Optimization of Azidophenylselenylation of Glycals for the Efficient Synthesis of Phenyl 2-Azido-2-Deoxy-1-Selenoglycosides: Solvent Control
Abstract
1. Introduction

2. Results and Discussion
2.1. Reaction Background
2.2. Evaluation of Reaction Parameters on a Small Scale
2.3. Scaling-Up Experiments
3. Materials and Methods
3.1. General Methods
3.2. Safe Note
3.3. Representative Example of Heterogeneous APS Test Reaction Protocol
- 3,4,6-tri-O-acetyl-2-azido-2-deoxy-1-(phenylseleno)-α-d-galactopyranoside (2) (Table 1, Entry 4)
3.4. Representative Example of Heterogeneous APS Test Reaction Protocol with Additive
- 3,4,6-tri-O-acetyl-2-azido-2-deoxy-1-(phenylseleno)-α-d-galactopyranoside (2) (Table 2, Entry 3)
3.5. General Large-Scale APS Procedure
- 3,4,6-tri-O-acetyl-2-azido-2-deoxy-1-(phenylseleno)-α-d-galactopyranoside (2)
- 3,4,6-tri-O-acetyl-2-azido-2-deoxy-1-(phenylseleno)-α-l-gluco- (7) and mannopyranoside (8)
- 3,4-di-O-acetyl-2-azido-2-deoxy-1-(phenylseleno)-α-l-fucopyranoside (21)
- 3,4-di-O-acetyl-2-azido-2-deoxy-1-(phenylseleno)-α-l-quinovoso- (26) and -rhamnopyranosides (27)
3.6. Representative Example of the APS of Benzylidene-Protected Glucal 30 Using μ-Oxo-bis(acetyloxy)iodobenzene as the Oxidant
- Phenyl 2-azido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-1-selenyl-α-d-glucopyranoside (31) (Table 4, Entry 4)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| APS | Azidophenylselenylation |
| BAIB | [Bis(acetoxy)iodo]benzene |
| EtCN | Propionitrile |
| MeCN | Acetonitrile |
| µ-oxo-BAIB | μ-oxo-bis(acetoxy)iodobenzene (BAIB dimer) |
References
- Østerlid, K.E.; Li, S.; Unione, L.; Bino, L.D.; Sorieul, C.; Carboni, F.; Berni, F.; Bertuzzi, S.; Van Puffelen, B.; Arda, A.; et al. Synthesis, Conformal Analysis, and Antibody Binding of Staphylococcus aureus Capsular Polysaccharide Type 5 Oligosaccharides. Angew. Chem. 2025, 137, e202511378. [Google Scholar] [CrossRef]
- Geng, X.; Wang, Y.; Zhang, P.; Zhang, H.; Xu, L.; Wang, H.; Gao, J. Chemical Synthesis of Conjugation-Ready Oligosaccharide Haptens of Pseudomonas aeruginasa O11 and Staphylococcus aureus Type 5. Org. Lett. 2025, 27, 12160–12165. [Google Scholar] [CrossRef] [PubMed]
- Bhaumik, I.; Misra, A.K. Convergent Synthesis of the Tetrasaccharide Repeating Unit of the O -Polysaccharide of Salmonella enterica O41. ChemistrySelect 2017, 2, 3065–3067. [Google Scholar] [CrossRef]
- Kumar, H.; Mandal, P.K. Synthetic Routes Toward Pentasaccharide Repeating Unit Corresponding to the O-Antigen of Escherichia coli O181. Tetrahedron Lett. 2019, 60, 860–863. [Google Scholar] [CrossRef]
- Das, R.; Mukhopadhyay, B. Chemical Synthesis of the Tetrasaccharide Repeating Unit of the O-Antigenic Polysaccharide from Plesiomonas shigelloides Strain AM36565. Carbohydr. Res. 2013, 376, 1–6. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Meng, Y.; Yang, X.; Zhao, Q.; Gao, J. Total Synthesis of the Tetrasaccharide Haptens of Vibrio vulnificus MO6-24 and BO62316 and Immunological Evaluation of Their Protein Conjugates. JACS Au 2022, 2, 97–108. [Google Scholar] [CrossRef]
- Paul, A.; Kulkarni, S.S. Total Synthesis of the Repeating Units of Proteus penneri 26 and Proteus vulgaris TG155 via a Common Disaccharide. Org. Lett. 2023, 25, 4400–4405. [Google Scholar] [CrossRef]
- Lemieux, R.U.; Ratcliffe, R.M. The Azidonitration of Tri-O-Acetyl-d-Galactal. Can. J. Chem. 1979, 57, 1244–1251. [Google Scholar] [CrossRef]
- Plattner, C.; Höfener, M.; Sewald, N. One-Pot Azidochlorination of Glycals. Org. Lett. 2011, 13, 545–547. [Google Scholar] [CrossRef]
- Liu, S.-X.; Tsai, Y.-T.; Lin, Y.-T.; Li, J.-Y.; Chang, C.-C. Design and Synthesis of Trivalent Tn Glycoconjugate Polymers by Nitroxide-Mediated Polymerization. Tetrahedron 2019, 75, 130776. [Google Scholar] [CrossRef]
- Araki, K.; Kawa, M.; Saito, Y.; Hashimoto, H.; Yoshimura, J. Synthetic Studies on Glycocinnamoylspermidine. II. Synthesis of 4-O-(2-Azido-2-Deoxy-d-Xylopyranosyl)-2-Azido-2-Deoxy-d-Xylopyranose Derivatives. Bull. Chem. Soc. Jpn. 1986, 59, 3137–3143. [Google Scholar] [CrossRef]
- Ali, S.; Hendriks, A.; van Dalen, R.; Bruyning, T.; Meeuwenoord, N.; Overkleeft, H.S.; Filippov, D.V.; van der Marel, G.A.; van Sorge, N.M.; Codée, J.D.C. (Automated) Synthesis of Well-Defined Staphylococcus aureus Wall Teichoic Acid Fragments. Chem.—A Eur. J. 2021, 27, 10461–10469. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.; Overkleeft, H.S.; van der Marel, G.A.; Codée, J.D.C. Reagent Controlled Glycosylations for the Assembly of Well-Defined Pel Oligosaccharides. J. Org. Chem. 2020, 85, 15872–15884. [Google Scholar] [CrossRef]
- Shou, K.; Zhang, Y.; Ji, Y.; Liu, B.; Zhou, Q.; Tan, Q.; Li, F.; Wang, X.; Lu, G.; Xiao, G. Highly Stereoselective α-Glycosylation with GalN3 Donors Enabled Collective Synthesis of Mucin-Related Tumor Associated Carbohydrate Antigens. Chem. Sci. 2024, 15, 6552–6561. [Google Scholar] [CrossRef]
- Slättegård, R.; Teodorovic, P.; Kinfe, H.H.; Ravenscroft, N.; Gammon, D.W.; Oscarson, S. Synthesis of Structures Corresponding to the Capsular Polysaccharide of Neisseria meningitidis Group A. Org. Biomol. Chem. 2005, 3, 3782. [Google Scholar] [CrossRef]
- van der Vorm, S.; Overkleeft, H.S.; van der Marel, G.A.; Codée, J.D.C. Stereoselectivity of Conformationally Restricted Glucosazide Donors. J. Org. Chem. 2017, 82, 4793–4811. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, E.C.; Ventura, M.R. Improvement of the Stereoselectivity of the Glycosylation Reaction with 2-Azido-2-Deoxy-1-Thioglucoside Donors. Carbohydr. Res. 2016, 426, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Bhetuwal, B.R.; Wu, F.; Meng, S.; Zhu, J. Stereoselective Synthesis of 2-Azido-2-Deoxy-β-d-Mannosides via Cs2CO3-Mediated Anomeric O-Alkylation with Primary Triflates: Synthesis of a Tetrasaccharide Fragment of Micrococcus luteus Teichuronic Acid. J. Org. Chem. 2020, 85, 16196–16206. [Google Scholar] [CrossRef]
- Mironov, Y.V.; Sherman, A.A.; Nifantiev, N.E. Homogeneous Azidophenylselenylation of Glycals Using TMSN3–Ph2Se2–PhI(OAc)2. Tetrahedron Lett. 2004, 45, 9107–9110. [Google Scholar] [CrossRef]
- Khatuntseva, E.A.; Sherman, A.A.; Tsvetkov, Y.E.; Nifantiev, N.E. Phenyl 2-Azido-2-Deoxy-1-Selenogalactosides: A Single Type of Glycosyl Donor for the Highly Stereoselective Synthesis of α- and β-2-Azido-2-Deoxy-d-Galactopyranosides. Tetrahedron Lett. 2016, 57, 708–711. [Google Scholar] [CrossRef]
- Kazakova, E.D.; Yashunsky, D.V.; Krylov, V.B.; Bouchara, J.-P.; Cornet, M.; Valsecchi, I.; Fontaine, T.; Latgé, J.-P.; Nifantiev, N.E. Biotinylated Oligo-α-(1→4)-d-Galactosamines and Their N-Acetylated Derivatives: α-Stereoselective Synthesis and Immunology Application. J. Am. Chem. Soc. 2020, 142, 1175–1179. [Google Scholar] [CrossRef] [PubMed]
- Kazakova, E.D.; Yashunsky, D.V.; Nifantiev, N.E. The Synthesis of Blood Group Antigenic A Trisaccharide and Its Biotinylated Derivative. Molecules 2021, 26, 5887. [Google Scholar] [CrossRef]
- Kärkkäinen, T.S.; Ravindranathan Kartha, K.P.; MacMillan, D.; Field, R.A. Iodine-Mediated Glycosylation En Route to Mucin-Related Glyco-Aminoacids and Glycopeptides. Carbohydr. Res. 2008, 343, 1830–1834. [Google Scholar] [CrossRef]
- Hagen, B.; van Dijk, J.H.M.; Zhang, Q.; Overkleeft, H.S.; van der Marel, G.A.; Codée, J.D.C. Synthesis of the Staphylococcus aureus Strain M Capsular Polysaccharide Repeating Unit. Org. Lett. 2017, 19, 2514–2517. [Google Scholar] [CrossRef]
- Bedini, E.; Cirillo, L.; Parrilli, M. Synthesis of the Trisaccharide Outer Core Fragment of Burkholderia cepacia pv. Vietnamiensis Lipooligosaccharide. Carbohydr. Res. 2012, 349, 24–32. [Google Scholar] [CrossRef]
- Schumann, B.; Parameswarappa, S.G.; Lisboa, M.P.; Kottari, N.; Guidetti, F.; Pereira, C.L.; Seeberger, P.H. Nucleophile-Directed Stereocontrol Over Glycosylations Using Geminal-Difluorinated Nucleophiles. Angew. Chem. Int. Ed. 2016, 55, 14431–14434. [Google Scholar] [CrossRef]
- Li, D.; Wang, J.; Wang, X.; Qiao, Z.; Wang, L.; Wang, P.; Song, N.; Li, M. β-Glycosylations with 2-Deoxy-2-(2,4-Dinitrobenzenesulfonyl)-Amino-Glucosyl/Galactosyl Selenoglycosides: Assembly of Partially N-Acetylated β-(1→6)-Oligoglucosaminosides. J. Org. Chem. 2023, 88, 9004–9025. [Google Scholar] [CrossRef] [PubMed]
- Njeri, D.K.; Ragains, J.R. Total Synthesis of an All-1,2-Cis-Linked Repeating Unit from the Acinetobacter baumannii D78 Capsular Polysaccharide. Org. Lett. 2022, 24, 3461–3465. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shen, W.; Cao, C.; Wang, Z.; Zhang, Y.; Xue, W. Thiourea-Cu(OTf)2/NIS-Synergistically Promoted Stereoselective Glycoside Formation with 2-Azidoselenoglycosides or Thioglycosides as Donors. Org. Biomol. Chem. 2024, 22, 2137–2144. [Google Scholar] [CrossRef]
- Hagen, B.; Ali, S.; Overkleeft, H.S.; van der Marel, G.A.; Codée, J.D.C. Mapping the Reactivity and Selectivity of 2-Azidofucosyl Donors for the Assembly of N-Acetylfucosamine-Containing Bacterial Oligosaccharides. J. Org. Chem. 2017, 82, 848–868. [Google Scholar] [CrossRef]
- Linker, T. Addition of Heteroatom Radicals to Endo-Glycals. Chemistry 2020, 2, 80–92. [Google Scholar] [CrossRef]
- Tingoli, M.; Tiecco, M.; Chianelli, D.; Balducci, R.; Temperini, A. Novel Azido-Phenylselenenylation of Double Bonds. Evidence for a Free-Radical Process. J. Org. Chem. 1991, 56, 6809–6813. [Google Scholar] [CrossRef]
- Czernecki, S.; Ayadi, E.; Randriamandimby, D. Seleno Glycosides. 2. Synthesis of Phenyl 2-(N-Acetylamino)- and 2-Azido-2-Deoxy-1-Seleno-α-d-Glycopyranosides via Azido-Phenylselenylation of Diversely Protected Glycals. J. Org. Chem. 1994, 59, 8256–8260. [Google Scholar] [CrossRef]
- Czernecki, S.; Ayadi, E.; Randriamandimby, D. New and Efficient Synthesis of Protected 2-Azido-2-Deoxy-Glycopyranoses from the Corresponding Glycal. J. Chem. Soc. Chem. Commun. 1994, 35–36. [Google Scholar] [CrossRef]
- Santoyo-Gonzalez, F.; Calvo-Flores, F.G.; Garcia-Mendoza, P.; Hernandez-Mateo, F.; Isac-Garcia, J.; Robles-Diaz, R. Synthesis of Phenyl 2-Azido-2-Deoxy-1-Selenoglycosides from Glycals. J. Org. Chem. 1993, 58, 6122–6125. [Google Scholar] [CrossRef]
- Mironov, Y.V.; Grachev, A.A.; Lalov, A.V.; Sherman, A.A.; Egorov, M.P.; Nifantiev, N.E. A Study of the Mechanism of the Azidophenylselenylation of Glycals. Russ. Chem. Bull. 2009, 58, 284–290. [Google Scholar] [CrossRef]
- Guberman, M.; Pieber, B.; Seeberger, P.H. Safe and Scalable Continuous Flow Azidophenylselenylation of Galactal to Prepare Galactosamine Building Blocks. Org. Process Res. Dev. 2019, 23, 2764–2770. [Google Scholar] [CrossRef]
- Fomitskaya, P.A.; Argunov, D.A.; Tsvetkov, Y.E.; Lalov, A.V.; Ustyuzhanina, N.E.; Nifantiev, N.E. Further Investigation of the 2-Azido-Phenylselenylation of Glycals. Eur. J. Org. Chem. 2021, 2021, 5897–5904. [Google Scholar] [CrossRef]
- Peturova, M.; Vitiazeva, V.; Toman, R. Structural Features of the O-Antigen of Rickettsia typhi, the Etiological Agent of Endemic Typhus. Acta Virol. 2015, 59, 228–233. [Google Scholar] [CrossRef]
- Atiemo-Obeng, V.A.; Penney, W.R.; Armenante, P. Solid–Liquid Mixing. In Handbook of Industrial Mixing; Paul, E.L., Atiemo-Obeng, V.A., Kresta, S.M., Eds.; Wiley: Hoboken, NJ, USA, 2003; pp. 543–584. ISBN 978-0-471-26919-9. [Google Scholar]
- Varala, R.; Seema, V.; Dubasi, N. Phenyliodine(III)Diacetate (PIDA): Applications in Organic Synthesis. Organics 2022, 4, 1–40. [Google Scholar] [CrossRef]
- Soltanzadeh, B.; Jaganathan, A.; Yi, Y.; Yi, H.; Staples, R.J.; Borhan, B. Highly Regio- and Enantioselective Vicinal Dihalogenation of Allyl Amides. J. Am. Chem. Soc. 2017, 139, 2132–2135. [Google Scholar] [CrossRef] [PubMed]
- Roessler, A.; Rys, P. Wenn die Rührgeschwindigkeit die Produktverteilung bestimmt: Selektivität mischungsmaskierter Reaktionen. Chem. Unserer Zeit 2001, 35, 314–323. [Google Scholar] [CrossRef]
- Chang, C.; Wu, C.; Lin, M.; Liao, P.; Chang, C.; Chuang, H.; Lin, S.; Lam, S.; Verma, V.P.; Hsu, C.; et al. Establishment of Guidelines for the Control of Glycosylation Reactions and Intermediates by Quantitative Assessment of Reactivity. Angew. Chem. Int. Ed. 2019, 58, 16775–16779. [Google Scholar] [CrossRef]
- Koseki, Y.; Watanabe, T.; Kamishima, T.; Kwon, E.; Kasai, H. Formation of Five-Membered Carbocycles from d -Glucose: A Concise Synthesis of 4-Hydroxy-2-(Hydroxymethyl)Cyclopentenone. Bull. Chem. Soc. Jpn. 2019, 92, 1324–1328. [Google Scholar] [CrossRef]
- Grugel, H.; Albrecht, F.; Boysen, M.M.K. pseudo Enantiomeric Carbohydrate Olefin Ligands—Case Study and Application in Kinetic Resolution in Rhodium(I)-Catalysed 1,4-Addition. Adv. Synth. Catal. 2014, 356, 3289–3294. [Google Scholar] [CrossRef]
- Dixon, J.T.; van Heerden, F.R.; Holzapfel, C.W. Preparation of an Analogue of Orbicuside A, an Unusual Cardiac Glycoside. Tetrahedron Asymmetry 2005, 16, 393–401. [Google Scholar] [CrossRef]
- Nitz, M.; Bundle, D.R. Synthesis of Di- to Hexasaccharide 1,2-Linked β-Mannopyranan Oligomers, a Terminal S-Linked Tetrasaccharide Congener and the Corresponding BSA Glycoconjugates. J. Org. Chem. 2001, 66, 8411–8423. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.-C.; Bryan, J.; Henson, W.; Zhdankin, V.V.; Gandhi, K.; David, S. New, Milder Hypervalent Iodine Oxidizing Agent: Using μ-Oxodi(Phenyliodanyl) Diacetate, a (Diacetoxyiodo)Benzene Derivative, in the Synthesis of Quinones. J. Chem. Educ. 2019, 96, 2622–2627. [Google Scholar] [CrossRef]
- Qin, C.; Schumann, B.; Zou, X.; Pereira, C.L.; Tian, G.; Hu, J.; Seeberger, P.H.; Yin, J. Total Synthesis of a Densely Functionalized Plesiomonas shigelloides Serotype 51 Aminoglycoside Trisaccharide Antigen. J. Am. Chem. Soc. 2018, 140, 3120–3127. [Google Scholar] [CrossRef]
- Tokatly, A.I.; Vinnitsky, D.Z.; Kamneva, A.A.; Yashunsky, D.V.; Tsvetkov, Y.E.; Nifantiev, N.E. Glycosylation with Derivatives of Phenyl 2-Azido-2-Deoxy-1-Seleno-α-d-Gluco- and -α-d-Mannopyranosides. Russ. Chem. Bull. 2023, 72, 785–792. [Google Scholar] [CrossRef]





| Entry | Solvent | Time, h | Yield of 2, % 1 | 2:3 | (2 + 3):(4 + 5) |
|---|---|---|---|---|---|
| 1 | CH2Cl2 | 96 | 77 | 10.6:1 | 5.5:1 |
| 2 | C6H6 | 48 | 80 | 9.1:1 | 7.8:1 |
| 3 | MeCN | 21 | 78 | 9.7:1 | 6.3:1 |
| 4 | EtCN | 15 | 81 | 12.1:1 | 7.3:1 |
| 5 | C6H6/heptane (1:1) | 48 | 78 | 9.7:1 | 6.4:1 |
| 6 | C6H6/EtCN/heptane (1:1:1) | 48 | 82 | 11.7:1 | 8.1:1 |
| Entry | Solvent | TMS- Additive | Time, h | Major Product | Yield, % |
|---|---|---|---|---|---|
| 1 | C6H6 | TMSOTf | 2 | 19 | 70 |
| 2 | C6H6 | TMSCl | 72 | 2 | 72 |
| 3 | EtCN | TMSOTf | 4.5 h | 2 | 80 |
| 4 | C6H6/EtCN/heptane (1:1:1) | TMSCl | 144 | 2 | 90 |
| Entry | Solvent | Conversion, % 1 | Time, d | Total yield of 7 and 8, % 2 | Yield of 7, % | 7:8 |
|---|---|---|---|---|---|---|
| 1 | C6H6 | 100 | 2 | 100 | 52 | 1:1 |
| 2 | C6H6 3 | 73 | 5 | 73 | 29 | 1:1.5 |
| 3 | C6H6:heptane (1:1) | 66 | 6 | 58 | 33 | 1.7:1 |
| 4 | MeCN | 81 | 6 | 81 | 36 | 1:1.3 |
| 5 | EtCN | 85 | 6 | 83 | 37 | 1:1.2 |
| Entry | Glycal, mmol | Solvent | Products | Total Yield, % 1 | Product Ratios 2 | |
|---|---|---|---|---|---|---|
| 1 | 20, 0.5 | EtCN | 21, 22, 23, 24 | 65 | 15:1 (21:22) | 21:1 (21+22:23+24) |
| 2 | 20, 2.5 | MeCN | 21, 22, 23, 24 | 91 | 9:1 (21:22) | 29:1 (21+22:23+24) |
| 3 | 25, 0.5 | C6H6 | 26, 27, 28, 29 | 49 3 | 1.4:1 (26:27) | 11:1 (26+27:28+29) |
| Entry | Solvent | Oxidant 1 | N3− Source | T, °C 2 | Yield 31, % |
|---|---|---|---|---|---|
| 1 | EtCN | BAIB | NaN3 | −20 → 23 | traces |
| 2 | EtCN | BAIB/µO-BAIB (1:1) | NaN3 | −20 → 10 | 22 |
| 3 | CH2Cl2 | BAIB 3 | TMSN3 | −25 | 65 |
| 4 | CH2Cl2 | BAIB/µO-BAIB 3 (1:4) | TMSN3 | −35 | 76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Komarova, B.S.; Belova, O.V.; Volkov, T.M.; Yashunsky, D.V.; Nifantiev, N.E. Optimization of Azidophenylselenylation of Glycals for the Efficient Synthesis of Phenyl 2-Azido-2-Deoxy-1-Selenoglycosides: Solvent Control. Molecules 2026, 31, 54. https://doi.org/10.3390/molecules31010054
Komarova BS, Belova OV, Volkov TM, Yashunsky DV, Nifantiev NE. Optimization of Azidophenylselenylation of Glycals for the Efficient Synthesis of Phenyl 2-Azido-2-Deoxy-1-Selenoglycosides: Solvent Control. Molecules. 2026; 31(1):54. https://doi.org/10.3390/molecules31010054
Chicago/Turabian StyleKomarova, Bozhena S., Olesia V. Belova, Timur M. Volkov, Dmitry V. Yashunsky, and Nikolay E. Nifantiev. 2026. "Optimization of Azidophenylselenylation of Glycals for the Efficient Synthesis of Phenyl 2-Azido-2-Deoxy-1-Selenoglycosides: Solvent Control" Molecules 31, no. 1: 54. https://doi.org/10.3390/molecules31010054
APA StyleKomarova, B. S., Belova, O. V., Volkov, T. M., Yashunsky, D. V., & Nifantiev, N. E. (2026). Optimization of Azidophenylselenylation of Glycals for the Efficient Synthesis of Phenyl 2-Azido-2-Deoxy-1-Selenoglycosides: Solvent Control. Molecules, 31(1), 54. https://doi.org/10.3390/molecules31010054

