Editorial: Novel Two-Dimensional Energy-Environmental Materials
1. Energy Conversion and Storage
2. Environmental Protection and Pollution Control
3. Magnetic Material Design
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, M.; Liu, J.; Song, S.; Wang, W.; Yao, J.; Gong, Y.; Li, C.; Li, H.; Li, Y.; Yuan, X.; et al. Ultra-thin two-dimensional trimetallic metal–organic framework for photocatalytic reduction of CO2. ACS Catal. 2022, 12, 3238–3248. [Google Scholar]
- Zheng, X.; Feng, S.; Tsang, C.S.; Thi, Q.H.; Han, W.; Wong, L.W.; Liu, H.; Lee, C.-S.; Lau, S.P.; Ly, T.H.; et al. Twist-assisted intrinsic toughening in two-dimensional transition metal dichalcogenides. Nat. Mater. 2025, 24, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Goel, N.; Kumar, R. Physics of 2D materials for developing smart devices. Nano-Micro Lett. 2025, 17, 197. [Google Scholar] [CrossRef]
- Zhang, E.; Ding, S.; Li, X.; Ma, X.; Gao, X.; Liu, L.; Shen, Y.; Cheng, S.; Mi, W.; Zhou, Y.; et al. Graphene rolls with tunable chirality. Nat. Mater. 2025, 24, 377–383. [Google Scholar] [CrossRef]
- Wu, X.; Xiao, S.; Long, Y.; Ma, T.; Shao, W.; Cao, S.; Xiang, X.; Ma, L.; Qiu, L.; Cheng, C.; et al. Emerging 2D materials for electrocatalytic applications: Synthesis, multifaceted nanostructures, and catalytic center design. Small 2022, 18, 2105831. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chang, J.; Tang, W.; Xie, W.; Ang, Y.S. 2D materials and heterostructures for photocatalytic water-splitting: A theoretical perspective. J. Phys. D Appl. Phys. 2022, 55, 293002. [Google Scholar]
- Feng, C.; Wu, Z.P.; Huang, K.W.; Ye, J.; Zhang, H. Surface modification of 2D photocatalysts for solar energy conversion. Adv. Mater. 2022, 34, 2200180. [Google Scholar] [CrossRef]
- Zhang, Y.; Nie, K.; Yi, L.; Li, B.; Yuan, Y.; Liu, Z.; Huang, W. Recent Advances in Engineering of 2D Materials-Based Heterostructures for Electrochemical Energy Conversion. Adv. Sci. 2023, 10, 2302301. [Google Scholar] [CrossRef]
- Fan, Z.; Dai, J.; Huang, Y.; Xie, H.; Jiao, Y.; Yue, W.; Huang, F.; Deng, Y.; Wang, D.; Zhang, Q.; et al. Superior energy storage capacity of polymer-based bilayer composites by introducing 2D ferroelectric micro-sheets. Nat. Commun. 2025, 16, 1180. [Google Scholar] [CrossRef]
- Bansal, N.; Kumar, N.; Pathak, P.K.; Ahn, H.; Tang, J.; Yamauchi, Y.; Salunkhe, R.R. The Versatility of Layered Two-Dimensional Heterostructures for Energy Storage: Bridging Scientific Insights and Practical Applications. Adv. Mater. 2025, 37, e2501490. [Google Scholar] [CrossRef]
- Fereja, S.L.; Mehmood, A.; Ji, Q.; Raza, W.; Hussen, A.; Hu, J.; Zhai, S.; Cai, X. Advancing the utilization of 2D materials for electrocatalytic seawater splitting. InfoMat 2025, 7, e12623. [Google Scholar] [CrossRef]
- Xu, Y.; Hou, W.; Huang, K.; Guo, H.; Wang, Z.; Lian, C.; Zhang, J.; Wu, D.; Lei, Z.; Liu, Z.; et al. Engineering built-in electric field microenvironment of CQDs/g-C3N4 heterojunction for efficient photocatalytic CO2 reduction. Adv. Sci. 2024, 11, 2403607. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.T.; Lee, C.W.; Jung, H.J.; Choi, H.J.; Salman, A.; Sasikala, S.P.; Kim, S.O. Application of 2D materials for adsorptive removal of air pollutants. ACS Nano 2022, 16, 17687–17707. [Google Scholar] [CrossRef]
- Long, J.; Yang, G.; Li, C.; Wu, Y.; Wang, L.; Han, J.; Wu, X.; Zhan, J.; Huang, B.; Yin, H.; et al. Strong internal electric field endowed by interfacial Ce–O bonding in S-scheme heterojunction for benzyl alcohol oxidation and pollutants treatment. Appl. Catal. B Environ. Energy 2025, 380, 125792. [Google Scholar] [CrossRef]
- Chen, T.; Shen, L.; Wang, F.; Jiang, P. Tunable Hydrogen Evolution Reaction Property of Janus SWSe Monolayer Using Defect and Strain Engineering. Molecules 2025, 30, 1588. [Google Scholar] [CrossRef]
- Huang, H.; Li, G.; Li, Z.; Zhou, T.; Li, P.; Yang, X.; Wu, B. First-Principles Study of Titanium-Doped B7 Cluster for High Capacity Hydrogen Storage. Molecules 2024, 29, 5795. [Google Scholar] [CrossRef]
- Long, C.; Huang, P. Theoretical Design of Tellurium-Based Two-Dimensional Perovskite Photovoltaic Materials. Molecules 2024, 29, 3155. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, L.; Wang, K.; Mu, W.; Wu, Q.; Ma, Z.; Ren, K. Mechanical and lattice thermal properties of Si-Ge lateral heterostructures. Molecules 2024, 29, 3823. [Google Scholar] [CrossRef]
- Dotti, A.; Guagliano, M.; di Castelferretto, V.F.; Scotti, R.; Pedrazzi, S.; Puglia, M.; Orrù, R.V.A.; Cristiani, C.; Finocchio, E.; Peressut, A.B.; et al. Self-standing adsorbent composites of waste-derived biochar and reduced graphene oxide for water decontamination. Molecules 2025, 30, 1997. [Google Scholar] [CrossRef]
- Liao, A.; Liu, Z.; Wei, Y.; Xie, Q.; Kong, T.; Zeng, M.; Wang, W.; Yang, C.; Zhang, L.; Xu, Y.; et al. Synthesis of Sulfur Vacancy-Bearing In2S3/CuInS2 Microflower Heterojunctions via a Template-Assisted Strategy and Cation-Exchange Reaction for Photocatalytic CO2 Reduction. Molecules 2024, 29, 3334. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tu, Y.; He, K.; Chen, C.; Liang, L.; Ruan, C.; Zhang, Q. Mechanistic insights into glycerol oxidation to high-value chemicals via metal-based catalysts. Molecules 2025, 30, 1310. [Google Scholar] [CrossRef] [PubMed]
- Hua, G.; Wu, X.; Ge, X.; Zhou, T.; Shao, Z. First-Principles Study on the High Spin-Polarized Ferromagnetic Semiconductor of Vanadium-Nitride Monolayer and Its Heterostructures. Molecules 2025, 30, 2156. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Tang, X.; Xing, W.; Zhang, Y.; Gao, X.; Zhang, M.; Xie, Z.; Yan, X.; Ju, L. Designing Organic Spin-Gapless Semiconductors via Molecular Adsorption on C4N3 Monolayer. Molecules 2024, 29, 3138. [Google Scholar] [CrossRef]
- Zhao, D.; Tang, X.; Gao, X.; Xing, W.; Liu, S.; Yin, H.; Ju, L. Theoretical Study of the Magnetic Mechanism of a Pca21 C4N3 Monolayer and the Regulation of Its Magnetism by Gas Adsorption. Molecules 2024, 29, 5194. [Google Scholar] [CrossRef]
- Ma, Y.; Yao, R.; Wu, J.; Gao, Z.; Luo, F. Unusual anomalous hall effect in two-dimensional ferromagnetic Cr7Te8. Molecules 2024, 29, 5068. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, G.; Kong, X.; Wang, N. Editorial: Novel Two-Dimensional Energy-Environmental Materials. Molecules 2026, 31, 463. https://doi.org/10.3390/molecules31030463
Wang G, Kong X, Wang N. Editorial: Novel Two-Dimensional Energy-Environmental Materials. Molecules. 2026; 31(3):463. https://doi.org/10.3390/molecules31030463
Chicago/Turabian StyleWang, Guangzhao, Xiangkai Kong, and Ning Wang. 2026. "Editorial: Novel Two-Dimensional Energy-Environmental Materials" Molecules 31, no. 3: 463. https://doi.org/10.3390/molecules31030463
APA StyleWang, G., Kong, X., & Wang, N. (2026). Editorial: Novel Two-Dimensional Energy-Environmental Materials. Molecules, 31(3), 463. https://doi.org/10.3390/molecules31030463

