Processing-Dependent Releasing of Iron from Plant Ferritin in Cereal-Based Foods Designed for Iron Delivery in Inflammatory Bowel Disease
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. FSS Preparation
3.2. Designed Products
3.2.1. Instant Sweet Desserts
Kisiel
Budyn
3.2.2. Lunch Products
Groats
Pasta
3.2.3. Breakfast Products
Gluten-Free Bread
Crispbread
3.2.4. Snacks
Rice Wafers
Corn Snacks
3.3. The Energy Value and Nutrient Profile of Designed Products
3.4. Iron Content Determination
3.5. Statistical Analysis
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ID | Iron deficiency |
| IBD | Inflammatory bowel disease |
| FSS | Fortified soy sprouts |
| F | Fortified |
| NF | Not fortified |
References
- Bathla, S.; Arora, S. Prevalence and approaches to manage iron deficiency anemia (IDA). Crit. Rev. Food Sci. Nutr. 2022, 62, 8815–8828. [Google Scholar] [CrossRef]
- Zielińska-Dawidziak, M.; Hertig, I.; Piasecka-Kwiatkowska, D.; Staniek, H.; Nowak, K.W.; Twardowski, T. Study on iron availability from prepared soybean sprouts using an iron-deficient rat model. Food Chem. 2012, 135, 2622–2627. [Google Scholar] [CrossRef]
- Zielińska-Dawidziak, M. Plant ferritin—A source of iron to prevent its deficiency. Nutrients 2015, 7, 1184–1201. [Google Scholar] [CrossRef]
- Prichapan, N.; McClements, D.J.; Klinkesorn, U. Iron Encapsulation in Water-in-Oil Emulsions: Effect of Ferrous Sulfate Concentration and Fat Crystal Formation on Oxidative Stability. J. Food Sci. 2018, 83, 309–317. [Google Scholar] [CrossRef]
- Zielińska-Dawidziak, M. Aplication of phytoferritin into food fortification in iron. Biotechnologia 2009, 4, 35–39. [Google Scholar]
- Theil, E.C.; Tosha, T.; Behera, R.K. Solving Biologys Iron Chemistry Problem with Ferritin Protein Nanocages. Acc. Chem. Res. 2016, 49, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Zielińska-Dawidziak, M.; Białas, W.; Piasecka-Kwiatkowska, D.; Staniek, H.; Niedzielski, P. Digestibility of Protein and Iron Availability from Enriched Legume Sprouts. Plant Foods Hum. Nutr. 2023, 78, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Makowska, A.; Zielińska-Dawidziak, M.; Niedzielski, P.; Michalak, M. Effect of extrusion conditions on iron stability and physical and textural properties of corn snacks enriched with soybean ferritin. Int. J. Food Sci. Technol. 2018, 53, 296–303. [Google Scholar] [CrossRef]
- Theil, E.C.; Chen, H.; Miranda, C.; Janser, H.; Elsenhans, B.; Núñez, M.T.; Pizarro, F.; Schümann, K. Absorption of Iron from Ferritin Is Independent of Heme Iron and Ferrous Salts in Women and Rat Intestinal Segments. J. Nutr. 2012, 142, 478–483. [Google Scholar] [CrossRef]
- Mahadea, D.; Adamczewska, E.; Ratajczak, A.E.; Rychter, A.M.; Zawada, A.; Eder, P.; Dobrowolska, A.; Krela-Kaźmierczak, I. Iron Deficiency Anemia in Inflammatory Bowel Diseases—A Narrative Review. Nutirents 2021, 13, 4008. [Google Scholar] [CrossRef]
- Shah, Y.; Patel, D.; Khan, N. Iron deficiency anemia in IBD: An overlooked comorbidity. Expert. Rev. Gastroenterol. Hepatol. 2021, 15, 771–781. [Google Scholar] [CrossRef]
- Hashash, J.G.; Elkins, J.; Lewis, J.D.; Binion, D.G. AGA Clinical Practice Update on Diet and Nutritional Therapies in Patients With Inflammatory Bowel Disease: Expert Review. Gastroenterology 2024, 166, 521–532. [Google Scholar] [CrossRef]
- Saha, S.; Patel, N. What Should I Eat? Dietary Recommendations for Patients with Inflammatory Bowel Disease. Nutrients 2023, 15, 896. [Google Scholar] [CrossRef] [PubMed]
- González-Domínguez, Á.; Visiedo-García, F.M.; Domínguez-Riscart, J.; González-Domínguez, R.; Mateos, R.M.; Lechuga-Sancho, A.M. Iron metabolism in obesity and metabolic syndrome. Int. J. Mol. Sci. 2020, 21, 5529. [Google Scholar] [CrossRef]
- Bjørklund, G.; Peana, M.; Pivina, L.; Dosa, A.; Aaseth, J.; Semenova, Y.; Chirumbolo, S.; Medici, S.; Dadar, M.; Costea, D.O. Iron deficiency in obesity and after bariatric surgery. Biomolecules 2021, 11, 613. [Google Scholar] [CrossRef]
- Wojtasik, A.; Jarosz, M.; Stoś, K. Normy żywienia dla populacji Polski. In Normy Żywienia dla Populacji Polski/The Standard of Nutrition for the Polish Population; Jarosz, M., Ed.; Instytut Żywności i Żywienia, Warszawa, Polska/National Food and Nutrition Institute: Warsaw, Poland, 2017; pp. 211–214. [Google Scholar]
- EU Regulation. Regulation (EU) No 1169/2011 of The European Parliament and of the Council of 25 October 2011. Off. J. Eur. Union 2011, 304, 18–61. [Google Scholar]
- EFSA Publication EFSA Panel on Dietetic Products; Nutrition; and Allergies (NDA). Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre. EFSA J. 2011, 8, 1462. [Google Scholar] [CrossRef]
- Giménez-Bastida, J.; Laparra-Llopis, J.; Baczek, N.; Zielinski, H. Buckwheat and buckwheat enriched products exert an anti-inflammatory effect on the myofibroblasts of colon CCD-18Co. Food Funct. 2018, 9, 3387–3397. [Google Scholar] [CrossRef] [PubMed]
- Owczarek, D.; Rodacki, T.; Domagała-Rodacka, R.; Cibor, D.; Mach, T. Diet and nutritional factors in inflammatory bowel diseases. World J. Gastroenterol. 2016, 22, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Capili, B.; Chang, M.; Anastasi, J.K. A Clinical Update: Nonceliac Gluten Sensitivity—Is It Really the Gluten? J. Nurse Pract. 2021, 10, 666–673. [Google Scholar] [CrossRef]
- Kucharska, A.; Sińska, B.I.; Panczyk, M.; Samel-Kowalik, P.; Szostak-Węgierek, D.; Raciborski, F.; Samoliński, B. Assessing the impact of dietary choices on fiber deficiency: Insights from the 2017–2020 Polish national adult nutrition survey. Front. Nutr. 2024, 11, 1433406. [Google Scholar] [CrossRef]
- Korcz, A.; Twardowski, T. Lupin ferritin: Purification and characterization, biosynthesis and regulation of in vitro synthesis in plant system. J. Plant Physiol. 1993, 141, 75–81. [Google Scholar] [CrossRef]
- Liu, X.; Theil, E.C. Ferritins: Dynamic management of biological iron and oxygen chemistry. Acc. Chem. Res. 2005, 38, 167–175. [Google Scholar] [CrossRef]
- Montalbetti, N.; Simonin, A.; Kovacs, G.; Hediger, M.A. Mammalian iron transporters: Families SLC11 and SLC40. Mol. Aspects Med. 2013, 34, 270–287. [Google Scholar] [CrossRef] [PubMed]
- Kohlmeier, M. Nutriennt Metabolism. Structures, Functions, and Genes, 2nd ed.; Kohlmeier, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Szymandera-Buszka, K.; Zielińska-Dawidziak, M.; Makowska, A.; Majcher, M.; Jędrusek-Golińska, A.; Kaczmarek, A.; Niedzielski, P. Quality assessment of corn snacks enriched with soybean ferritin among young healthy people and patient with Crohn’s disease: The effect of extrusion conditions. Int. J. Food Sci. Technol. 2021, 56, 6463–6473. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L. Grain & Oil Science and Technology Impact of sourdough fermentation on nutrient transformations in cereal-based foods: Mechanisms, practical applications, and health implications. Grain Oil Sci. Technol. 2024, 7, 124–132. [Google Scholar] [CrossRef]
- Hoppler, M.; Schönbächler, A.; Meile, L.; Hurrell, R.F.; Walczyk, T. Ferritin-iron is released during boiling and in vitro gastric digestion. J. Nutr. 2008, 138, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Hang, J.; Chu, Y.; Chen, L. Leguminous ferritin, a natural protein for iron supplementation, Pickering emulsion formation and encapsulation of bioactive molecules. J. Am. Oil Chem. Soc. 2024, 101, 1043–1063. [Google Scholar] [CrossRef]
- Makowska, A.; Majcher, M.; Mildner-Szkudlarz, S.; Jedrusek-Golinska, A.; Przygoński, K. Triticale crisp bread enriched with selected bioactive additives: Volatile profile, physical characteristics, sensory and nutritional properties. J. Food Sci. Technol. 2017, 54, 3092–3101. [Google Scholar] [CrossRef]
- AOAC. AOAC Method 979.09 Kjeldahl Method for Determination Protein in Grains; AOAC: Rockville, MD, USA, 1994. [Google Scholar]
- AOAC. Official Method 945.16 Oil in Cereal Adjuncts: Petroleum Ether Extraction Method; AOAC: Rockville, MD, USA, 1945. [Google Scholar]
- AOAC 996.11-2005, Starch (Total) in Cereal Products. Amyloglucos. AOAC Official Method. 2015. Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=1546 (accessed on 6 January 2025).
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef]
- Niedzielski, P.; Zielinska-Dawidziak, M.; Kozak, L.; Kowalewski, P.; Szlachetka, B.; Zalicka, S.; Wachowiak, W. Determination of Iron Species in Samples of Iron-Fortified Food. Food Anal. Methods 2014, 7, 2023–2032. [Google Scholar] [CrossRef]
| Product | Energy (kJ/kcal) | Total Protein [g/100 g] | Total Fat [g/100 g] | Total Carbohydrates [g/100 g] | Total Fiber [g/100 g] | Humidity [%] | Total ORAC [µmolTX/100 g] |
|---|---|---|---|---|---|---|---|
| ‘Kisiel’ | 1332.4 ± 78.1 * /318.3 ± 18.7 | 2.3 ± 0.0 | 1.1 ± 0.0 | 86.0 ± 0.0 | 27.0 ± 4.0 | 10.6 ± 1.9 | 60.23 ± 12.73 |
| ‘Budyn’ | 1093.6 ± 0.3 /261.2 ± 0.1 | 12.0 ± 0.3 | 1.6 ± 0.1 | 75.15 ± 0 | 21.3 ± 2.0 | 11.2 ± 2.1 | 57.9 ± 12.59 |
| Groats | 1167.0 ± 329.8 /278.8 ± 78.8 | 10.0 ± 0.1 | 0.6 ± 0.1 | 79.0 ± 12.2 | 7.0 ± 1.7 | 10.4 ± 2.0 | 830.65 ± 138.20 |
| Pasta | 1093.7 ± 98.5 /261.3 ± 23.5 | 14.2 ± 2.6 | 2.8 ± 0.4 | 71.12 ± 4.7 | 2.5 ± 0.0 | 11.9 ± 1.8 | 184.39 ± 18.43 |
| Gluten-free bread | 891.0 ± 3.9 /213.8 ± 0.9 | 4.3 ± 0.3 | 1.1 ± 0.0 | 49.6 ± 0.0 | 2.7 ± 0.2 | 45.1 ± 2.3 | 210.34 ± 0.0 |
| Rice wafers | 1519.9 ± 0.6 /363.1 ± 0.1 | 9.4 ± 0.3 | 2.7 ± 0.1 | 81.9 ± 0.0 | 4.7 ± 0.4 | 6.0 ± 1.3 | 90.33 ± 23.35 |
| Corn snacks | 1339.9 ± 74.6 /320.1 ± 17.8 | 9.2 ± 0.45 | 0.3 ± 0.0 | 82.2 ± 3.39 | 5,9 ± 0.0 | 8.3 ± 1.7 | 312.7 ± 12.18 |
| The Content of Iron [mg/100 g] | Ferritin Loss [%] | ||||
|---|---|---|---|---|---|
| Studied Sample | Fe (II) | Fe(III) | Fe Non-Ionic | ||
| FSS | 140.12 ± 42.31 | <0.1 | 420.54 ± 58.01 | - | |
| Kisiel | NF | 0.23 ± 0.19 | 0.38 ± 0.27 | 0.41 ± 0.3 | - |
| F | 1.36 ± 0.43 | 0.38 ± 0.23 | 17.95 ± 0.77 | 0 a** | |
| Budyn | NF | 0.22 ± 0.07 | 0.38 ± 0.13 | 3.06 ± 0.41 | - |
| F | 4.23 ± 1.18 | 0.57 ± 0.15 | 11.23 ± 0.31 | 10 c | |
| Groats | NF | <0.1 * | <0.1 | 0.80 ± 0.67 | - |
| F | 1.70 ± 0.10 | 0.23 ± 0.19 | 8.00 ± 1.00 | 7 c | |
| Raw pasta | NF | 1.30 ± 0.60 | <0.1 | 4.20 ± 0.70 | - |
| Raw pasta | F | 3.10 ± 0.10 | <0.1 | 12.10 ± 0.60 | 3 b |
| 5′ cooked pasta | F | 5.30 ± 0.10 | <0.1 | 9.70 ± 1.40 | 32 d,e |
| 7′ cooked pasta | F | 5.70 ± 0.70 | <0.1 | 9.20 ± 0.18 | 39 e |
| 10′ cooked pasta | F | 5.00 ± 0.77 | <0.1 | 9.30 ± 1.10 | 37 e |
| Water from pasta cooking 0′ | 0.04 ± 0.07 | <0.1 | 0.02 ± 0.08 | - | |
| Water from pasta cooking 5′ | 0.02 ± 0.06 | <0.1 | 0.02 ± 0.16 | - | |
| Water from pasta cooking 7′ | 0.03 ± 0.03 | <0.1 | 0.02 ± 0.06 | - | |
| Water from pasta cooking 10′ | 0.02 ± 0.01 | <0.1 | 0.02 ± 0.02 | - | |
| Bread | NF | 0.7 ± 0.07 | <0.1 | 0.80 ± 0.02 | - |
| F (sourdough) | 5.90 ± 0.06 | 0.05 ± 0.04 | 10.90 ± 0.26 a | 25 d | |
| F (yeast) | 6.14 ± 0.43 | <0.1 | 10.35 ± 0.07 a | 30 d | |
| Crispbread | NF | 0.41 ± 0.01 | <0.1 | 0.90 ± 0.06 | - |
| F | 7.90 ± 0.24 | 3.35 ± 0.16 | 0.30 ± 0.03 | 100 f | |
| Corn snacks | NF | 4.56 ± 0.02 | <0.1 | 1.07 ± 0.25 | - |
| F (coarse fraction) | 11.55 ± 0.13 | 0.08 ± 0.04 | 13.03 ± 0.45 b | 27 d | |
| F (fine fraction) | 12.77 ± 0.24 | <0.1 | 11.66 ± 0.43 a | 35 e | |
| Rice wafers | NF | 1.80 ± 0.18 | <0.1 | 2.30 ± 0.25 | - |
| F (coarse fraction) | 3.13 ± 0.25 | 0.2 ± 0.02 | 10.05 ± 0.66 a | 3 b | |
| F (fine fraction) | 2.75 ± 0.22 | 1.00 ± 0.13 | 9.96 ± 0.67 a | 4 b | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zielińska-Dawidziak, M.; Makowska, A.; Czlapka-Matyasik, M.; Proch, A.; Niedzielski, P. Processing-Dependent Releasing of Iron from Plant Ferritin in Cereal-Based Foods Designed for Iron Delivery in Inflammatory Bowel Disease. Molecules 2026, 31, 510. https://doi.org/10.3390/molecules31030510
Zielińska-Dawidziak M, Makowska A, Czlapka-Matyasik M, Proch A, Niedzielski P. Processing-Dependent Releasing of Iron from Plant Ferritin in Cereal-Based Foods Designed for Iron Delivery in Inflammatory Bowel Disease. Molecules. 2026; 31(3):510. https://doi.org/10.3390/molecules31030510
Chicago/Turabian StyleZielińska-Dawidziak, Magdalena, Agnieszka Makowska, Magdalena Czlapka-Matyasik, Aleksandra Proch, and Przemysław Niedzielski. 2026. "Processing-Dependent Releasing of Iron from Plant Ferritin in Cereal-Based Foods Designed for Iron Delivery in Inflammatory Bowel Disease" Molecules 31, no. 3: 510. https://doi.org/10.3390/molecules31030510
APA StyleZielińska-Dawidziak, M., Makowska, A., Czlapka-Matyasik, M., Proch, A., & Niedzielski, P. (2026). Processing-Dependent Releasing of Iron from Plant Ferritin in Cereal-Based Foods Designed for Iron Delivery in Inflammatory Bowel Disease. Molecules, 31(3), 510. https://doi.org/10.3390/molecules31030510

