Solvent-Free and Microwave-Assisted Synthesis Enables Formation of Imidazole and Pyrazole Derivatives Through Epoxide Ring Opening
Abstract
:1. Introduction
2. Results
3. Conclusions
4. Materials and Methods
4.1. Reagents and Equipment
4.2. General Method for Reactions of Phenyl Glycidyl Ether and Imidazole
4.2.1. 1-(1H-imidazol-1-yl)-3-phenoxypropan-2-ol (3a)
4.2.2. 1-(2-Methyl-1H-imidazol-1-yl)-3-phenoxypropan-2-ol (3b)
4.2.3. 1-(2-Ethyl-4-methyl-1H-imidazol-1-yl)-3-phenoxypropan-2-ol (3c)
4.2.4. 1-(2-Iodo-1H-imidazol-1-yl)-3-phenoxypropan-2-ol (3d)
4.2.5. 1-Phenoxy-3-(1H-pyrazol-1-yl)propan-2-ol (3e)
4.2.6. 1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-phenoxypropan-2-ol (3f)
4.2.7. 1-(3-Chloro-5-methyl-1H-pyrazol-1-yl)-3-phenoxypropan-2-ol (3g)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Zangade, S.; Patil, P. A Review on Solvent-Free Methods in Organic Synthesis. Curr. Org. Chem. 2019, 23, 2295–2318. [Google Scholar] [CrossRef]
- Obst, M.; König, B. Organic Synthesis without Conventional Solvents. Eur. J. Org. Chem. 2018, 31, 4213–4232. [Google Scholar] [CrossRef]
- Avila-Ortiz, C.G.; Juaristi, E. Novel Methodologies for Chemical Activation in Organic Synthesis under Solvent-Free Reaction Conditions. Molecules 2020, 25, 3579. [Google Scholar] [CrossRef] [PubMed]
- Moseley, J.D.; Kappe, C.O. A Critical Assessment of the Greenness and Energy Efficiency of Microwave-Assisted Organic Synthesis. Green Chem. 2011, 13, 794–806. [Google Scholar] [CrossRef]
- Li, M.-Y.; Gu, A.; Li, J.; Liu, Y. Advanced Green Synthesis: Solvent-Free and Catalyst-Free Reaction. Green Synth. Catal. 2025, 6, 36–66. [Google Scholar] [CrossRef]
- Hayes, B.L. Recent Advances in Microwave-Assisted Synthesis. Aldrichim Acta 2004, 37, 66–77. [Google Scholar]
- Caddick, S.; Fitzmaurice, R. Microwave Enhanced Synthesis. Tetrahedron 2009, 65, 3325–3355. [Google Scholar] [CrossRef]
- Khanna, A.; Dubey, P.; Sagar, R. Exploiting Microwave-Assisted Organic Synthesis (MAOS) for Accessing Bioactive Scaffolds. Curr. Org. Chem. 2021, 25, 2378–2456. [Google Scholar] [CrossRef]
- Sharma, A.; Wakode, S.; Sharma, S.; Fayaz, F.; Pottoo, F.H. Methods and Strategies Used in Green Chemistry: A Review. Curr. Org. Chem. 2020, 24, 2555–2565. [Google Scholar] [CrossRef]
- Nain, S.; Singh, R.; Ravichandran, S. Importance of Microwave Heating in Organic Synthesis. Adv. J. Chem. Sect. A 2019, 2, 94–104. [Google Scholar] [CrossRef]
- Kappe, C.O. My Twenty Years in Microwave Chemistry: From Kitchen Ovens to Microwaves That Aren’t Microwaves. Chem. Rec. 2019, 19, 15–39. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Banik, R.; Kumar, B.; Roy, S.; Noorussabah; Amhad, K.; Sukul, P.K. A Green Approach for Organic Transformations Using Microwave Reactor. Curr. Org. Synth. 2019, 16, 730–764. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Mukhopadhyay, C. Microwave Syntheses: A Modern Day Approach Towards Sustainable Chemistry. Curr. Microw. Chem. 2017, 4, 287–305. [Google Scholar] [CrossRef]
- Mandal, B. Alternate Energy Sources for Sustainable Organic Synthesis. Chem. Sel. 2019, 4, 8301–8310. [Google Scholar] [CrossRef]
- Murumkar, P.R.; Ghuge, R.B. Vicinal Diaryl Oxadiazoles, Oxazoles, and Isoxazoles. In Vicinal Diaryl Substituted Heterocycles: A Gold Mine for the Discovery of Novel Therapeutic Agents; Yadav, M.R., Murumkar, P.R., Ghuge, R.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 277–303. [Google Scholar] [CrossRef]
- Emami, L.; Faghih, Z.; Ataollahi, E.; Sadeghian, S.; Rezaei, Z.; Khabnadideh, S. Azole Derivatives: Recent Advances as Potent Antibacterial and Antifungal Agents. Curr. Med. Chem. 2023, 30, 220–249. [Google Scholar] [CrossRef]
- Teixeira, M.M.; Carvalho, D.T.; Sousa, E.; Pinto, E. New Antifungal Agents with Azole Moieties. Pharmaceuticals 2022, 15, 1427. [Google Scholar] [CrossRef]
- Henary, M.; Kananda, C.; Rotolo, L.; Savino, B.; Owens, E.A.; Cravotto, G. Benefits and Applications of Microwave-Assisted Synthesis of Nitrogen Containing Heterocycles in Medicinal Chemistry. RSC Adv. 2020, 10, 14170–14197. [Google Scholar] [CrossRef]
- Cohen, B.; Preuss, C.V. Celecoxib. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK547742/ (accessed on 2 April 2025).
- Vardanyan, R.; Hruby, V. Antifungal Drugs. In Synthesis of Best-Seller Drugs; Vardanyan, R., Hruby, V., Eds.; Academic Press: Amsterdam, The Netherlands, 2016; pp. 677–686. [Google Scholar] [CrossRef]
- Fromtling, R.A. Overview of Medically Important Antifungal Azole Derivatives. Clin. Microbiol. Rev. 1988, 1, 187–217. [Google Scholar] [CrossRef]
- Lakhani, P.; Patil, A.; Majumdar, S. Challenges in the Polyene- and Azole-Based Pharmacotherapy of Ocular Fungal Infections. J. Ocul. Pharmacol. Ther. 2019, 35, 6–22. [Google Scholar] [CrossRef]
- Shojaei, P.; Mokhtari, B.; Ghorbanpoor, M. Synthesis, In Vitro Antifungal Evaluation, and Docking Studies of Novel Derivatives of Imidazoles and Benzimidazoles. Med. Chem. Res. 2019, 28, 1359–1367. [Google Scholar] [CrossRef]
- Ammazzalorso, A.; Gallorini, M.; Fantacuzzi, M.; Gambacorta, N.; De Filippis, B.; Giampietro, L.; Maccallini, C.; Nicolotti, O.; Cataldi, A.; Amoroso, R. Design, Synthesis, and Biological Evaluation of Imidazole and Triazole-Based Carbamates as Novel Aromatase Inhibitors. Eur. J. Med. Chem. 2021, 211, 113115. [Google Scholar] [CrossRef] [PubMed]
- Glas, H.; Thiel, W.R. Microwave Assisted Synthesis of Chiral Imidazolyl and Pyrazolyl Alcohols. Tetrahedron Lett. 1998, 39, 5509–5510. [Google Scholar] [CrossRef]
- Torregrosa, R.; Pastor, I.M.; Yus, M. Solvent-Free Direct Regioselective Ring Opening of Epoxides with Imidazoles. Tetrahedron 2007, 63, 469–473. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, B.; Wang, P.G.; Cheng, J.-P. Ytterbium Triflate Catalyzed Reactions of Epoxide with Nitrogen Heterocycles Under Solvent-Free Condition. Synth. Commun. 2003, 33, 2989–2994. [Google Scholar] [CrossRef]
Entry | Equiv. of Epoxide | Time (min.) | T (°C) | Yield (%) |
---|---|---|---|---|
1 | 1.0 | 720 | 60 | 56 |
2a | 2.0 | 1440 | 25 | 47 |
3 | 1.0 | 5 | 150 | trace |
4 | 1.0 | 1 | 150 | trace |
5 | 1.0 | 5 | 60 | <15 |
6 | 1.5 | 10 | 80 | <15 |
7 | 1.5 | 1 | 120 | 53.0 |
Entry | Azole (2) | No. | Product | Yield (%) |
---|---|---|---|---|
1 | 3a | 56 | ||
2 | 3b | 53 | ||
3 | 3c | 49 | ||
4 | 3d | 21 | ||
5 | 3e | 58 | ||
6 | 3f | 55 | ||
7 | 3g | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McAfee, M.; Pack, J.; Walker, B. Solvent-Free and Microwave-Assisted Synthesis Enables Formation of Imidazole and Pyrazole Derivatives Through Epoxide Ring Opening. Molecules 2025, 30, 1760. https://doi.org/10.3390/molecules30081760
McAfee M, Pack J, Walker B. Solvent-Free and Microwave-Assisted Synthesis Enables Formation of Imidazole and Pyrazole Derivatives Through Epoxide Ring Opening. Molecules. 2025; 30(8):1760. https://doi.org/10.3390/molecules30081760
Chicago/Turabian StyleMcAfee, MaryGrace, Joshua Pack, and Brian Walker. 2025. "Solvent-Free and Microwave-Assisted Synthesis Enables Formation of Imidazole and Pyrazole Derivatives Through Epoxide Ring Opening" Molecules 30, no. 8: 1760. https://doi.org/10.3390/molecules30081760
APA StyleMcAfee, M., Pack, J., & Walker, B. (2025). Solvent-Free and Microwave-Assisted Synthesis Enables Formation of Imidazole and Pyrazole Derivatives Through Epoxide Ring Opening. Molecules, 30(8), 1760. https://doi.org/10.3390/molecules30081760