Terahertz Spectroscopy and Density Functional Theory for Non-Destructive Analysis of Anticoagulant Warfarin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experimental THz Spectral Characterization of Warfarin
2.2. THz Vibrational Modes Analysis of Warfarin
2.3. Quantitative Analysis of Warfarin Based on Dual THz Parameters
3. Materials and Methods
3.1. Sample Preparation
3.2. Theoretical Calculation
3.3. THz Spectroscopy Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Assemat, G.; Balayssac, S.; Gerdova, A.; Gilard, V.; Caillet, C.; Williamson, D.; Malet-Martino, M. Benchtop low-field 1H Nuclear Magnetic Resonance for detecting falsified medicines. Talanta 2019, 196, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Klantschnig, G.; Huang, C. Fake drugs: Health, wealth and regulation in Nigeria. Rev. Afr. Polit. Econ. 2019, 46, 442–458. [Google Scholar] [CrossRef]
- Hodges, S.; Garnett, E. The ghost in the data: Evidence gaps and the problem of fake drugs in global health research. Glob. Public Health 2020, 15, 1103–1118. [Google Scholar] [CrossRef] [PubMed]
- Martino, R.; Malet-Martino, M.; Gilard, V.; Balayssac, S. Counterfeit drugs: Analytical techniques for their identification. Anal. Bioanal. Chem. 2010, 398, 77–92. [Google Scholar] [CrossRef]
- Pathak, R.; Gaur, V.; Sankrityayan, H.; Gogtay, J. Tackling Counterfeit Drugs: The Challenges and Possibilities. Pharm. Med. 2023, 37, 281–290. [Google Scholar] [CrossRef]
- Buttigieg, S.C.; Tomaselli, G.; von Eiff, W.; Byers, V. Editorial: Patient Safety: Delivering Cost-Contained, High Quality, Person-Centered, and Safe Healthcare. Front. Public Health 2020, 8, 288. [Google Scholar] [CrossRef]
- Özbek, O.; Berkel, C.; Isildak, Ö.; Gürdere, M.B. HPLC–based methods for the determination of levetiracetam in biological and pharmaceutical samples. J. Indian Chem. Soc. 2022, 99, 100348. [Google Scholar] [CrossRef]
- Sobolewska, E.; Biesaga, M. High-Performance Liquid Chromatography Methods for Determining the Purity of Drugs with Weak UV Chromophores—A Review. Crit. Rev. Anal. Chem. 2024, in press. [Google Scholar] [CrossRef]
- Whitehead, H.D.; Hayes, K.L.; Swartz, J.A.; Prete, E.; Robison-Taylor, L.; Ellen Mackesy-Amiti, M.; Jimenez, A.D.; Lieberman, M. Validated method for the analysis of 22 illicit drugs and their metabolites via liquid chromatography tandem mass spectrometry (LC-MS/MS) in illicit drug samples collected in Chicago, IL. Forensic Chem. 2023, 33, 100475. [Google Scholar] [CrossRef]
- D’Ovidio, C.; Locatelli, M.; Perrucci, M.; Ciriolo, L.; Furton, K.G.; Gazioglu, I.; Kabir, A.; Merone, G.M.; de Grazia, U.; Ali, I.; et al. LC-MS/MS Application in Pharmacotoxicological Field: Current State and New Applications. Molecules 2023, 28, 2127. [Google Scholar] [CrossRef]
- Frosch, T.; Knebl, A.; Frosch, T. Recent advances in nano-photonic techniques for pharmaceutical drug monitoring with emphasis on Raman spectroscopy. Nanophotonics 2020, 9, 19–37. [Google Scholar] [CrossRef]
- Bi, J.C.; Li, S.Y.; Bao, X.; Chen, N.; Fan, K.; Liu, S.P. Permeation Effect Analysis of Drug Using Raman Spectroscopy for Iontophoresis. Appl. Sci. 2022, 12, 10. [Google Scholar] [CrossRef]
- Dogra, R.; Kumar, M.; Kumar, A.; Roverso, M.; Bogialli, S.; Pastore, P.; Mandal, U.K. Derivatization, an Applicable Asset for Conventional HPLC Systems without MS Detection in Food and Miscellaneous Analysis. Crit. Rev. Anal. Chem. 2022, 53, 1807–1827. [Google Scholar] [CrossRef] [PubMed]
- Rappold, B.A. Review of the Use of Liquid Chromatography-Tandem Mass Spectrometry in Clinical Laboratories: Part II–Operations. Ann. Lab. Med. 2022, 42, 531–557. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, W.; Wang, W.; Zhu, S.; Li, L.; Cheng, L.; Jin, M.; Ding, Y.; Huang, F. Raman tensor of layered black phosphorus. PhotoniX 2020, 1, 17. [Google Scholar] [CrossRef]
- Parrott, E.P.J.; Zeitler, J.A. Terahertz Time-Domain and Low-Frequency Raman Spectroscopy of Organic Materials. Appl. Spectrosc. 2015, 69, 1–25. [Google Scholar] [CrossRef]
- Peng, Y.; Shi, C.; Zhu, Y.; Gu, M.; Zhuang, S. Terahertz spectroscopy in biomedical field: A review on signal-to-noise ratio improvement. PhotoniX 2020, 1, 12. [Google Scholar] [CrossRef]
- Peng, Y.; Huang, J.; Luo, J.; Yang, Z.; Wang, L.; Wu, X.; Zang, X.; Yu, C.; Gu, M.; Hu, Q.; et al. Three-step one-way model in terahertz biomedical detection. PhotoniX 2021, 2, 12. [Google Scholar] [CrossRef]
- Wang, J.; Lindley-Hatcher, H.; Chen, X.; Pickwell-MacPherson, E. THz Sensing of Human Skin: A Review of Skin Modeling Approaches. Sensors 2021, 21, 3624. [Google Scholar] [CrossRef]
- Han, C.; Qu, F.; Wang, X.; Zhai, X.; Li, J.; Yu, K.; Zhao, Y. Terahertz Spectroscopy and Imaging Techniques for Herbal Medicinal Plants Detection: A Comprehensive Review. Crit. Rev. Anal. Chem. 2023, 54, 2485–2499. [Google Scholar] [CrossRef]
- Huang, S.; Deng, H.; Wei, X.; Zhang, J. Progress in application of terahertz time-domain spectroscopy for pharmaceutical analyses. Front. Bioeng. Biotechnol. 2023, 11, 1219042. [Google Scholar] [CrossRef] [PubMed]
- Bharatam, P.V.; Valanju, O.R.; Wani, A.A.; Dhaked, D.K. Importance of tautomerism in drugs. Drug Discov. Today 2023, 28, 103494. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, M.; Mujumdar, A.S. Terahertz Spectroscopy: A Powerful Technique for Food Drying Research. Food Rev. Int. 2021, 39, 1733–1750. [Google Scholar] [CrossRef]
- Yuan, L.; Bin, L. Preliminary study on qualitative and quantitative detection of norfloxacin based on terahertz spectroscopy. Int. J. Agric. Biol. Eng. 2017, 10, 262–268. [Google Scholar] [CrossRef]
- Puc, U.; Abina, A.; Jeglič, A.; Zidanšek, A.; Kašalynas, I.; Venckevičius, R.; Valušis, G. Spectroscopic Analysis of Melatonin in the Terahertz Frequency Range. Sensors 2018, 18, 4098. [Google Scholar] [CrossRef]
- Yin, M.; Wang, J.; Huang, H.; Huang, Q.; Fu, Z.; Lu, Y. Analysis of Flavonoid Compounds by Terahertz Spectroscopy Combined with Chemometrics. ACS Omega 2020, 5, 18134–18141. [Google Scholar] [CrossRef]
- Xu, W.; Dong, X.; Zeng, Z.K.; Shu, J.; Xi, H.Z. Preliminary Study on Compound Banlangen Granules Based on Terahertz Time-Domain Spectroscopy. In Proceedings of the Conference on Earth and Space—From Infrared to Terahertz (ESIT 2022), Nantong, China, 17–19 September 2022. [Google Scholar]
- Fahmi, A.M.; Elewa, H.; El Jilany, I. Warfarin dosing strategies evolution and its progress in the era of precision medicine, a narrative review. Int. J. Clin. Pharm. 2022, 44, 599–607. [Google Scholar] [CrossRef]
- Castellucci, L.A.; de Wit, K.; Garcia, D.; Ortel, T.L.; Le Gal, G. Extended anticoagulation for unprovoked venous thromboembolism. Res. Pract. Thromb. Haemost. 2018, 2, 529–534. [Google Scholar] [CrossRef]
- van Hout, B.; Hawe, E.; Cohen, A.T. Impact of Patient Characteristics on Treatment Outcomes in Symptomatic Venous Thromboembolism: Results of HOKUSAI-VTE Randomized Trial Analysis. TH Open 2020, 4, 245–254. [Google Scholar] [CrossRef]
- Wu, J.; Wu, X.; Huang, X.H.; Li, J.W.; Zhang, J.J.; Peng, Y.; Lu, L. Rapid Qualitative and Quantitative Detection of Warfarin Sodium Based on Terahertz Spectroscopy. Chin. J. Lasers-Zhongguo Jiguang 2024, 51, 0307206. [Google Scholar]
- Kumar, R.; Pathak, N.K.; Sarkar, J.K.; Tripathy, U.; Datta, P.K. Vibrational spectra of serotonin by terahertz time domain spectroscopy and DFT simulations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025, 329, 125541. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xue, J.; Wang, Y.; Jin, S.; Zhang, Q.; Du, Y. Investigation into tautomeric polymorphism of 2-thiobarbituric acid using experimental vibrational spectroscopy combined with DFT theoretical simulation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 204, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chen, T.; Ma, L.; Tang, Z.; Yu, L. Decoding the terahertz spectrum of allantoin crystal using DFT simulations and energy decomposition analysis. Chem. Phys. Lett. 2021, 767, 138350. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Mardirossian, N.; Head-Gordon, M. Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals. Mol. Phys. 2017, 115, 2315–2372. [Google Scholar] [CrossRef]
- Foti, M.C.; Barclay, L.R.C.; Ingold, K.U. The role of hydrogen bonding on the H-atom-donating abilities of catechols and naphthalene diols and on a previously overlooked aspect of their infrared spectra. J. Am. Chem. Soc. 2002, 124, 12881–12888. [Google Scholar] [CrossRef]
- Kidavu, A.V.S.; Chaudhary, A.K. Low level detection of acetone vapor by improvised design of high “Q” tunable frequency Helmholtz photoacoustic cell using UV, mid-IR and THz sources. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2023, 303, 123218. [Google Scholar] [CrossRef]
- Kaus, R. Detection limits and quantitation limits in the view of international harmonization and the consequences for analytical laboratories. Accredit. Qual. Assur. 1998, 3, 150–154. [Google Scholar] [CrossRef]
- Armbruster, D.A.; Pry, T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 2008, 29, S49–S52. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2009.
- Hariharan, P.C.; Pople, J.A. Accuracy of AHnequilibrium geometries by single determinant molecular orbital theory. Mol. Phys. 2006, 27, 209–214. [Google Scholar] [CrossRef]
- Petersson, G.A.; Tensfeldt, T.G.; Montgomery, J.A., Jr. A complete basis set model chemistry. III. The complete basis set-quadratic configuration interaction family of methods. J. Chem. Phys. 1991, 94, 6091–6101. [Google Scholar] [CrossRef]
- BIOVIA Materials Studio, Release 2020; Dassault Systèmes: San Diego, CA, USA, 2020.
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, Version 6.1; Semichem Inc.: Shawnee Mission, KS, USA, 2016.
Theoretical Frequency/THz | Measured Frequency/THz | Deviation/THz | Molecular Motion |
---|---|---|---|
4.52 | 4.36 | 0.16 | out-of-plane bending (C9H5O3) |
5.74 | 5.58 | 0.16 | rocking (C9H5O3) + rocking (CH2) |
7.74 | 7.60 | 0.14 | rocking (CH2) + rocking (Ph) |
9.33 | 9.28 | 0.05 | in-plane bending (C9H5O3) |
Frequency/THz | Linear Fitting Function Expression | Correlation Coefficient/R2 |
---|---|---|
5.58 | y = 36.33x | 0.998 |
8.67 | y = 26.35x | 0.999 |
9.28 | y = 19.83x | 0.999 |
Frequency/THz | Linear Fitting Function Expression | Correlation Coefficient/R2 |
---|---|---|
5.58 | y = 13.17 x | 0.999 |
8.67 | y = 5.27 x | 0.998 |
9.28 | y = 5.23 x | 0.999 |
Frequency/THz | Peak Intensity/arb.u. | Peak Area/arb.u. | ||||
---|---|---|---|---|---|---|
S/(mg−1) | LOD/mg | S/(mg−1) | LOD/mg | |||
5.58 | 0.0092 | 0.03633 | 0.836 | 0.00256 | 0.01317 | 0.641 |
8.67 | 0.00561 | 0.02635 | 0.703 | 0.00128 | 0.00527 | 0.802 |
9.28 | 0.00425 | 0.01983 | 0.707 | 0.00123 | 0.00523 | 0.776 |
Number | Warfarin/mg | COC/mg | Mass (Before Pressing)/mg | Mass (After Pressing)/mg | Mass Loss |
---|---|---|---|---|---|
1 | 1.18 | 60.43 | 61.61 | 59.37 | 3.6% |
2 | 2.17 | 60.45 | 62.62 | 64.40 | 2.8% |
3 | 3.19 | 60.77 | 63.96 | 62.20 | 2.8% |
4 | 4.08 | 60.75 | 64.83 | 62.84 | 3.1% |
5 | 5.12 | 60.75 | 65.87 | 64.29 | 2.4% |
6 | 6.17 | 60.61 | 66.78 | 65.11 | 2.5% |
7 | 7.12 | 60.63 | 67.75 | 65.72 | 3.0% |
8 | 8.16 | 60.58 | 68.74 | 66.95 | 2.6% |
9 | 9.17 | 60.55 | 69.72 | 67.48 | 3.2% |
10 | 10.18 | 60.78 | 70.96 | 68.94 | 2.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhang, C.; Wang, X.; Zhang, J.; Liu, H.; Wu, X. Terahertz Spectroscopy and Density Functional Theory for Non-Destructive Analysis of Anticoagulant Warfarin. Molecules 2025, 30, 1791. https://doi.org/10.3390/molecules30081791
Li J, Zhang C, Wang X, Zhang J, Liu H, Wu X. Terahertz Spectroscopy and Density Functional Theory for Non-Destructive Analysis of Anticoagulant Warfarin. Molecules. 2025; 30(8):1791. https://doi.org/10.3390/molecules30081791
Chicago/Turabian StyleLi, Jiawei, Cong Zhang, Xiaohui Wang, Jinjing Zhang, Hanwen Liu, and Xu Wu. 2025. "Terahertz Spectroscopy and Density Functional Theory for Non-Destructive Analysis of Anticoagulant Warfarin" Molecules 30, no. 8: 1791. https://doi.org/10.3390/molecules30081791
APA StyleLi, J., Zhang, C., Wang, X., Zhang, J., Liu, H., & Wu, X. (2025). Terahertz Spectroscopy and Density Functional Theory for Non-Destructive Analysis of Anticoagulant Warfarin. Molecules, 30(8), 1791. https://doi.org/10.3390/molecules30081791