Three-Dimensional Porous Artemia Cyst Shell Biochar-Supported Iron Oxide Nanoparticles for Efficient Removal of Chromium from Wastewater
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Chromium Removal Efficiency of ACSC@IONP
2.3. Isothermal Adsorption
2.4. pH-Dependent Cr(VI) Removal
2.5. Selective Cr(VI) Removal in the Presence of Competing Anions
2.6. Reusability and Stability Evaluation
2.7. Mechanism of Chromium Removal
3. Materials and Methods
3.1. Materials
3.2. Preparation of Artemia Cyst Shell Biochar-Supported Iron Oxidenanoparticles ACSC@IONP
3.3. Characterizations
3.4. Cr(VI) Adsorption on ACSC@IONP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aigbe, U.O.; Osibote, O.A. A review of hexavalent chromium removal from aqueous solutions by sorption technique using nanomaterials. J. Environ. Chem. Eng. 2020, 8, 104503. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, Q.; Gao, B.; Li, M.; Fan, Z.; Sang, W.; Hao, H.; Wei, X. Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: Synergy of adsorption, reduction and transformation. Environ. Pollut. 2020, 265, 115018. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, A.; Senthil Kumar, P.; Varjani, S.; Karishma, S.; Jeevanantham, S.; Yaashikaa, P.R. Effective removal of Cr(VI) ions from synthetic solution using mixed biomasses: Kinetic, equilibrium and thermodynamic study. J. Water Process. Eng. 2021, 40, 101905. [Google Scholar] [CrossRef]
- Swaroop, A.; Bagchi, M.; Preuss, H.G.; Zafra-Stone, S.; Ahmad, T.; Bagchi, D. Chapter 8—Benefits of chromium(III) complexes in animal and human health. In The Nutritional Biochemistry of Chromium (III) (Second Edition); Vincent, J.B., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 251–278. [Google Scholar]
- Chandra Babu, N.K.; Asma, K.; Raghupathi, A.; Venba, R.; Ramesh, R.; Sadulla, S. Screening of leather auxiliaries for their role in toxic hexavalent chromium formation in leather—Posing potential health hazards to the users. J. Clean. Prod. 2005, 13, 1189–1195. [Google Scholar] [CrossRef]
- Li, T.M.; Yang, P.W.; Yan, J.; Chen, M.; You, S.X.; Bai, J.H.; Yu, G.; Ullah, H.; Chen, J.H.; Lin, H. Effects of Hydraulic Retention Time on Removal of Cr (VI) and p-Chlorophenol and Electricity Generation in L. hexandra-Planted Constructed Wetland-Microbial Fuel Cell. Molecules 2024, 29, 4773. [Google Scholar] [CrossRef] [PubMed]
- Chebeir, M.; Liu, H. Kinetics and Mechanisms of Cr(VI) Formation via the Oxidation of Cr(III) Solid Phases by Chlorine in Drinking Water. Environ. Sci. Technol. 2016, 50, 701–710. [Google Scholar] [CrossRef]
- Zhou, W.; Lin, S.; Li, M.; Chen, Y.; You, Z.; Liu, Y. The introduction of pyrochar boosts the generation of singlet oxygen in a ferrihydrite-based Fenton-like system to facilitate the Cr(III)-citrate decomplexation under Cr(VI) inhibition. Chem. Eng. J. 2024, 497, 154956. [Google Scholar] [CrossRef]
- Pettine, M.; Gennari, F.; Campanella, L.; Millero, F.J. The effect of organic compounds in the oxidation kinetics of Cr(III) by H2O2. Geochim. Cosmochim. Acta 2008, 72, 5692–5707. [Google Scholar] [CrossRef]
- Geelhoed, J.S.; Meeussen, J.C.L.; Hillier, S.; Lumsdon, D.G.; Thomas, R.P.; Farmer, J.G.; Paterson, E. Identification and geochemical modeling of processes controlling leaching of Cr(VI) and other major elements from chromite ore processing residue. Geochim. Cosmochim. Acta 2002, 66, 3927–3942. [Google Scholar] [CrossRef]
- Jawed, A.; Golder, A.K.; Pandey, L.M. Bio-based iron oxide nanoparticles forming bi-functional chitosan composite adsorbent for Cr(VI) decontamination. Chem. Eng. J. 2024, 481, 148411. [Google Scholar] [CrossRef]
- Jawed, A.; Golder, A.K.; Pandey, L.M. Synthesis of iron oxide nanoparticles mediated by Camellia sinensis var. Assamica for Cr(VI) adsorption and detoxification. Bioresour. Technol. 2023, 376, 128816. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Li, J.; Chen, M.; Jin, Y.; Ma, Y.; Ou, G.; Wei, Z. ZIF-67 derived magnetic nanoporous carbon coated by poly(m-phenylenediamine) for hexavalent chromium removal. Sep. Purif. Technol. 2021, 277, 119436. [Google Scholar] [CrossRef]
- Fang, L.; Ding, L.; Ren, W.; Hu, H.; Huang, Y.; Shao, P.; Yang, L.; Shi, H.; Ren, Z.; Han, K.; et al. High exposure effect of the adsorption site significantly enhanced the adsorption capacity and removal rate: A case of adsorption of hexavalent chromium by quaternary ammonium polymers (QAPs). J. Hazard. Mater. 2021, 416, 125829. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhong, D.; Xu, Y.; Chang, H.; Shen, H.; Xu, C.; Mou, J.; Zhong, N. Enhanced removal of Cr(VI) from aqueous solution by nano- zero-valent iron supported by KOH activated sludge-based biochar. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129697. [Google Scholar] [CrossRef]
- Jawed, A.; Saxena, V.; Pandey, L.M. Engineered nanomaterials and their surface functionalization for the removal of heavy metals: A review. J. Water Process. Eng. 2020, 33, 101009. [Google Scholar] [CrossRef]
- Mwebembezi, T.; Wakatuntu, J.; Jjagwe, J.; Kanyesigye, C.; Kulabako, R.N.; Olupot, P.W. Synthesis, characterization and application of steel waste-based iron oxide nanoparticles for removal of heavy metals from industrial wastewaters. Heliyon 2024, 10, e28153. [Google Scholar] [CrossRef]
- Chatterjee, S.; Mahanty, S.; Das, P.; Chaudhuri, P.; Das, S. Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr(VI) from aqueous solution. Chem. Eng. J. 2020, 385, 123790. [Google Scholar] [CrossRef]
- Feng, Z.; Chen, N.; Feng, C.; Gao, Y. Mechanisms of Cr(VI) removal by FeCl3-modified lotus stem-based biochar (FeCl3@LS-BC) using mass-balance and functional group expressions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 551, 17–24. [Google Scholar] [CrossRef]
- Bansal, M.; Garg, U.; Singh, D.; Garg, V.K. Removal of Cr(VI) from aqueous solutions using pre-consumer processing agricultural waste: A case study of rice husk. J. Hazard. Mater. 2009, 162, 312–320. [Google Scholar] [CrossRef]
- Vinayagam, R.; Dave, N.; Varadavenkatesan, T.; Rajamohan, N.; Sillanpää, M.; Nadda, A.K.; Govarthanan, M.; Selvaraj, R. Artificial neural network and statistical modelling of biosorptive removal of hexavalent chromium using macroalgal spent biomass. Chemosphere 2022, 296, 133965. [Google Scholar] [CrossRef]
- Wang, M.; Fu, M.; Li, J.; Niu, Y.; Zhang, Q.; Sun, Q. New insight into polystyrene ion exchange resin for efficient cesium sequestration: The synergistic role of confined zirconium phosphate nanocrystalline. Chin. Chem. Lett. 2024, 35, 108442. [Google Scholar] [CrossRef]
- Wang, B.; Xia, J.L.; Mei, L.Y.; Wang, L.; Zhang, Q.R. Highly Efficient and Rapid Lead(II) Scavenging by the Natural Artemia Cyst Shell with Unique Three-Dimensional Porous Structure and Strong Sorption Affinity. ACS Sustain. Chem. Eng. 2018, 6, 1343–1351. [Google Scholar] [CrossRef]
- Wang, S.F.; Lv, F.J.; Jiao, T.F.; Ao, J.F.; Zhang, X.C.; Jin, F.D. A Novel Porous Carrier Found in Nature for Nanocomposite Materials Preparation: A Case Study of Artemia Egg Shell-Supported TiO2 for Formaldehyde Removal. J. Nanomater. 2015, 2015, 963012. [Google Scholar] [CrossRef]
- Wang, S.F.; Ma, M.X.; Zhang, Q.R.; Sun, G.Q.; Jiao, T.F.; Okazaki, R.K. Efficient Phosphate Sequestration in Waters by the Unique Hierarchical 3D Artemia Egg Shell Supported Nano-Mg(OH)2 Composite and Sequenced Potential Application in Slow Release Fertilizer. ACS Sustain. Chem. Eng. 2015, 3, 2496–2503. [Google Scholar] [CrossRef]
- Wang, S.F.; Ao, J.F.; Lv, F.J.; Zhang, Q.R.; Jiao, T.F. The enhanced antibacterial performance by the unique Artemia egg shell-supported nano-Ag composites. J. Taiwan Inst. Chem. Eng. 2016, 61, 336–341. [Google Scholar] [CrossRef]
- Li, J.Q.; Wang, M.Z.; Zhao, X.; Li, Z.T.; Niu, Y.H.; Wang, S.F.; Sun, Q.A. Efficient Iodine Removal by Porous Biochar-Confined Nano-Cu2O/Cu0: Rapid and Selective Adsorption of Iodide and Iodate Ions. Nanomaterials 2023, 13, 576. [Google Scholar] [CrossRef]
- Xu, W.Q.; Cai, B.; Zhang, X.J.; Zhang, Y.T.; Zhang, Y.J.; Peng, H.H. The Biochar Derived from Pecan Shells for the Removal of Congo Red: The Effects of Temperature and Heating Rate. Molecules 2024, 29, 5532. [Google Scholar] [CrossRef]
- Shi, T.T.; Yang, B.; Hu, W.G.; Gao, G.J.; Jiang, X.Y.; Yu, J.G. Garlic Peel-Based Biochar Prepared under Weak Carbonation Conditions for Efficient Removal of Methylene Blue from Wastewater. Molecules 2024, 29, 4772. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Ma, Y.; Cao, P.; Tang, X.; Xin, J. Ball Milling and Magnetic Modification Boosted Methylene Blue Removal by Biochar Obtained from Water Hyacinth: Efficiency, Mechanism, and Application. Molecules 2024, 29, 5141. [Google Scholar] [CrossRef]
- Cuong, D.V.; Liu, N.; Nguyen, V.A.; Hou, C. Meso/micropore-controlled hierarchical porous carbon derived from activated biochar as a high-performance adsorbent for copper removal. Sci. Total Environ. 2019, 692, 844–853. [Google Scholar] [CrossRef]
- Zheng, L.; Cui, X.; Wang, X.; Xu, D.; Lu, X.; Guo, Y. Pt/N co-doped porous carbon derived from bio-tar: A remarkable catalyst for efficient oxidation of 5-hydroxymethylfurfural under alkali-free condition: Performance, mechanism and kinetics. Chem. Eng. J. 2023, 454, 140179. [Google Scholar] [CrossRef]
- Zhou, L.; Chi, T.Y.; Zhou, Y.Y.; Lv, J.D.; Chen, H.; Sun, S.Q.; Zhu, X.F.; Wu, H.P.; Hu, X. Efficient removal of hexavalent chromium through adsorption-reduction-adsorption pathway by iron-clay biochar composite prepared from Populus nigra. Sep. Purif. Technol. 2022, 285, 120386. [Google Scholar] [CrossRef]
- Eshun, J.; Wang, L.J.; Ansah, E.; Shahbazi, A.; Schimmel, K.; Kabadi, V.; Aravamudhan, S. Characterization of the physicochemical and structural evolution of biomass particles during combined pyrolysis and CO2 gasification. J. Energy Inst. 2019, 92, 82–93. [Google Scholar] [CrossRef]
- Ali, S.M.; El Mansop, M.A.; Galal, A.; Abd El Wahab, S.M.; El-Etr, W.; El-Abdeen, H. A correlation of the adsorption capacity of perovskite/biochar composite with the metal ion characteristics. Sci. Rep. 2023, 13, 9466. [Google Scholar] [CrossRef]
- Chia, C.H.; Gong, B.; Joseph, S.D.; Marjo, C.E.; Munroe, P.; Rich, A.M. Imaging of mineral-enriched biochar by FTIR, Raman and SEM-EDX. Vib. Spectrosc. 2012, 62, 248–257. [Google Scholar] [CrossRef]
- Li, Z.L.; Deng, L.B.; Kinloch, I.A.; Young, R.J. Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres. Prog. Mater. Sci. 2023, 135, 101089. [Google Scholar] [CrossRef]
- Yin, Z.; Xu, S.; Liu, S.; Xu, S.; Li, J.; Zhang, Y. A novel magnetic biochar prepared by K2FeO4-promoted oxidative pyrolysis of pomelo peel for adsorption of hexavalent chromium. Bioresour. Technol. 2020, 300, 122680. [Google Scholar] [CrossRef]
- Zhong, D.L.; Zhang, Y.R.; Wang, L.L.; Chen, J.; Jiang, Y.; Tsang, D.; Zhao, Z.Z.; Ren, S.P.; Liu, Z.H.; Crittenden, J.C. Mechanistic insights into adsorption and reduction of hexavalent chromium from water using magnetic biochar composite: Key roles of Fe3O4 and persistent free radicals. Environ. Pollut. 2018, 243, 1302–1309. [Google Scholar] [CrossRef]
- Li, X.; Ye, F.; Zhang, H.; Ahmad, M.; Zeng, Z.; Wang, S.; Wang, S.; Gao, D.; Zhang, Q. Ternary rGO decorated W18O49 @g-C3N4 composite as a full-spectrum-responded Z-scheme photocatalyst for efficient photocatalytic H2O2 production and water disinfection. J. Environ. Chem. Eng. 2023, 11, 110329. [Google Scholar] [CrossRef]
- Echigo, T.; Aruguete, D.M.; Murayama, M.; Hochella, M.F. Influence of size, morphology, surface structure, and aggregation state on reductive dissolution of hematite nanoparticles with ascorbic acid. Geochim. Cosmochim. Acta 2012, 90, 149–162. [Google Scholar] [CrossRef]
- Lanzl, C.A.; Baltrusaitis, J.; Cwiertny, D.M. Dissolution of Hematite Nanoparticle Aggregates: Influence of Primary Particle Size, Dissolution Mechanism, and Solution pH. Langmuir 2012, 28, 15797–15808. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Wen, Y.; Dionysiou, D.D.; Sharma, V.K.; Ma, X. Biochar as a novel carbon-negative electron source and mediator: Electron exchange capacity (EEC) and environmentally persistent free radicals (EPFRs): A review. Chem. Eng. J. 2022, 429, 132313. [Google Scholar] [CrossRef]
- Tian, R.; Dong, H.; Chen, J.; Li, R.; Xie, Q.; Li, L.; Li, Y.; Jin, Z.; Xiao, S.; Xiao, J. Electrochemical behaviors of biochar materials during pollutant removal in wastewater: A review. Chem. Eng. J. 2021, 425, 130585. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, Y.; Song, W.; Jia, Y.; Li, A.; Wang, S. Intrinsic properties of biochar for electron transfer. Chem. Eng. J. 2023, 475, 146356. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.Q.; Wang, W.L.; Song, Z.L.; Mao, Y.P.; Sun, J.; Chen, S.Y. Removal of p-nitrophenol by double-modified nanoscale zero-valent iron with biochar and sulfide: Key factors and mechanisms. J. Water Process. Eng. 2023, 51, 103398. [Google Scholar] [CrossRef]
- Bian, P.Y.; Shao, Q.Q. Efficient adsorption of hexavalent chromium in water by torrefaction biochar from lignin-rich kiwifruit branches: The combination of experiment, 2D-COS and DFT calculation. Int. J. Biol. Macromol. 2024, 273, 133116. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.H.; Wu, Z.H.; Liu, Y.; Li, R.L.; Wang, D.; Wang, S.Q.; Wei, S.Q.; Zhang, J.R.; Tao, Y.; Jiang, Z.; et al. Ball milling potassium ferrate activated biochar for efficient chromium and tetracycline decontamination: Insights into activation and adsorption mechanisms. Bioresour. Technol. 2022, 360, 127407. [Google Scholar] [CrossRef]
- Afshin, S.; Rashtbari, Y.; Vosough, M.; Dargahi, A.; Fazlzadeh, M.; Behzad, A.; Yousefi, M. Application of Box–Behnken design for optimizing parameters of hexavalent chromium removal from aqueous solutions using Fe3O4 loaded on activated carbon prepared from alga: Kinetics and equilibrium study. J. Water Process. Eng. 2021, 42, 102113. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, G.; Liu, J.; Xiao, Y.; Wang, T.; Xue, Y.J. Magnetic biochar prepared by electromagnetic induction pyrolysis of cellulose: Biochar characterization, mechanism of magnetization and adsorption removal of chromium (VI) from aqueous solution. Bioresour. Technol. 2021, 337, 125429. [Google Scholar] [CrossRef]
- Zou, H.W.; Zhao, J.W.; He, F.; Zhong, Z.; Huang, J.S.; Zheng, Y.L.; Zhang, Y.; Yang, Y.C.; Yu, F.; Bashir, M.A.; et al. Ball milling biochar iron oxide composites for the removal of chromium (Cr (VI)) from water: Performance and mechanisms. J. Hazard. Mater. 2021, 413, 125252. [Google Scholar] [CrossRef]
- Sangkarak, S.; Kittipongvises, S.; Kitkaew, D.; Chaveanghong, S.; Ittisupornrat, S.; Phetrak, A.; Lohwacharin, J. Influence of the iron-oxide mass fractions of magnetic powdered activated carbon on its hexavalent chromium adsorption performance in water. Chemosphere 2024, 364, 142997. [Google Scholar] [CrossRef] [PubMed]
- Bahador, F.; Foroutan, R.; Esmaeili, H.; Ramavandi, B. Enhancement of the chromium removal behavior of Moringa oleifera activated carbon by chitosan and iron oxide nanoparticles from water. Carbohydr. Polym. 2021, 251, 117085. [Google Scholar] [CrossRef]
- Qu, J.H.; Zhang, X.B.; Liu, S.Q.; Li, X.J.; Wang, S.Y.; Feng, Z.H.; Wu, Z.H.; Wang, L.; Jiang, Z.; Zhang, Y. One-step preparation of Fe/N co-doped porous biochar for chromium(VI) and bisphenol a decontamination in water: Insights to co-activation and adsorption mechanisms. Bioresour. Technol. 2022, 361, 127718. [Google Scholar] [CrossRef] [PubMed]
- Taha, A.; Da’Na, E.; Hassanin, H.A. Modified activated carbon loaded with bio-synthesized Ag/ZnO nanocomposite and its application for the removal of Cr (VI) ions from aqueous solution. Surf. Interfaces 2021, 23, 100928. [Google Scholar] [CrossRef]
- Mortazavian, S.; Saber, A.; Hong, J.; Bae, J.; Chun, D.; Wong, N.; Gerrity, D.; Batista, J.; Kim, K.J.; Moon, J. Synthesis, characterization, and kinetic study of activated carbon modified by polysulfide rubber coating for aqueous hexavalent chromium removal. J. Ind. Eng. Chem. 2019, 69, 196–210. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, M.; Yang, Y.; Song, J.; Li, J.; Zhang, Q. Boosting cesium retention efficiency with polyoxometalate-ionic liquid composites: Insights into {WO6} octahedral affinity. J. Clean. Prod. 2024, 478, 143922. [Google Scholar] [CrossRef]
- Abou Oualid, H.; Abdellaoui, Y.; Laabd, M.; El Ouardi, M.; Brahmi, Y.; Iazza, M.; Abou Oualid, J. Eco-Efficient Green Seaweed Codium decorticatum Biosorbent for Textile Dyes: Characterization, Mechanism, Recyclability, and RSM Optimization. ACS Omega 2020, 5, 22192–22207. [Google Scholar] [CrossRef]
- Rajput, S.; Pittman, C.U.; Mohan, D. Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. J. Colloid Interface Sci. 2016, 468, 334–346. [Google Scholar] [CrossRef]
- Hu, J.; Chen, G.; Lo, I.M.C. Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res. 2005, 39, 4528–4536. [Google Scholar] [CrossRef]
- Xing, J.; Dong, W.; Liang, N.; Huang, Y.; Wu, M.; Zhang, L.; Chen, Q. Sorption of organic contaminants by biochars with multiple porous structures: Experiments and molecular dynamics simulations mediated by three-dimensional models. J. Hazard. Mater. 2023, 458, 131953. [Google Scholar] [CrossRef] [PubMed]
- Masuku, M.; Nure, J.F.; Atagana, H.I.; Hlongwa, N.; Nkambule, T.T.I. Pinecone biochar for the Adsorption of chromium (VI) from wastewater: Kinetics, thermodynamics, and adsorbent regeneration. Environ. Res. 2024, 258, 119423. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Sun, P.; Chen, Y.; Li, X.; Zheng, X. Distinct chromium removal mechanisms by iron-modified biochar under varying pH: Role of iron and chromium speciation. Chemosphere 2023, 331, 138796. [Google Scholar] [CrossRef] [PubMed]
- GB 7467-1987; Water Quality—Determination of Chromium(VI)—1,5 Diphenylcarbazide Spectrophotometric Method. State Environmental Protection Administration: Beijing, China, 1987.
- GB 7466-1987; Water Quality—Determination of Total Chromium. State Environmental Protection Administration: Beijing, China, 1987.
Adsorbents | Equilibrium Time (min) | Initial Cr Concentration (mg/L) | Adsorbent Dose (g/L) | Ref. |
---|---|---|---|---|
Kiwifruit branch biochar (KBC) | 510 | - | 0.09 g | [47] |
Ball milling corn straw magnetic biochar (MBC) | 80 | 100 | 0.5 | [48] |
AC-Fe3O4 nanocomposite | 90 | 40 | 1.0 | [49] |
Cellulose magnetic biochar (DEBC) | 180 | 15 | 0.5 | [50] |
Hickory ball milled biochar (BM-Fe-HC) | 240 | 30 | 0.5 | [51] |
Magnetic powdered activated carbon (Mag-PAC) | 720 | 300 | 3.0 | [52] |
FeCl3-modified lotus stem-based biochar(FeCl3@LS-BC) | 900 | 10 | 1.6 | [19] |
Iron-clay biochar composite prepared from invasive Populus nigra (PFB) | 1080 | 100 | 2.0 | [33] |
Rice husk magnetic biochar (MBC) | 1120 | 100 | 1.0 | [39] |
Activated carbon/chitosan composite (AC/CS) | 50 | 20 | 1.0 | [53] |
Corn straw biochar (Fe/N-PBC) | 120 | 100 | 0.2 | [54] |
Ag/ZnO-AC nanocomposite | 3600 | 20 | 0.4 g | [55] |
Coating activated carbon with polysulfide rubber (AC-PSR) | 5760 | 10 | 3.0 | [56] |
Three-dimensional porous Artemia cyst shell biochar-supported iron oxide nanoparticles (ACSC@INOP) | 10 for Cr(VI) 5 for Cr(total) | 50 | 0.1 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Liu, Y.; Zhao, X.; Liu, X.; Sun, Q.; Jiao, T. Three-Dimensional Porous Artemia Cyst Shell Biochar-Supported Iron Oxide Nanoparticles for Efficient Removal of Chromium from Wastewater. Molecules 2025, 30, 1743. https://doi.org/10.3390/molecules30081743
Gao Y, Liu Y, Zhao X, Liu X, Sun Q, Jiao T. Three-Dimensional Porous Artemia Cyst Shell Biochar-Supported Iron Oxide Nanoparticles for Efficient Removal of Chromium from Wastewater. Molecules. 2025; 30(8):1743. https://doi.org/10.3390/molecules30081743
Chicago/Turabian StyleGao, Yu, Ying Liu, Xu Zhao, Xinchao Liu, Qina Sun, and Tifeng Jiao. 2025. "Three-Dimensional Porous Artemia Cyst Shell Biochar-Supported Iron Oxide Nanoparticles for Efficient Removal of Chromium from Wastewater" Molecules 30, no. 8: 1743. https://doi.org/10.3390/molecules30081743
APA StyleGao, Y., Liu, Y., Zhao, X., Liu, X., Sun, Q., & Jiao, T. (2025). Three-Dimensional Porous Artemia Cyst Shell Biochar-Supported Iron Oxide Nanoparticles for Efficient Removal of Chromium from Wastewater. Molecules, 30(8), 1743. https://doi.org/10.3390/molecules30081743