Development of Nanomaterials for Energy and Environmental Applications
Funding
Conflicts of Interest
List of Contributions
- Zhao, D.; Tang, X.; Liu, P.; Huang, Q.; Li, T.; Ju, L. Recent Progress of Ion-Modified TiO2 for Enhanced Photocatalytic Hydrogen Production. Molecules 2024, 29, 2347. https://doi.org/10.3390/molecules29102347.
- Hua, S.; Shah, A.S.; Ullah, N.; Ullah, N.; Yuan, A. Synthesis of Fe2O3 Nanorod and NiFe2O4 Nanoparticle Composites on Expired Cotton Fiber Cloth for Enhanced Hydrogen Evolution Reaction. Molecules 2024, 29, 3082. https://doi.org/10.3390/molecules29133082.
- Khairat, U.; Manseki, K.; Ogawa, A.; Sugiura, T. LiNH2-Based Nitridation Synthesis and Structure Analysis of GaN:ZnO Solid Solutions. Molecules 2025, 30, 1134. https://doi.org/10.3390/molecules30051134.
- Lu, Z.; Li, S.; Wang, Y.; Wang, J.; Guo, Y.; Ding, J.; Tang, K.; Ren, Y.; You, L.; Meng, H.; et al. Nickel–Molybdenum-Based Three-Dimensional Nanoarrays for Oxygen Evolution Reaction in Water Splitting. Molecules 2024, 29, 3966. https://doi.org/10.3390/molecules29163966.
- Yang, H.; Guo, H.; Sun, H.; Peng, T. Influence of Ca3(PO4)2 on the Surface Morphology and Properties of a CaO-Al2O3-SiO2-Fe2O3-Based High Temperature Phase Reconstructed Complex. Molecules 2024, 29, 3740. https://doi.org/10.3390/molecules29163740.
- Liu, Y.; Tang, X.; Yan, X.; Wang, L.; Tai, X.; Azam, M.; Zhao, D. The Synthesis, Structural Characterization, and DFT Calculation of a New Binuclear Gd(III) Complex with 4-Aacetylphenoxyacetic Acid and 1,10-Phenanthroline Ligands and Its Roles in Catalytic Activity. Molecules 2024, 29, 3039. https://doi.org/10.3390/molecules29133039.
- Zuo, C.; Tang, X.; Wang, H.; Su, Q. A Review of the Effect of Defect Modulation on the Photocatalytic Reduction Performance of Carbon Dioxide. Molecules 2024, 29, 2308. https://doi.org/10.3390/molecules29102308.
- Su, Q.; Yu, L. Sub-10 nm PdNi@PtNi Core–Shell Nanoalloys for Efficient Ethanol Electro-Oxidation. Molecules 2024, 29, 4853. https://doi.org/10.3390/molecules29204853.
- Xiao, S.; Zhang, D.; Wang, G.; Zhou, T.; Wang, N. Density Functional Theory Study of Triple Transition Metal Cluster Anchored on the C2N Monolayer for Nitrogen Reduction Reactions. Molecules 2024, 29, 3314. https://doi.org/10.3390/molecules29143314.
- Fu, J.; Li, L.; Xue, Q.; Li, L.; Guo, Z.; Meng, L.; Lai, C.; Guo, Y. Vacancy Engineering of Selenium-Vacant NiCo2Se4 with Enhanced Electrochemical Performance for Supercapacitor. Molecules 2024, 29, 4580. https://doi.org/10.3390/molecules29194580.
References
- Huang, F.; Chen, B.; Li, X.; Liu, Z.; Xu, W.; Luo, X.; Li, C. Influence of fly ash on the long-term performance of low water-to-binder ratio paste containing silica fume in water curing and drying curing regimes. J. Build. Eng. 2025, 104, 112255. [Google Scholar] [CrossRef]
- Cui, J.; Gao, Y.; van Grinsven, H.; Zheng, M.; Zhang, X.; Ren, C.; Ma, T.; Xu, J.; Gu, B. Adaptive Mitigation of Warming-Induced Food Crisis and Nitrogen Pollution. Environ. Sci. Technol. 2025, 59, 3527–3536. [Google Scholar] [CrossRef]
- Roy, S.S.; Sharma, R.K.; Karmakar, A.; Nagappan, S.; Pathak, B.; Kundu, S. Triggering the water oxidation kinetics and reaction pathway via S-doping in layered hydroxides for enhanced electrocatalytic performance. Appl. Catal. B-Environ. Energy 2025, 371, 125227. [Google Scholar]
- Cao, Z.; Zhou, T.; Ma, X.; Shen, Y.; Deng, Q.; Zhang, W.; Zhao, Y. Hydrogen Production from Urea Sewage on NiFe-Based Porous Electrocatalysts. ACS Sustain. Chem. Eng. 2020, 8, 11007–11015. [Google Scholar] [CrossRef]
- Vilvanatha Prabu, A.; Vijayaraghavan, G.V.; Suriakarthick, R.; Priscilla, J.; Shyju, T.S.; Mani, J. Electrical, electrochemical and thermoelectric properties of PANI/AgBiSe2 multi-functional polymeric composite material for energy storage and conversion applications. J. Alloys Compd. 2025, 1021, 179534. [Google Scholar] [CrossRef]
- Cocom, L.B.; Rionda, S.B.; Ordoñez, L.C.; Valdez, S.I. Numerical simulation of direct methanol fuel cells using computational fluid dynamics. Int. J. Hydrogen Energ. 2025, 108, 87–98. [Google Scholar] [CrossRef]
- Pradhan, P.; Joshi, S.; Dahal, K.; Hu, Y.; Subedi, D.R.; Putra, M.P.I.F.; Vaidya, S.; Pant, L.P.; Dhakal, S.; Hubacek, K.; et al. Policy relevance of IPCC reports for the Sustainable Development Goals and beyond. Resour. Environ. Sustain. 2025, 19, 100192. [Google Scholar] [CrossRef]
- Zhang, K.; Li, J.; Zhang, J.; Wang, S.; Liu, X.; Zou, T.; Yang, H.; Han, X.; Han, Y. Adjustable composition of nickel–iron hydrogen phosphite for urea-assisted energy-saving hydrogen production. Chem. Eng. Sci. 2025, 309, 121461. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, G.; Zhang, Y.; Li, L.; Wang, J.; Lu, P.; Ren, Y.; Cheng, M.; Cai, Y.; Li, J. Efficient and stable chlorine evolution reaction in a neutral environment using a low-ruthenium-doped CuMnRu/CC electrode. Int. J. Hydrogen Energy 2025, 112, 369–377. [Google Scholar] [CrossRef]
- Ali, M.; Cao, X.; Anwer, H.; Khan, I.A.; Ko, M.J. The role of extremely low-dimensional carbon materials in the design of sustainable catalysts for water splitting. Chem. Eng. J. 2025, 508, 160981. [Google Scholar] [CrossRef]
- Xu, X.; Chen, S.; Chen, P.; Guo, K.; Yu, X.; Tang, J.; Lu, W.; Miao, X. Cation vacancy modulated Cu3P-CoP heterostructure electrocatalyst for boosting hydrogen evolution at high current densities and coupling Zn-H2O battery. J. Colloid Interf. Sci. 2024, 674, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Kumari, K.; Mishra, S.R.; Gadore, V.; Moyon, N.S.; Ahmaruzzaman, M. Efficient Visible-Light Photocatalysis Using Fe-Doped SnO2/Chitosan Composite for Organic Pollutant Degradation: Mechanisms, Reusability, and Sustainability. J. Inorg. Organomet. Polym. 2025. [Google Scholar] [CrossRef]
- Kolpak, A.M.; Grinberg, I.; Rappe, A.M. Polarization effects on the surface chemistry of PbTiO3-supported Pt films. Phys. Rev. Lett. 2007, 98, 166101. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Guo, H.; Sun, H.; Peng, T. Influence of Ca3(PO4)2 on the Surface Morphology and Properties of a CaO-Al2O3-SiO2-Fe2O3-Based High Temperature Phase Reconstructed Complex. Molecules 2024, 29, 3740. [Google Scholar] [CrossRef]
- Zhao, D.; Tang, X.; Liu, P.; Huang, Q.; Li, T.; Ju, L. Recent Progress of Ion-Modified TiO2 for Enhanced Photocatalytic Hydrogen Production. Molecules 2024, 29, 2347. [Google Scholar] [CrossRef]
- Hua, S.; Shah, S.A.; Ullah, N.; Ullah, N.; Yuan, A. Synthesis of Fe2O3 Nanorod and NiFe2O4 Nanoparticle Composites on Expired Cotton Fiber Cloth for Enhanced Hydrogen Evolution Reaction. Molecules 2024, 29, 3082. [Google Scholar] [CrossRef]
- Khairat, U.; Manseki, K.; Ogawa, A.; Sugiura, T. LiNH2-Based Nitridation Synthesis and Structure Analysis of GaN:ZnO Solid Solutions. Molecules 2025, 30, 1134. [Google Scholar] [CrossRef]
- Lu, Z.; Li, S.; Wang, Y.; Wang, J.; Guo, Y.; Ding, J.; Tang, K.; Ren, Y.; You, L.; Meng, H.; et al. Nickel–Molybdenum-Based Three-Dimensional Nanoarrays for Oxygen Evolution Reaction in Water Splitting. Molecules 2024, 29, 3966. [Google Scholar] [CrossRef]
- Chen, S.; Ding, R.; Li, B.; Lu, J.; Zhang, X. A robust aerogel incorporated with phthalocyanine-based porous organic polymers for highly efficient gold extraction. Sep. Purif. Technol. 2025, 354, 129451. [Google Scholar] [CrossRef]
- Rongming, W.; Qingguo, M.; Liangliang, Z.; Haifeng, W.; Fangna, D.; Wenyue, G.; Lianming, Z.; Daofeng, S. Investigation of the effect of pore size on gas uptake in two metal-organic frameworks. Chem. Commun. 2014, 50, 4911–4914. [Google Scholar]
- Zhang, J.; Guo, S.; Yang, H.; Yang, L.; Tan, X. Interfacial polymerization of poly(ethylenimine) on PAN hollow fibers for direct air capture of CO2. J. Environ. Chem. Eng. 2025, 13, 116077. [Google Scholar] [CrossRef]
- Wang, L.; Fan, Y. Carbon sequestration technology in concrete: A review of mechanism, application and optimization strategy. J. Build. Eng. 2025, 102, 111862. [Google Scholar] [CrossRef]
- El-Khouly, M.E.; El-Mohsnawy, E.; Fukuzumi, S. Solar energy conversion: From natural to artificial photosynthesis. J. Photoch. Photobio. C 2017, 31, 36–83. [Google Scholar] [CrossRef]
- Ma, S.; Li, W.; Zhang, X.; Lu, K.; Lian, M.; Wei, X.; Pan, Y.; Jiang, H.; Wang, H.; Zhang, Z.; et al. Pressure-induced nano-crystallization and high hardness of optically transparent α-Si3N4 ceramics. Sci. China Phys. Mech. 2025, 68, 257001. [Google Scholar] [CrossRef]
- Chen, X.; Deng, W.; Feng, L.; Wei, X.; Xie, Y. Novel high-temperature NTC thermistors based on Ca2Ge7-xMnxO16 ceramics: lnρ∝ T. Ceram. Int. 2025, 51, 9455–9463. [Google Scholar] [CrossRef]
- Liu, K.; Huang, R.; Lin, D.; Tan, J.; Dai, Y.; Lin, H.T. Enhanced electrical properties and depolarization temperature of BF-BT ceramics via Mn2+ and Sc3+ Co-doping and direct reaction sintering. Ceram. Int. 2025, 51, 9131–9141. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, X.; Yan, X.-H.; Wang, L.-H.; Tai, X.-S.; Azam, M.; Zhao, D.-Q. The Synthesis, Structural Characterization, and DFT Calculation of a New Binuclear Gd(III) Complex with 4-Aacetylphenoxyacetic Acid and 1,10-Phenanthroline Ligands and Its Roles in Catalytic Activity. Molecules 2024, 29, 3039. [Google Scholar] [CrossRef]
- Zuo, C.; Tang, X.; Wang, H.; Su, Q. A Review of the Effect of Defect Modulation on the Photocatalytic Reduction Performance of Carbon Dioxide. Molecules 2024, 29, 2308. [Google Scholar] [CrossRef]
- Takahashi, Y.; Semizo, H.; Matsuo, Y. Determination of optimal operating conditions for bioelectrolyte fuel cells using ADH as anode catalyst and solidification of fuel. Chem. Phys. Impact 2024, 9, 100709. [Google Scholar] [CrossRef]
- Yu, L.; Li, B.; Xue, R.; Wang, Q.; Tai, X.; Liu, L.; Zhang, Y.; Zhou, T.; Yang, X.; Lv, Y.; et al. Interface engineering of PtCuMn nanoframes with abundant defects for efficient electrooxidation of liquid fuels. Fuel Process. Technol. 2022, 236, 107434. [Google Scholar] [CrossRef]
- Su, Q.; Yu, L. Sub-10 nm PdNi@PtNi Core–Shell Nanoalloys for Efficient Ethanol Electro-Oxidation. Molecules 2024, 29, 4853. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Chen, P. Ammonia history in the making. Nat. Catal. 2021, 4, 734–735. [Google Scholar] [CrossRef]
- Jia, Z.; Zhu, Y.; Wang, Y.; Wang, S.; Jiang, M.; Sun, Q.; Zhong, X.; Yao, J. Tuning metal centers in hexaazatrinaphthalene tricarboxylic acid-based coordination polymers for efficient nitrogen electroreduction into ammonia. J. Environ. Chem. Eng. 2025, 13, 116065. [Google Scholar] [CrossRef]
- Shi, Y.; Tian, X.; Deng, Z.; Wang, F. Microwave catalytic dry reforming of methane over Ni/SiC catalysts for efficient syngas production. Fuel 2025, 388, 134574. [Google Scholar] [CrossRef]
- Silva, F.A.G.S.; Branco, S.; Dourado, F.; Neto, B.; Gama, M. Life cycle assessment of bacterial cellulose and comparison to other cellulosic sources. J. Clean. Prod. 2025, 493, 144876. [Google Scholar] [CrossRef]
- He, H.B.; Ding, X.L.; Wang, Y.Y.; Chen, Y.; Wang, M.M.; Chen, J.J.; Li, W. Catalysts with Trimetallic Sites on Graphene-like C2N for Electrocatalytic Nitrogen Reduction Reaction: A Theoretical Investigation. ChemPhysChem 2024, 25, e202400143. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, D.; Wang, G.; Zhou, T.; Wang, N. Density Functional Theory Study of Triple Transition Metal Cluster Anchored on the C2N Monolayer for Nitrogen Reduction Reactions. Molecules 2024, 29, 3314. [Google Scholar] [CrossRef]
- Qu, D.; Wang, G.; Kafle, J.; Harris, J.; Crain, L.; Jin, Z.; Zheng, D. Electrochemical Impedance and its Applications in Energy-Storage Systems. Small Methods 2018, 2, 1700342. [Google Scholar] [CrossRef]
- Imran, F.; Hussain, A.; Aladhyani, I.; Ali, F.; Afzal, S.; Obodo, R.M. Improving the bimetallic interactions of CeO2@MnO2/MXenes for supercapacitor electrode applications. Mater. Chem. Phys. 2025, 337, 130625. [Google Scholar] [CrossRef]
- Fu, J.; Li, L.; Xue, Q.; Li, L.; Guo, Z.; Meng, L.; Lai, C.; Guo, Y. Vacancy Engineering of Selenium-Vacant NiCo2Se4 with Enhanced Electrochemical Performance for Supercapacitor. Molecules 2024, 29, 4580. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, L. Development of Nanomaterials for Energy and Environmental Applications. Molecules 2025, 30, 1752. https://doi.org/10.3390/molecules30081752
Ju L. Development of Nanomaterials for Energy and Environmental Applications. Molecules. 2025; 30(8):1752. https://doi.org/10.3390/molecules30081752
Chicago/Turabian StyleJu, Lin. 2025. "Development of Nanomaterials for Energy and Environmental Applications" Molecules 30, no. 8: 1752. https://doi.org/10.3390/molecules30081752
APA StyleJu, L. (2025). Development of Nanomaterials for Energy and Environmental Applications. Molecules, 30(8), 1752. https://doi.org/10.3390/molecules30081752