High-Resolution Mass Spectrometry for Identification, Quantification, and Risk Assessment of 40 PFAS Migrating from Microwave Popcorn Bags
Abstract
1. Introduction
2. Results
2.1. Calibration Curve
2.2. Migration Test Results
2.3. Risk Assessment
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Sample Collection and Preparation
4.3. Migration Tests
4.4. LC-HRMS Analysis
4.5. Calibration Curve
4.6. Risk Assessment
- (1)
- PEQ = Concentration of each PFAS in food simulant (ng/g) × RPF.
- (2)
- CEDI = Total amount of PFAS (ng/g) × CF × fT × Amount consumed per day (g)/70 (kg).
- (3)
- HR = CEDI/RfD.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PFASs | Perfluoroalkyl and polyfluoroalkyl substances. |
FCMs | Food contact materials. |
HRMS | High-resolution mass spectrometry. |
EFSA | European Food Safety Authority. |
TWI | Tolerable weekly intake. |
bw | Body weight. |
IARC | International Agency for Research on Cancer. |
HR | Hazard ratio. |
R | Coefficient of correlation. |
LOQ | Limit of quantification. |
RSE | Relative standard error. |
TFDA | Taiwan Food and Drug Administration. |
RPF | Relative potency factor. |
PEQ | Perfluorooctanoic acid equivalents. |
CEDI | Cumulative estimated daily intake. |
EWI | Estimated weekly intake. |
QqQ | Triple quadrupole. |
LC | Liquid chromatographic separation. |
ESI | Electrospray ionization. |
RT | Retention time. |
S/N | Signal-to-noise. |
CF | Consumption factors. |
fT | Food-type distribution factors. |
RfD | Reference dose. |
References
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; de Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P. Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins. Integr. Environ. Assess. Manag. 2011, 7, 513. [Google Scholar] [CrossRef] [PubMed]
- Moreta, C.; Tena, M.T. Determination of perfluorinated alkyl acids in corn, popcorn and popcorn bags before and after cooking by focused ultrasound solid-liquid extraction, liquid chromatography and quadrupole-time of flight mass spectrometry. J. Chromatogr. A 2014, 1355, 211–218. [Google Scholar] [CrossRef]
- Nian, M.; Li, Q.Q.; Bloom, M.; Qian, Z.M.; Syberg, K.M.; Vaughn, M.G.; Wang, S.Q.; Wei, Q.; Zeeshan, M.; Gurram, N.; et al. Liver function biomarkers disorder is associated with exposure to perfluoroalkyl acids in adults: Isomers of C8 Health Project in China. Environ. Res. 2019, 172, 81–88. [Google Scholar] [CrossRef]
- Lee, J.E.; Choi, K. Perfluoroalkyl substances exposure and thyroid hormones in humans: Epidemiological observations and implications. Ann. Pediatr. Endocrinol. Metab. 2017, 22, 6–14. [Google Scholar] [CrossRef]
- Ren, X.-M.; Qin, W.-P.; Cao, L.-Y.; Zhang, J.; Yang, Y.; Wan, B.; Guo, L.-H. Binding interactions of perfluoroalkyl substances with thyroid hormone transport proteins and potential toxicological implications. Toxicology 2016, 366–367, 32–42. [Google Scholar] [CrossRef]
- Lau, C.; Thibodeaux, J.R.; Hanson, R.G.; Narotsky, M.G.; Rogers, J.M.; Lindstrom, A.B.; Strynar, M.J. Effects of perfluorooctanoic acid exposure during pregnancy in the mouse. Toxicol. Sci. 2006, 90, 510–518. [Google Scholar] [CrossRef]
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environ. Toxicol. Chem. 2021, 40, 606. [Google Scholar] [CrossRef]
- UNEP. SC-4/17: Listing of Perfluorooctane Sulfonic Acid, Its Salts and Perfluorooctane Sulfonyl Fluoride. Available online: https://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx (accessed on 17 April 2025).
- UNEP. SC-9/12: Listing of Perfluorooctanoic Acid (PFOA), Its Salts and PFOA-Related Compounds. Available online: https://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx (accessed on 17 April 2025).
- UNEP. SC-10/13: Listing of Perfluorohexane Sulfonic Acid (PFHxS), Its Salts and PFHxS-Related Compounds. Available online: https://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx (accessed on 17 April 2025).
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; Del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.R.; Leblanc, J.C.; Nebbia, C.S.; et al. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J. 2020, 18, e06223. [Google Scholar] [CrossRef]
- IARC. IARC Monographs Evaluate the Carcinogenicity of Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS). Available online: https://www.iarc.who.int/news-events/iarc-monographs-evaluate-the-carcinogenicity-of-perfluorooctanoic-acid-pfoa-and-perfluorooctanesulfonic-acid-pfos/ (accessed on 17 April 2025).
- EPA. Human Health Toxicity Assessment for Perfluorooctanoic Acid (PFOA)-Final PFOA Toxicity Assessment Documents. Available online: https://www.epa.gov/sdwa/human-health-toxicity-assessment-perfluorooctanoic-acid-pfoa (accessed on 17 April 2025).
- Sonnenberg, N.K.; Ojewole, A.E.; Ojewole, C.O.; Lucky, O.P.; Kusi, J. Trends in Serum Per- and Polyfluoroalkyl Substance (PFAS) Concentrations in Teenagers and Adults, 1999–2018 NHANES. Int. J. Environ. Res. Public Health 2023, 20, 6984. [Google Scholar] [CrossRef]
- Bartolomé, M.; Gallego-Picó, A.; Cutanda, F.; Huetos, O.; Esteban, M.; Pérez-Gómez, B.; Castaño, A. Perfluorinated alkyl substances in Spanish adults: Geographical distribution and determinants of exposure. Sci. Total Environ. 2017, 603–604, 352–360. [Google Scholar] [CrossRef]
- Hsu, J.-Y.; Hsu, J.-F.; Ho, H.-H.; Chiang, C.-F.; Liao, P.-C. Background levels of Persistent Organic Pollutants in humans from Taiwan: Perfluorooctane sulfonate and perfluorooctanoic acid. Chemosphere 2013, 93, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.P. A Review of the Pathways of Human Exposure to Poly- and Perfluoroalkyl Substances (PFASs) and Present Understanding of Health Effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131. [Google Scholar] [CrossRef] [PubMed]
- EU. Commission Recommendation (EU) 2019/794 of 15 May 2019 on a Coordinated Control Plan with a View to Establishing the Prevalence of Certain Substances Migrating from Materials and Articles Intended to Come into Contact with Food. Available online: https://eur-lex.europa.eu/eli/reco/2019/794/oj/eng (accessed on 17 April 2025).
- Martínez-Moral, M.P.; Tena, M.T. Determination of perfluorocompounds in popcorn packaging by pressurised liquid extraction and ultra-performance liquid chromatography-tandem mass spectrometry. Talanta 2012, 101, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Poothong, S.; Boontanon, S.K.; Boontanon, N. Determination of perfluorooctane sulfonate and perfluorooctanoic acid in food packaging using liquid chromatography coupled with tandem mass spectrometry. J. Hazard. Mater. 2012, 205–206, 139–143. [Google Scholar] [CrossRef]
- Poothong, S.; Boontanon, S.K.; Boontanon, N. Extraction procedure optimization for perfluorooctane sulfonate and perfluorooctanoic acid in food packaging determination by LC-MS/MS. J. Environ. Sci. Health Part B 2013, 48, 830–835. [Google Scholar] [CrossRef]
- Moreta, C.; Tena, M.T. Fast determination of perfluorocompounds in packaging by focused ultrasound solid-liquid extraction and liquid chromatography coupled to quadrupole-time of flight mass spectrometry. J. Chromatogr. A 2013, 1302, 88–94. [Google Scholar] [CrossRef]
- Zafeiraki, E.; Costopoulou, D.; Vassiliadou, I.; Bakeas, E.; Leondiadis, L. Determination of perfluorinated compounds (PFCs) in various foodstuff packaging materials used in the Greek market. Chemosphere 2014, 94, 169–176. [Google Scholar] [CrossRef]
- Zabaleta, I.; Negreira, N.; Bizkarguenaga, E.; Prieto, A.; Covaci, A.; Zuloaga, O. Screening and identification of per- and polyfluoroalkyl substances in microwave popcorn bags. Food Chem. 2017, 230, 497–506. [Google Scholar] [CrossRef]
- Siao, P.; Tseng, S.H.; Chen, C.Y. Determination of perfluoroalkyl substances in food packaging in Taiwan using ultrasonic extraction and ultra-performance liquid chromatography/tandem mass spectrometry. J. Food Drug Anal. 2022, 30, 11–25. [Google Scholar] [CrossRef]
- Aßhoff, N.; Bernsmann, T.; Esselen, M.; Stahl, T. A sensitive method for the determination of per- and polyfluoroalkyl substances in food and food contact material using high-performance liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. A 2024, 1730, 465041. [Google Scholar] [CrossRef]
- Nxumalo, T.; Akhdhar, A.; Müller, V.; Al Zbedy, A.; Raab, A.; Jovanovic, M.; Leitner, E.; Kindness, A.; Feldmann, J. Determination of total extractable organofluorine (EOF) in food contact materials and target and non-target analysis of per- and polyfluoroalkyl substances using LC-MS/MS and LC-HRMS simultaneously coupled to ICP-MS. Food Addit. Contam. Part. A Chem. Anal. Control Expo. Risk Assess. 2024, 41, 856–866. [Google Scholar] [CrossRef] [PubMed]
- Zabaleta, I.; Bizkarguenaga, E.; Bilbao, D.; Etxebarria, N.; Prieto, A.; Zuloaga, O. Fast and simple determination of perfluorinated compounds and their potential precursors in different packaging materials. Talanta 2016, 152, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Begley, T.H.; White, K.; Honigfort, P.; Twaroski, M.L.; Neches, R.; Walker, R.A. Perfluorochemicals: Potential sources of and migration from food packaging. Food Addit. Contam. 2005, 22, 1023–1031. [Google Scholar] [CrossRef]
- Stroski, K.M.; Sapozhnikova, Y.; Taylor, R.B.; Harron, A. Non-targeted analysis of per- and polyfluorinated substances in consumer food packaging. Chemosphere 2024, 360, 142436. [Google Scholar] [CrossRef]
- Vázquez Loureiro, P.; Nguyen, K.-H.; Rodríguez Bernaldo de Quirós, A.; Sendón, R.; Granby, K.; Niklas, A.A. Identification and quantification of per- and polyfluorinated alkyl substances (PFAS) migrating from food contact materials (FCM). Chemosphere 2024, 360, 142360. [Google Scholar] [CrossRef]
- Hu, J.; Lyu, Y.; Chen, H.; Cai, L.; Li, J.; Cao, X.; Sun, W. Integration of target, suspect, and nontarget screening with risk modeling for per- and polyfluoroalkyl substances prioritization in surface waters. Water Res. 2023, 233, 119735. [Google Scholar] [CrossRef]
- Sapozhnikova, Y.; Taylor, R.B.; Bedi, M.; Ng, C. Assessing per- and polyfluoroalkyl substances in globally sourced food packaging. Chemosphere 2023, 337, 139381. [Google Scholar] [CrossRef]
- Bil, W.; Zeilmaker, M.; Fragki, S.; Lijzen, J.; Verbruggen, E.; Bokkers, B. Risk Assessment of Per- and Polyfluoroalkyl Substance Mixtures: A Relative Potency Factor Approach. Environ. Toxicol. Chem. 2021, 40, 859–870. [Google Scholar] [CrossRef]
- EPA. CWA Analytical Methods for Per- and Polyfluorinated Alkyl Substances (PFAS)-Method 1633A Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS. Available online: https://www.epa.gov/cwa-methods/cwa-analytical-methods-and-polyfluorinated-alkyl-substances-pfas#method-1633 (accessed on 17 April 2025).
- Lerch, M.; Nguyen, K.H.; Granby, K. Is the use of paper food contact materials treated with per- and polyfluorinated alkyl substances safe for high-temperature applications?—Migration study in real food and food simulants. Food Chem. 2022, 393, 133375. [Google Scholar] [CrossRef]
- Stroski, K.M.; Sapozhnikova, Y. Analysis of per- and polyfluoroalkyl substances in plastic food storage bags by different analytical approaches. J. Chromatogr. Open 2023, 4, 100106. [Google Scholar] [CrossRef]
- EU. Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food. Available online: https://eur-lex.europa.eu/eli/reg/2011/10/oj/eng (accessed on 17 April 2025).
- TFDA. Basic Specifications for Quality Systems in Testing Laboratories Annex 1: Food Chemistry Testing Guidelines. Available online: https://www.fda.gov.tw/TC/siteContent.aspx?sid=10908 (accessed on 17 April 2025).
- FDA. Guidance for Industry: Preparation of Premarket Submissions for Food Contact Substances (Chemistry Recommendations). Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-preparation-premarket-submissions-food-contact-substances-chemistry#iie1d (accessed on 17 April 2025).
- Huang, Z.; Zhang, X.; Wang, X.; Deji, Z.; Lee, H.K. Occurrence of Perfluoroalkyl and Polyfluoroalkyl Substances in Ice Cream, Instant Noodles, and Bubble Tea. J. Agric. Food Chem. 2022, 70, 10836–10846. [Google Scholar] [CrossRef] [PubMed]
- Ojo, A.F.; Peng, C.; Ng, J.C. Combined effects and toxicological interactions of perfluoroalkyl and polyfluoroalkyl substances mixtures in human liver cells (HepG2). Environ. Pollut. 2020, 263, 114182. [Google Scholar] [CrossRef] [PubMed]
- Ojo, A.F.; Peng, C.; Ng, J.C. Assessing the human health risks of per- and polyfluoroalkyl substances: A need for greater focus on their interactions as mixtures. J. Hazard. Mater. 2021, 407, 124863. [Google Scholar] [CrossRef]
Compounds | Abbreviation | R | Slope | LOQ (ng/mL) | Linear Range (ng/mL) | RSE (%) | Accuracy (%) | Precision (%) | ||
---|---|---|---|---|---|---|---|---|---|---|
2 × LOQ | C4 | 2 × LOQ | C4 | |||||||
Perfluorobutanoic acid | PFBA | 0.999 | 2.60 × 10−2 | 0.8 | 0.8–250 | 0.4 | 101 | 101 | 1 | 1 |
Perfluoropentanoic acid | PFPeA | 0.999 | 5.49 × 10−2 | 0.4 | 0.4–125 | 1.0 | 102 | 102 | 1 | 1 |
Perfluorohexanoic acid | PFHxA | 0.999 | 1.05 × 10−1 | 0.2 | 0.2–62.5 | 2.2 | 106 | 101 | 0 | 0 |
Perfluoroheptanoic acid | PFHpA | 0.999 | 1.03 × 10−1 | 0.2 | 0.2–62.5 | 0.8 | 99 | 101 | 0 | 0 |
Perfluorooctanoic acid | PFOA | 0.999 | 7.28 × 10−2 | 0.2 | 0.2–62.5 | 2.8 | 96 | 101 | 0 | 0 |
Perfluorononanoic acid | PFNA | 0.999 | 1.51 × 10−1 | 0.2 | 0.2–62.5 | 2.2 | 100 | 100 | 1 | 1 |
Perfluorodecanoic acid | PFDA | 0.999 | 2.43 × 10−1 | 0.2 | 0.2–62.5 | 2.8 | 102 | 100 | 0 | 0 |
Perfluoroundecanoic acid | PFUnA | 0.999 | 2.45 × 10−1 | 0.2 | 0.2–62.5 | 1.9 | 103 | 100 | 1 | 1 |
Perfluorododecanoic acid | PFDoA | 0.999 | 2.33 × 10−1 | 0.2 | 0.2–62.5 | 2.7 | 102 | 100 | 0 | 0 |
Perfluorotridecanoic acid | PFTrDA | 0.999 | 2.83 × 10−1 | 0.2 | 0.2–62.5 | 7.9 | 105 | 103 | 2 | 2 |
Perfluorotetradecanoic acid | PFTeDA | 0.999 | 2.17 × 10−1 | 0.2 | 0.2–62.5 | 1.8 | 108 | 102 | 1 | 1 |
Perfluorobutanesulfonic acid | PFBS | 0.999 | 1.12 × 10−1 | 0.2 | 0.2–62.5 | 1.3 | 101 | 101 | 1 | 1 |
Perfluoropentanesulfonic acid | PFPeS | 0.999 | 1.38 × 10−1 | 0.2 | 0.2–62.5 | 0.9 | 102 | 100 | 0 | 0 |
Perfluorohexanesulfonic acid | PFHxS | 0.999 | 9.57 × 10−2 | 0.2 | 0.2–62.5 | 1.2 | 102 | 100 | 0 | 0 |
Perfluoroheptanesulfonic acid | PFHpS | 0.999 | 1.55 × 10−1 | 0.2 | 0.2–62.5 | 1.9 | 103 | 100 | 1 | 1 |
Perfluorooctanesulfonic acid | PFOS | 0.999 | 9.41 × 10−2 | 0.2 | 0.2–62.5 | 4.8 | 101 | 100 | 1 | 1 |
Perfluorononanesulfonic acid | PFNS | 0.999 | 9.65 × 10−2 | 0.2 | 0.2–62.5 | 1.5 | 102 | 100 | 0 | 0 |
Perfluorodecanesulfonic acid | PFDS | 0.999 | 6.99 × 10−2 | 0.2 | 0.2–62.5 | 5.1 | 102 | 101 | 1 | 1 |
Perfluorododecanesulfonic acid | PFDoS | 0.999 | 4.25 × 10−2 | 0.2 | 0.2–62.5 | 2.1 | 105 | 101 | 1 | 1 |
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid | 4:2FTS | 0.999 | 7.94 × 10−2 | 0.8 | 0.8–250 | 1.5 | 104 | 101 | 1 | 1 |
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid | 6:2FTS | 0.999 | 2.64 × 10−2 | 0.8 | 0.8–250 | 1.4 | 101 | 100 | 1 | 1 |
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid | 8:2FTS | 0.999 | 2.91 × 10−2 | 0.8 | 0.8–250 | 1.9 | 102 | 101 | 0 | 0 |
Perfluorooctanesulfonamide | PFOSA | 0.999 | 8.29 × 10−2 | 0.2 | 0.2–62.5 | 1.0 | 100 | 101 | 1 | 1 |
N-methyl perfluorooctanesulfonamide | NMeFOSA | 0.999 | 8.81 × 10−2 | 0.2 | 0.2–62.5 | 1.9 | 102 | 100 | 0 | 0 |
N-ethyl perfluorooctanesulfonamide | NEtFOSA | 0.999 | 4.55 × 10−2 | 0.2 | 0.2–62.5 | 4.3 | 101 | 101 | 1 | 1 |
N-methyl perfluorooctanesulfonamidoacetic acid | NMeFOSAA | 0.999 | 4.31 × 10−2 | 0.2 | 0.2–62.5 | 4.1 | 99 | 101 | 1 | 1 |
N-ethyl perfluorooctanesulfonamidoacetic acid | NEtFOSAA | 0.999 | 5.83 × 10−2 | 0.2 | 0.2–62.5 | 1.1 | 100 | 103 | 2 | 2 |
N-methyl perfluorooctanesulfonamidoethanol | NMeFOSE | 0.999 | 6.10 × 10−2 | 2 | 2–625 | 2.1 | 101 | 105 | 3 | 3 |
N-ethyl perfluorooctanesulfonamidoethanol | NEtFOSE | 0.999 | 6.21 × 10−2 | 2 | 2–625 | 3.3 | 101 | 102 | 3 | 3 |
Hexafluoropropylene oxide dimer acid | HFPO-DA | 0.999 | 4.85 × 10−1 | 0.8 | 0.8–250 | 1.4 | 102 | 101 | 1 | 1 |
4,8-Dioxa-3H-perfluorononanoic acid | ADONA | 0.999 | 4.95 × 100 | 0.8 | 0.8–250 | 2.5 | 102 | 101 | 1 | 1 |
Perfluoro-3-methoxypropanoic acid | PFMPA | 0.999 | 4.30 × 10−2 | 0.4 | 0.4–125 | 1.2 | 99 | 101 | 0 | 0 |
Perfluoro-4-methoxybutanoic acid | PFMBA | 0.999 | 7.07 × 10−2 | 0.4 | 0.4–125 | 2.4 | 96 | 102 | 0 | 0 |
Nonafluoro-3,6-dioxaheptanoic acid | NFDHA | 0.999 | 8.48 × 103 | 0.4 | 0.4–125 | 2.9 | 103 | 97 | 2 | 2 |
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid | 9Cl-PF3ONS | 0.999 | 2.29 × 100 | 0.8 | 0.8–250 | 2.3 | 102 | 100 | 3 | 3 |
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid | 11Cl-PF3OUdS | 0.999 | 1.43 × 100 | 0.8 | 0.8–250 | 3.0 | 102 | 100 | 2 | 2 |
Perfluoro(2-ethoxyethane) sulfonic acid | PFEESA | 0.999 | 2.53 × 10−1 | 0.4 | 0.4–125 | 1.5 | 100 | 101 | 1 | 1 |
3-Perfluoropropyl propanoic acid | 3:3FTCA | 0.999 | 2.76 × 10−2 | 1.0 | 1.0–312 | 3.0 | 98 | 100 | 0 | 0 |
2H,2H,3H,3H-Perfluorooctanoic acid | 5:3FTCA | 0.999 | 6.17 × 10−2 | 5.0 | 5.0–1560 | 2.4 | 101 | 100 | 0 | 0 |
3-Perfluoroheptyl propanoic acid | 7:3FTCA | 0.999 | 3.97 × 10−2 | 5.0 | 5.0–1560 | 3.2 | 101 | 99 | 1 | 1 |
Compounds | Food Simulants | Concentration | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | |||||||
ng/g | ng/dm2 | ng/g | ng/dm2 | ng/g | ng/dm2 | ng/g | ng/dm2 | ng/g | ng/dm2 | ||
PFHxA | 10% ethanol | 152.7 ± 3.0 | 201.2 ± 0.3 | 13.2 ± 0.4 | 17.3 ± 0.7 | 23.7 ± 1.7 | 31.3 ± 0.6 | 32.7 ± 2.0 | 37.7 ± 0.2 | 14.9 ± 0.3 | 18.1 ± 0.3 |
50% ethanol | 166.6 ± 10.1 | 215.9 ± 9.1 | 14.1 ± 0.1 | 18.6 ± 0.7 | 18.5 ± 0.3 | 25.0 ± 0.4 | 48.7 ± 1.8 | 60.6 ± 4.6 | 17.3 ± 1.2 | 23.4 ± 1.3 | |
PFHpA | 10% ethanol | 16.2 ± 0.6 | 21.3 ± 0.4 | 14.3 ± 0.7 | 18.7 ± 0.3 | 13.2 ± 0.7 | 17.5 ± 0.6 | 39.5 ± 2.4 | 45.8 ± 5.7 | 17.2 ± 1.4 | 20.7 ± 1.3 |
50% ethanol | 16.8 ± 0.8 | 21.8 ± 1.3 | 14.1 ± 0.7 | 18.6 ± 0.2 | 9.7 ± 0.6 | 13.1 ± 0.7 | 68.3 ± 0.9 | 85.0 ± 3.0 | 20.3 ± 0.6 | 27.4 ± 1.2 | |
PFOA | 10% ethanol | 5.2 ± 0.4 | 6.9 ± 0.7 | 114.9 ± 4.6 | 150.3 ± 2.4 | 166.3 ± 8.1 | 220.1 ± 2.9 | 152.0 ± 5.4 | 175.6 ± 8.1 | 165.6 ± 11.9 | 199.5 ± 13.2 |
50% ethanol | 5.8 ± 0.2 | 7.5 ± 0.4 | 118.3 ± 6.5 | 156.5 ± 2.5 | 122.9 ± 3.0 | 166.4 ± 2.7 | 274.0 ± 7.0 | 340.9 ± 5.6 | 160.9 ± 4.3 | 216.9 ± 2.1 | |
PFNA | 10% ethanol | - | - | 21.9 ± 1.5 | 28.7 ± 1.8 | 22.9 ± 0.9 | 30.4 ± 0.5 | 42.5 ± 2.8 | 49.2 ± 6.1 | 27.1 ± 0.7 | 32.6 ± 1.2 |
50% ethanol | - | - | 27.0 ± 0.8 | 35.8 ± 0.5 | 18.9 ± 1.2 | 25.6 ± 1.4 | 94.6 ± 1.9 | 117.7 ± 2.2 | 25.2 ± 0.5 | 33.9 ± 0.9 | |
PFDA | 10% ethanol | - | - | 31.2 ± 1.9 | 40.8 ± 3.4 | 33.5 ± 2.5 | 44.2 ± 0.9 | 29.1 ± 1.1 | 33.6 ± 1.6 | 31.8 ± 3.6 | 38.4 ± 4.9 |
50% ethanol | - | - | 63.9 ± 4.1 | 84.5 ± 3.8 | 53.2 ± 1.9 | 72.1 ± 1.5 | 143.8 ± 7.4 | 178.9 ± 3.2 | 36.2 ± 2.6 | 48.7 ± 2.2 | |
PFUnA | 10% ethanol | - | - | - | - | - | - | - | - | - | - |
50% ethanol | - | - | 8.6 ± 0.5 | 11.4 ± 0.4 | 10.2 ± 0.4 | 13.8 ± 0.7 | 26.5 ± 1.1 | 32.9 ± 0.2 | |||
PFDoA | 10% ethanol | - | - | - | - | - | - | - | - | - | - |
50% ethanol | - | - | 24.1 ± 0.9 | 31.8 ± 0.2 | 22.4 ± 0.5 | 30.4 ± 0.5 | 51.7 ± 2.3 | 64.3 ± 0.8 |
Compounds | RPF [34] | Food Simulants | PEQ (ng/g) | ||||
---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | |||
PFHxA | 0.01 | 10% ethanol | 1.5 | 0.1 | 0.2 | 0.3 | 0.2 |
50% ethanol | 1.7 | 0.1 | 0.2 | 0.5 | 0.2 | ||
PFHpA | 0.01 ≤ RPF ≤ 1 | 10% ethanol | 0.2 ≤ PEQ ≤ 16.2 | 0.1 ≤ PEQ ≤ 14.3 | 0.1 ≤ PEQ ≤ 13.2 | 0.4 ≤ PEQ ≤ 39.5 | 0.2 ≤ PEQ ≤ 17.2 |
50% ethanol | 0.2 ≤ PEQ ≤ 16.8 | 0.1 ≤ PEQ ≤ 14.1 | 0.1 ≤ PEQ ≤ 9.7 | 0.7 ≤ PEQ ≤ 68.3 | 0.2 ≤ PEQ ≤ 20.3 | ||
PFOA | 1 | 10% ethanol | 5.2 | 114.9 | 166.3 | 152.0 | 165.6 |
50% ethanol | 5.8 | 118.3 | 122.9 | 274.0 | 160.9 | ||
PFNA | 10 | 10% ethanol | - | 219.4 | 229.7 | 424.6 | 270.7 |
50% ethanol | - | 270.3 | 188.8 | 945.7 | 251.8 | ||
PFDA | 4 ≤ RPF ≤ 10 | 10% ethanol | - | 124.7 ≤ PEQ ≤ 311.8 | 133.8 ≤ PEQ ≤ 334.6 | 116.3 ≤ PEQ ≤ 290.8 | 127.2 ≤ PEQ ≤ 318.0 |
50% ethanol | - | 255.4 ≤ PEQ ≤ 638.5 | 212.9 ≤ PEQ ≤ 532.3 | 575.2 ≤ PEQ ≤ 1437.9 | 144.6 ≤ PEQ ≤ 361.6 | ||
PFUnA | 4 | 10% ethanol | - | - | - | - | - |
50% ethanol | - | 34.4 | 40.8 | 105.9 | - | ||
PFDoA | 3 | 10% ethanol | - | - | - | - | - |
50% ethanol | - | 72.2 | 67.3 | 155.2 | - | ||
Sum PEQ (ng/g) | 10% ethanol | 6.9 ≤ PEQ ≤ 22.9 | 459.3 ≤ PEQ ≤ 660.6 | 530.2 ≤ PEQ ≤ 744.1 | 693.7 ≤ PEQ ≤ 907.3 | 563.9 ≤ PEQ ≤ 771.7 | |
50% ethanol | 7.6 ≤ PEQ ≤ 24.3 | 750.9 ≤ PEQ ≤ 1147.9 | 632.9 ≤ PEQ ≤ 961.9 | 2057.1 ≤ PEQ ≤ 2987.5 | 557.7 ≤ PEQ ≤ 794.8 |
Approach | Dietary Exposure and Risk Assessment | Food Simulant | Samples | ||||
---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | |||
EFSA approach (TDI: 0.63 ng/kg bw/day) | Sum of PFOA and PFNA (ng/g) | 10% ethanol | 5.2 | 136.9 | 189.3 | 194.5 | 192.7 |
50% ethanol | 5.8 | 145.3 | 141.8 | 370.4 | 186.1 | ||
CEDI a | 10% ethanol | 0.01 | 0.2 | 0.3 | 0.3 | 0.3 | |
50% ethanol | 0.01 | 0.2 | 0.2 | 0.5 | 0.3 | ||
HR b | 10% ethanol | 0.01 | 0.3 | 0.4 | 0.4 | 0.4 | |
50% ethanol | 0.01 | 0.3 | 0.3 | 0.8 | 0.4 | ||
RPF approach (RfD of PFOA: 0.03 ng/kg bw/day) | Sum of PEQ (ng/g) | 10% ethanol | 6.9 ≤ PEQ ≤ 22.9 | 459.3 ≤ PEQ ≤ 660.6 | 530.2 ≤ PEQ ≤ 744.1 | 693.7 ≤ PEQ ≤ 907.3 | 563.9 ≤ PEQ ≤ 771.7 |
50% ethanol | 7.6 ≤ PEQ ≤ 24.3 | 750.9 ≤ PEQ ≤ 1147.9 | 632.9 ≤ PEQ ≤ 961.9 | 2057.1 ≤ PEQ ≤ 2987.5 | 557.7 ≤ PEQ ≤ 794.8 | ||
CEDI a | 10% ethanol | 0.01 ≤ CEDI ≤ 0.03 | 0.7 ≤ CEDI ≤ 0.9 | 0.8 ≤ CEDI ≤ 1.1 | 1.0 ≤ CEDI ≤ 1.3 | 0.8 ≤ CEDI ≤ 1.1 | |
50% ethanol | 0.01 ≤ CEDI ≤ 0.03 | 1.1 ≤ CEDI ≤ 1.6 | 0.9 ≤ CEDI ≤ 1.4 | 2.9 ≤ CEDI ≤ 4.3 | 0.8 ≤ CEDI ≤ 1.1 | ||
HR b | 10% ethanol | 0.3 ≤ HR ≤ 1.1 | 21.9 ≤ HR ≤ 31.5 | 25.2 ≤ HR ≤ 35.4 | 33.0 ≤ HR ≤ 43.2 | 26.9 ≤ HR ≤ 36.7 | |
50% ethanol | 0.4 ≤ HR ≤ 1.2 | 35.8 ≤ HR ≤ 54.7 | 30.1 ≤ HR ≤ 45.8 | 98.0 ≤ HR ≤ 142.3 | 26.6 ≤ HR ≤ 37.8 |
Abbreviation | RT (min) | Ions Detected | Precursor Ion (m/z) | Quantification Reference Compound |
---|---|---|---|---|
PFBA | 4.1 | [M − H]− | 212.9792 | 13C4-PFBA |
PFPeA | 5.4 | [M − H]− | 262.9760 | 13C5-PFPeA |
PFHxA | 6.1 | [M − H]− | 312.9728 | 13C5-PFHxA |
PFHpA | 6.7 | [M − H]− | 362.9696 | 13C4-PFHpA |
PFOA | 7.1 | [M − H]− | 412.9664 | 13C8-PFOA |
PFNA | 7.5 | [M − H]− | 462.9632 | 13C9-PFNA |
PFDA | 7.9 | [M − H]− | 512.9600 | 13C6-PFDA |
PFUnA | 8.3 | [M − H]− | 562.9568 | 13C7-PFUnA |
PFDoA | 8.7 | [M − H]− | 612.9537 | 13C2-PFDoA |
PFTrDA | 9.0 | [M − H]− | 662.9505 | 13C2-PFTeDA |
PFTeDA | 9.4 | [M − H]− | 712.9473 | 13C2-PFTeDA |
PFBS | 6.1 | [M − H]− | 298.9430 | 13C3-PFBS |
PFPeS | 6.7 | [M − H]− | 348.9398 | 13C3-PFHxS |
PFHxS | 7.2 | [M − H]− | 398.9366 | 13C3-PFHxS |
PFHpS | 7.6 | [M − H]− | 448.9334 | 13C8-PFOS |
PFOS | 8.0 | [M − H]− | 498.9302 | 13C8-PFOS |
PFNS | 8.4 | [M − H]− | 548.9270 | 13C8-PFOS |
PFDS | 8.8 | [M − H]− | 598.9238 | 13C8-PFOS |
PFDoS | 9.5 | [M − H]− | 698.9174 | 13C8-PFOS |
4:2FTS | 5.9 | [M − H]− | 326.9743 | 13C2-4:2FTS |
6:2FTS | 6.9 | [M − H]− | 426.9679 | 13C2-6:2FTS |
8:2FTS | 7.7 | [M − H]− | 526.9615 | 13C2-8:2FTS |
PFOSA | 10.8 | [M − H]− | 497.9462 | 13C8-PFOSA |
NMeFOSA | 12.3 | [M − H]− | 511.9619 | D3-NMeFOSA |
NEtFOSA | 12.7 | [M − H]− | 525.9775 | D5-NEtFOSA |
NMeFOSAA | 8.2 | [M − H]− | 569.9673 | D3-NMeFOSAA |
NEtFOSAA | 8.4 | [M − H]− | 583.9830 | D5-N-EtFOSAA |
NMeFOSE | 12.2 | [M + CH3COO]− | 616.0092 | D7-NMeFOSE |
NEtFOSE | 12.5 | [M + CH3COO]− | 630.0248 | D9-NEtFOSE |
HFPO-DA | 6.3 | [M − H − CO2]− | 284.9784 | 13C3-HFPO-DA |
ADONA | 6.8 | [M − H]− | 376.9689 | 13C3-HFPO-DA |
PFMPA | 4.8 | [M − H]− | 228.9741 | 13C5-PFPeA |
PFMBA | 5.7 | [M − H]− | 278.9709 | 13C5-PFPeA |
NFDHA | 6.1 | [M − H]− | 294.9658 | 13C5-PFHxA |
9Cl-PF3ONS | 8.4 | [M − H]− | 530.8956 | 13C3-HFPO-DA |
11Cl-PF3OUdS | 9.1 | [M − H]− | 630.8892 | 13C3-HFPO-DA |
PFEESA | 6.4 | [M − H]− | 314.9379 | 13C5-PFHxA |
3:3FTCA | 5.3 | [M − H]− | 241.0105 | 13C5-PFPeA |
5:3FTCA | 6.9 | [M − H]− | 341.0041 | 13C5-PFHxA |
7:3FTCA | 8.2 | [M − H]− | 440.9977 | 13C5-PFHxA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, J.-Y.; Jiang, H.-J.; Chang, C.-W.; Chen, Y.-C.; Liao, P.-C. High-Resolution Mass Spectrometry for Identification, Quantification, and Risk Assessment of 40 PFAS Migrating from Microwave Popcorn Bags. Molecules 2025, 30, 1989. https://doi.org/10.3390/molecules30091989
Hsu J-Y, Jiang H-J, Chang C-W, Chen Y-C, Liao P-C. High-Resolution Mass Spectrometry for Identification, Quantification, and Risk Assessment of 40 PFAS Migrating from Microwave Popcorn Bags. Molecules. 2025; 30(9):1989. https://doi.org/10.3390/molecules30091989
Chicago/Turabian StyleHsu, Jen-Yi, Huei-Jie Jiang, Chih-Wei Chang, Yuan-Chih Chen, and Pao-Chi Liao. 2025. "High-Resolution Mass Spectrometry for Identification, Quantification, and Risk Assessment of 40 PFAS Migrating from Microwave Popcorn Bags" Molecules 30, no. 9: 1989. https://doi.org/10.3390/molecules30091989
APA StyleHsu, J.-Y., Jiang, H.-J., Chang, C.-W., Chen, Y.-C., & Liao, P.-C. (2025). High-Resolution Mass Spectrometry for Identification, Quantification, and Risk Assessment of 40 PFAS Migrating from Microwave Popcorn Bags. Molecules, 30(9), 1989. https://doi.org/10.3390/molecules30091989