomorphology of malignant catarrhal fever. I. Generalized lymphoid vasculitis. Vet. Pathol 1980, 17, 58–72. [Google Scholar]
  20. Liggitt, HD; DeMartini, JC. The pathomorphology of malignant catarrhal fever. II. Multisystemic epithelial lesions. Vet. Pathol 1980, 17, 73–83. [Google Scholar]
  21. O’Toole, D; Li, H; Sourk, C; Montgomery, DL; Crawford, TB. Malignant catarrhal fever in a bison feedlot, 1994–2000. J. Vet. Diagn. Invest 2002, 14, 183–193. [Google Scholar]
  22. Schultheiss, PC; Collins, JK; Austgen, LE; DeMartini, JC. Malignant catarrhal fever in bison, acute and chronic cases. J. Vet. Diagn. Invest 1998, 10, 255–262. [Google Scholar]
  23. Selman, IE; Wiseman, A; Murray, M; Wright, NG. A clinico-pathological study of bovine malignant catarrhal fever in Great Britain. Vet. Rec 1974, 94, 483–490. [Google Scholar]
  24. O’Toole, D; Taus, DN; Montgomery, DL; Oaks, JL; Crawford, TB; Li, H. Intra-nasal inoculation of American bison (Bison bison) with OvHV-2 reliably reproduces malignant catarrhal fever. Vet. Pathol 2007, 44, 655–662. [Google Scholar]
  25. Gailbreath, KL; O’Toole, D; Taus, NS; Knowles, DP; Oaks, JL; Li, H. Experimental nebulization of American bison (Bison bison) with low doses of ovine herpesvirus 2 from sheep nasal secretions. Vet. Microbiol 2010, 143, 389–393. [Google Scholar]
  26. Traul, DL; Taus, NS; Oaks, JL; O’Toole, D; Rurangirwa, FR; Baszler, TV; Li, H. Validation of nonnested and real-time PCR for diagnosis of sheep-associated malignant catarrhal fever in clinical samples. J. Vet. Diagn. Invest 2007, 19, 405–408. [Google Scholar]
  27. Taus, NS; Oaks, JL; Gailbreath, K; Traul, DL; O’Toole, D; Li, H. Experimental aerosol infection of cattle (Bos taurus) with ovine herpesvirus 2 using nasal secretions from infected sheep. Vet. Microbiol 2006, 116, 29–36. [Google Scholar]
  28. Li, H; O’Toole, D; Kim, O; Oaks, JL; Crawford, TB. Malignant catarrhal fever-like disease in sheep after intranasal inoculation with ovine herpesvirus-2. J. Vet. Diagn. Invest 2005, 17, 171–175. [Google Scholar]
  29. Powers, JG; VanMetre, DC; Collins, JK; Dinsmore, RP; Carman, J; Patterson, G; Brahmbhatt, D; Callan, RJ. Evaluation of ovine herpesvirus type 2 infections, as detected by competitive inhibition ELISA and polymerase chain reaction assay, in dairy cattle without clinical signs of malignant catarrhal fever. J. Am. Vet. Med. Assoc 2005, 227, 606–611. [Google Scholar]
  30. Loken, T; Bosman, AM; van Vuuren, M. Infection with Ovine herpesvirus 2 in Norwegian herds with a history of previous outbreaks of malignant catarrhal fever. J. Vet. Diagn. Invest 2009, 21, 257–261. [Google Scholar]
  31. Li, H; Shen, DT; Jessup, DA; Knowles, DP; Gorham, JR; Thorne, T; O’Toole, D; Crawford, TB. Prevalence of antibody to malignant catarrhal fever virus in wild and domestic ruminants by competitive-inhibition ELISA. J. Wildl. Dis 1996, 32, 437–443. [Google Scholar]
  32. Mushi, EZ; Rurangirwa, FR; Karstad, L. Shedding of malignant catarrhal fever virus by wildebeest calves. Vet. Microbiol 1981, 6, 281–286. [Google Scholar]
  33. Li, H; Taus, NS; Lewis, GS; Kim, O; Traul, DL; Crawford, TB. Shedding of ovine herpesvirus 2 in sheep nasal secretions: the predominant mode for transmission. J. Clin. Microbiol 2004, 42, 5558–5564. [Google Scholar]
  34. CAB International. Available online: accessed on 13 October 2011.
  35. Li, H; Karney, G; O’Toole, D; Crawford, TB. Long distance spread of malignant catarrhal fever virus from feedlot lambs to ranch bison. Can. Vet. J 2008, 49, 183–185. [Google Scholar]
  36. Berezowski, JA; Appleyard, GD; Crawford, TB; Haigh, J; Li, H; Middleton, DM; O’Connor, BP; West, K; Woodbury, M. An outbreak of sheep-associated malignant catarrhal fever in bison (Bison bison) after exposure to sheep at a public auction sale. J. Vet. Diagn. Invest 2005, 17, 55–58. [Google Scholar]
  37. Jacobsen, B; Thies, K; von Altrock, A; Forster, C; Konig, M; Baumgartner, W. Malignant catarrhal fever-like lesions associated with ovine herpesvirus-2 infection in three goats. Vet. Microbiol 2007, 124, 353–357. [Google Scholar]
  38. Plowright, W. Malignant catarrhal fever. Rev. Sci. Tech. Oie 1986, 5, 897–958. [Google Scholar]
  39. Barnard, BJH; Bengis, RG; Griessel, MD; deVos, V. Excretion of alcelaphineherpesvirus-1 by captive and free-living wildebeest (Connochaetes taurinus). Onderstepoort J. Vet. Res 1989, 56, 131–134. [Google Scholar]
  40. Plowright, W. Malignant Catarrhal Fever in East Africa. Res. Vet. Sci 1965, 6, 57–83. [Google Scholar]
  41. Mushi, EZ; Rossiter, PB; Jessett, D; Karstad, L. Isolation and characterization of a herpesvirus from topi (Damaliscus korrigum, Ogilby). J. Comp. Pathol 1981, 91, 63–68. [Google Scholar]
  42. Baxter, SIF; Wiyono, A; Pow, I; Reid, HW. Identification of ovine herpesvirus-2 infection in sheep. Arch. Virol 1997, 142, 823–831. [Google Scholar]
  43. Li, H; Snowder, G; O’Toole, DT; Crawford, TB. Transmission of ovine herpesvirus 2 in lambs. J. Clin. Microbiol 1998, 36, 223–226. [Google Scholar]
  44. Li, H; Snowder, G; Crawford, TB. Production of malignant catarrhal fever virus-free sheep. Vet. Microbiol 1999, 65, 167–172. [Google Scholar]
  45. Li, H; Snowder, G; O’Toole, DT; Crawford, TB. Transmission of ovine herpesvirus 2 among adult sheep. Vet. Microbiol 2000, 71, 27–35. [Google Scholar]
  46. Li, H; Snowder, G; Crawford, TB. Effect of passive transfer of maternal immune components on infection with ovine herpesvirus 2 in lambs. Am. J. Vet. Res 2002, 63, 631–633. [Google Scholar]
  47. Li, H; Keller, J; Knowles, DP; Taus, NS; Oaks, JL; Crawford, TB. Transmission of caprine herpesvirus 2 in domestic goats. Vet. Microbiol 2005, 107, 23–29. [Google Scholar]
  48. Crawford, TB; Li, H; Rosenberg, SR; Norhausen, RW; Garner, MM. Mural folliculitis and alopecia caused by infection with goat-associated malignant catarrhal fever virus in two sika deer. J. Am. Vet. Med. Assoc 2001, 221, 843–847. [Google Scholar]
  49. Keel, MK; Patterson, JG; Noon, TH; Bradley, GA; Collins, JK. Caprine herpesvirus-2 in association with naturally occurring malignant catarrhal fever in captive sika deer (Cervus nippon). J. Vet. Diagn. Invest 2003, 15, 179–183. [Google Scholar]
  50. Li, H; Wunschmann, A; Keller, J; Hall, DG; Crawford, TB. Caprine herpesvirus-2 associated malignant catarrhal fever in white-tailed deer (Odocoileus virginianus). J Vet. Diagn. Invest 2002, 15, 46–49. [Google Scholar]
  51. Larochelle, D. Laboratoire de Pathologie Animale: Quebec, Canada.Li, H. Aninal Disease Research Unit, USDA-ARS: Pullman, WA, USA, Unpublished work; 2004.
  52. Okeson, DM; Garner, MM; Taus, NS; Li, H; Coke, R. Ibex-associated malignant catarrhal fever in a bongo antelope (Tragelaphus euryceros). J. Zoo Wildl. Med 2007, 38, 460–464. [Google Scholar]
  53. Lung, N. Fort Worth Zoo: Dallas, TX, USA.Li, H. Aninal Disease Research Unit, USDA-ARS: Pullman, WA, USA, Unpublished work; 2007.
  54. Wan, SK; Castro, AE; Heuschele, WP; Ramsay, EC. Enzyme-linked immunosorbent assay for the detection of antibodies to the alcelaphine herpesvirus of malignant catarrhal fever in exotic ruminants. Am. J. Vet. Res 1988, 49, 164–168. [Google Scholar]
  55. Rossiter, PB. Immunofluorescence and immunoperoxidase techniques for detecting antibodies to malignant catarrhal fever in infected cattle. Trop. Anim. Health Prod 1981, 13, 189–192. [Google Scholar]
  56. Herring, A; Reid, H; Inglis, N; Pow, I. Immunoblotting analysis of the reaction of wildebeest, sheep and cattle sera with the structural antigens of alcelaphine herpesvirus-1 (malignant catarrhal fever virus). Vet. Microbiol 1989, 19, 205–215. [Google Scholar]
  57. Sentsui, H; Nishimori, T; Nagai, I; Nishioka, N. Detection of sheep-associated malignant catarrhal fever virus antibodies by complement fixation tests. J. Vet. Med. Sci 1996, 58, 1–5. [Google Scholar]
  58. Li, H; Shen, DT; Knowles, DP; Gorham, JR; Crawford, TB. Competitive inhibition enzyme-linked immunosorbent assay for antibody in sheep and other ruminants to a conserved epitope of malignant catarrhal fever virus. J. Clin.Microbiol 1994, 32, 1674–1679. [Google Scholar]
  59. Mushi, EZ; Plowright, W. A microtitre technique for the assay of malignant catarrhal fever virus and neutralising antibody. Res. Vet. Sci 1979, 27, 230–232. [Google Scholar]
  60. Decaro, N; Tinelli, A; Pratelli, A; Martella, V; Tempesta, M; Buonavoglia, C. First two confirmed cases of malignant catarrhal fever in Italy. New Microbiol 2003, 26, 39–344. [Google Scholar]
  61. Reid, HW; Plowright, W; Rowe, LW. Neutralising antibody to herpesviruses derived from wildebeest and hartebeest in wild animals in East Africa. Res. Vet. Sci 1975, 18, 269–273. [Google Scholar]
  62. Heuschele, WP; Fletcher, HR; Oosterhuis, JE; Jansenn, D; Robinson, PT. Epidemiologic aspects of malignant catarrhal fever in the USA. Proc. US Anim. Health Assoc 1984, 88, 640–651. [Google Scholar]
  63. Dubuisson, J; Thiry, E; Bublot, M; Sneyers, M; Boulanger, D; Guillaume, J; Pastoret, PP. Production and characterization of monoclonal antibodies to bovid herpesvirus-4. Vet. Microbiol 1989, 19, 305–315. [Google Scholar]
  64. Li, H; Shen, DT; Davis, WC; Knowles, DP; Gorham, JR; Crawford, TB. Identification and characterization of the major proteins of malignant catarrhal fever virus. J. Gen. Virol 1995, 76, 123–129. [Google Scholar]
  65. Li, H; McGuire, TC; Muller-Doblies, UU; Crawford, TB. A simpler, more sensitive competitive inhibition ELISA for detection of antibody to malignant catarrhal fever viruses. J. Vet. Diagn. Invest 2001, 13, 361–364. [Google Scholar]
  66. Fraser, SJ; Nettleton, PF; Dutia, BM; Haig, DM; Russell, GC. Development of an enzyme-linked immunosorbent assay for the detection of antibodies against malignant catarrhal fever viruses in cattle serum. Vet. Microbiol 2006, 116, 21–28. [Google Scholar]
  67. Taus, NS; Traul, DL; Oaks, JL; Crawford, TB; Lewis, GS; Li, H. Experimental infection of sheep with ovine herpesvirus 2 via aerosolization of nasal secretions. J. Gen. Virol 2005, 86, 575–579. [Google Scholar]
  68. Hsu, D; Shih, LM; Castro, AE; Zee, YC. A diagnostic method to detect alcelaphine herpesvirus-1 of malignant catarrhal fever using the polymerase chain reaction. Arch. Virol 1990, 114, 259–263. [Google Scholar]
  69. Katz, J; Seal, BS; Ridpath, J. Molecular diagnosis of alcelaphine herpesvirus (malignant catarrhal fever) infections by nested amplification of viral DNA in bovine blood buffy coat specimens. J. Vet. Diagn. Invest 1991, 3, 193–198. [Google Scholar]
  70. Baxter, SIF; Pow, I; Bridgen, A; Reid, HW. PCR detection of the sheep-associated agent of malignant catarrhal fever. Arch. Virol 1993, 132, 145–159. [Google Scholar]
  71. Tham, KM; Ng, K; Young, LW. Polymerase chain reaction amplification of wildebeest-associated and cervine-derived malignant catarrhal fever virus DNA. Arch. Virol 1994, 135, 355–364. [Google Scholar]
  72. Lahijani, RS; Sutton, SM; Klieforth, RB; Murphy, MF; Heuschele, WP. Application of polymerase chain reaction to detect animals latently infected with agents of malignant catarrhal fever. J. Vet. Diagn. Invest 1994, 6, 403–409. [Google Scholar]
  73. Traul, DL; Elias, S; Taus, NS; Herrmann, LM; Oaks, JL; Li, H. A real-time PCR assay for measuring alcelaphine herpesvirus-1 DNA. J. Virol. Methods 2005, 129, 186–190. [Google Scholar]
  74. Bremer, CW; Swart, H; Doboro, FA; Dungu, B; Romito, M; Viljoen, GJ. Discrimination between sheep-associated and wildebeest-associated malignant catarrhal fever virus by means of a single-tube duplex nested PCR. Onderstepoort J. Vet. Res 2005, 72, 285–291. [Google Scholar]
  75. Ellis, TM; Masters, AM. Use of magnetic particles to improve the diagnosis of sheep-associated malignant catarrhal fever by polymerase chain reaction. Aust. Vet. J 1997, 75, 520–521. [Google Scholar]
  76. Cunha, CW; Otto, L; Taus, NS; Knowles, DP; Li, H. Development of a multiplex real-time PCR for detection and differentiation of malignant catarrhal fever viruses in clinical samples. J. Clin. Microbiol 2009, 47, 2586–2589. [Google Scholar]
  77. Hussy, D; Stauber, N; Leutenegger, CM; Rieder, S; Ackermann, M. Quantitative fluorogenic PCR assay for measuring ovine herpesvirus 2 replication in sheep. Clin. Diagn. Lab. Immunol 2001, 8, 123–128. [Google Scholar]
  78. Muller-Doblies, UU; Li, H; Hauser, B; Adler, H; Ackermann, M. Field validation of laboratory tests for clinical diagnosis of sheep-associated malignant catarrhal fever. J. Clin. Microbiol 1998, 36, 2970–2972. [Google Scholar]
  79. Li, H; Taus, NS; Jones, C; Murphy, B; Evermann, JF; Crawford, TB. A devastating outbreak of malignant catarrhal fever in a bison feedlot. J. Vet. Diagn. Invest 2006, 18, 119–123. [Google Scholar]
  80. Pretorius, JA; Oosthuizen, MC; van Vuuren, M. Gammaherpesvirus carrier status of black wildebeest (Connochaetes gnou) in South Africa. J. S. Afr. Vet. Assoc 2008, 79, 136–141. [Google Scholar]
  81. VanDevanter, DR; Warrener, P; Bennett, L; Schultz, ER; Coulter, S; Garber, RL; Rose, TM. Detection and analysis of diverse herpesviral species by consensus primer PCR. J. Clin. Microbiol 1996, 34, 1666–1671. [Google Scholar]
  82. Simon, S; Li, H; O’Toole, D; Crawford, TB; Oaks, JL. The vascular lesions of a cow and bison with sheep-associated malignant catarrhal fever contain ovine herpesvirus 2-infected CD8(+) T lymphocytes. J. Gen. Virol 2003, 84, 2009–2013. [Google Scholar]
  83. Taus, NS; Schneider, DA; Oaks, JL; Yan, H; Gailbreath, KL; Knowles, DP; Li, H. Sheep (Ovis aries) airway epithelial cells support ovine herpesvirus 2 lytic replication in vivo. Vet. Microbiol 2010, 145, 47–53. [Google Scholar]
  84. Meier-Trummer, CS; Tobler, K; Hilbe, M; Stewart, JP; Hart, J; Campbell, I; Haig, DM; Glauser, DL; Ehrensperger, F; Arckermann, M. Ovine herpesvirus 2 structural proteins in epithelial cells and M-cells of the appendix in rabbits with malignant catarrhal fever. Vet. Microbiol 2009, 137, 235–242. [Google Scholar]
  85. Cunha, CW; Traul, DL; Taus, NS; Oaks, JL; O’Toole, D; Davitt, CM; Li, H. Detection of ovine herpesvirus 2 major capsid gene transcripts as an indicator of virus replication in shedding sheep and clinically affected animals. Virus Res 2008, 132, 69–75. [Google Scholar]
  86. Cunha, CW; Gailbreatha, KL; O’Toole, D; Knowles, DP; Schneider, DA; White, SN; Taus, NS; Davies, CJ; Davis, WC; Li, H. Ovine herpesvirus 2 infection in American bison: virus and host dynamics in the development of sheep-associated malignant catarrhal fever. PLoS One 2011. [Google Scholar]
  87. Cunha, CW; Taus, NS; Li, H. Aninal Disease Research Unit, USDA-ARS: Pullman, WA, USA, Unpublished work; 2011.
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top